首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identifying mechanisms that underlie variation in adult survivorship provide insight into the evolution of life history strategies and phenotypic variation in longevity. There is accumulating evidence that shortening telomeres, the protective caps at the ends of chromosomes, play an important role in individual variation in longevity. Given that telomeres generally shorten with age, it was surprising to find that in a population of a long-lived seabird, Leach's storm petrel, telomeres appear to lengthen with age. This unique finding suggested that the longest lived individuals are able to elongate telomeres, an interpretation we call the "elongation hypothesis." Alternatively, the "selection hypothesis" states that the longest lived individuals start with the longest telomeres and variation in telomere length decreases with age due to the selective disappearance of individuals with short telomeres. In the same population in which evidence supporting both hypotheses was uncovered, we tested mutually exclusive predictions from the elongation and selection hypotheses by measuring telomere length with the telomere restriction fragment assay in hatchling and old, adult storm petrels. As previously found, adult birds had longer telomeres on average compared with hatchlings. We also found that 3 hatchlings had mean telomere lengths exceeding that of the most extreme old bird, old birds on average had longer initial telomere lengths than hatchlings, and the variance in mean telomere length was significantly greater for hatchlings than for old birds, all predicted by the selection hypothesis. Perhaps more surprisingly, the oldest adults also show little or no accumulation of short telomeres over time, a pattern unknown in other species. Long telomeres are thought to provide a buffer against cellular senescence and be generally indicative of genome stability and overall cell health. In storm petrels, because the progressive accumulation of short telomeres appears negligible, variation in telomere length at birth may be linked to individual variation in longevity.  相似文献   

2.
Telomeres often shorten with time, although this varies between tissues, individuals and species, and their length and/or rate of change may reflect fitness and rate of senescence. Measurement of telomeres is increasingly important to ecologists, yet the relative merits of different methods for estimating telomere length are not clear. In particular the extent to which interstitial telomere sequences (ITSs), telomere repeats located away from chromosomes ends, confound estimates of telomere length is unknown. Here we present a method to estimate the extent of ITS within a species and variation among individuals. We estimated the extent of ITS by comparing the amount of label hybridized to in‐gel telomere restriction fragments (TRF) before and after the TRFs were denatured. This protocol produced robust and repeatable estimates of the extent of ITS in birds. In five species, the amount of ITS was substantial, ranging from 15% to 40% of total telomeric sequence DNA. In addition, the amount of ITS can vary significantly among individuals within a species. Including ITSs in telomere length calculations always underestimated telomere length because most ITSs are shorter than most telomeres. The magnitude of that error varies with telomere length and is larger for longer telomeres. Estimating telomere length using methods that incorporate ITSs, such as Southern blot TRF and quantitative PCR analyses reduces an investigator's power to detect difference in telomere dynamics between individuals or over time within an individual.  相似文献   

3.
Explaining variation in life expectancy between individuals of the same age is fundamental to our understanding of population ecology and life history evolution. Variation in the length and rate of loss of the protective telomere chromosome caps has been linked to cellular lifespan. Yet, the extent to which telomere length and dynamics predict organismal lifespan in nature is still contentious. Using longitudinal samples taken from a closed population of Acrocephalus sechellensis (Seychelles warblers) studied for over 20 years, we describe the first study into life‐long adult telomere dynamics (1–17 years) and their relationship to mortality under natural conditions (= 204 individuals). We show that telomeres shorten with increasing age and body mass, and that shorter telomeres and greater rates of telomere shortening predicted future mortality. Our results provide the first clear and unambiguous evidence of a relationship between telomere length and mortality in the wild, and substantiate the prediction that telomere length and shortening rate can act as an indicator of biological age further to chronological age when exploring life history questions in natural conditions.  相似文献   

4.
Telomere dynamics link molecular and cellular mechanisms with organismal processes and therefore may explain variation in a number of important life-history traits. Telomere length has been used to estimate age in free-living populations of animals. Such estimation is a potentially powerful tool in the context of population dynamics and management, as well as the study of life-history trade-offs. The number of studies utilizing telomere restriction fragment assays in the fields of ecology and evolution is steadily growing. However, the field lacks methodological and analytical standardization resulting in considerable variation in telomere length and therefore in the usefulness of these techniques. Here, we illustrate new laboratory and analytical methods to reliably measure telomere length from blood erythrocytes and accurately assess the relationship between telomeres and age. We demonstrate the importance of analysing those telomeres most relevant to age-related studies: the shortest telomeres. We present a reliable method to quickly identify an analysis window (the telomere optimal estimate, TOE) which approaches the optimal window for age estimation. Because the TOE focuses on the shortest telomeres - those telomeres which signal cellular senescence and ageing - TOE can also be used to compare telomeres in age-matched individuals. We also compare constant- and pulsed-field gel electrophoresis to show how each can influence telomere measurement. The use of TOE should provide powerful telomere-based age estimation and enable organismal biologists to readily uncover individual and longitudinal differences with regard to telomere dynamics.  相似文献   

5.
Paternal age is positively linked to telomere length of children   总被引:2,自引:0,他引:2  
Telomere length is linked to age-associated diseases, with shorter telomeres in blood associated with an increased probability of mortality from infection or heart disease. Little is known about how human telomere length is regulated despite convincing data from twins that telomere length is largely heritable, uniform in various tissues during development until birth and variable between individuals. As sperm cells show increasing telomere length with age, we investigated whether age of fathers at conception correlated with telomere length of their offspring. Telomere length in blood from 125 random subjects was shown to be positively associated with paternal age (+22 bp yr -1, 95% confidence interval 5.2-38.3, P = 0.010), and paternal age was calculated to affect telomere length by up to 20% of average telomere length per generation. Males lose telomeric sequence faster than females (31 bp yr -1, 17.6-43.8, P < 0.0001 vs. 14 bp yr -1, 3.5-24.8, P < 0.01) and the rate of telomere loss slows throughout the human lifespan. These data indicate that paternal age plays a role in the vertical transmission of telomere length and may contribute significantly to the variability of telomere length seen in the human population, particularly if effects are cumulative through generations.  相似文献   

6.
7.
When vertebrates face stressful events, the hypothalamic–pituitary–adrenal (HPA) axis is activated, generating a rapid increase in circulating glucocorticoid (GC) stress hormones followed by a return to baseline levels. However, repeated activation of HPA axis may lead to increase in oxidative stress. One target of oxidative stress is telomeres, nucleoprotein complexes at the end of chromosomes that shorten at each cell division. The susceptibility of telomeres to oxidizing molecules has led to the hypothesis that increased GC levels boost telomere shortening, but studies on this link are scanty. We studied if, in barn swallows Hirundo rustica, changes in adult erythrocyte telomere length between 2 consecutive breeding seasons are related to corticosterone (CORT) (the main avian GC) stress response induced by a standard capture-restraint protocol. Within-individual telomere length did not significantly change between consecutive breeding seasons. Second-year individuals showed the highest increase in circulating CORT concentrations following restraint. Moreover, we found a decline in female stress response along the breeding season. In addition, telomere shortening covaried with the stress response: a delayed activation of the negative feedback loop terminating the stress response was associated with greater telomere attrition. Hence, among-individual variation in stress response may affect telomere dynamics.  相似文献   

8.
Telomere length (TL) is increasingly being used as a biomarker of senescence, but measuring telomeres remains a challenge. Within tissue samples, TL varies between cells and chromosomes. Class I telomeres are (presumably static) interstitial telomeric sequences, while terminal telomeres have been divided in shorter (Class II) telomeres and ultralong (Class III) telomeres, and the presence of the latter varies strongly between species. Class II telomeres typically shorten with age, but little is known of Class III telomere dynamics. Using multiple experimental approaches, we show great tits to have ultralong telomeres, and we investigated age effects on Class II and III telomeres using a longitudinal approach (our method excludes Class I telomeres). In adults, TL averaged over the whole distribution did not significantly change with age. However, more detailed analyses showed that Class II TL did shorten with age, and, as in other species, the longest Class II telomeres within individuals shortened more quickly with age. In contrast, Class III TL did not shorten with age within individual adults. Surprisingly, we found the opposite pattern in nestlings: Class III TL shortened significantly with age, while the age effect on Class II TL was close to zero. Thus, Class III TL may provide information on developmental history, while Class II TL provides information on telomere dynamics in adulthood. These findings have practical implications for telomere studies and raise the interesting question of what causes variation in TL dynamics between chromosomes within individuals and how this is related to development.  相似文献   

9.
Telomeres comprise tandem repeated DNA sequences that protect the ends of chromosomes from deterioration or fusion with neighboring chromosomes, and their lengths might vary with sex and age. Here, age‐ and sex‐related telomere lengths in male and female captive Siamese cobras (Naja kaouthia) were investigated using quantitative real‐time polymerase chain reaction based on cross‐sectional data. A negative correlation was shown between telomere length and body size in males but not in females. Age‐related sex differences were also recorded. Juvenile female snakes have shorter telomeres relative to males at up to 5 years of age, while body size also rapidly increases during this period. This suggests that an accelerated increase in telomere length of female cobra results from sex hormone stimulation to telomerase activity, reflecting sexually dimorphic phenotypic traits. This might also result from amplification of telomeric repeats on sex chromosomes. By contrast, female Siamese cobras older than 5 years had longer telomeres than males. Diverse sex hormone levels and oxidative stress parameters between sexes may affect telomere length.  相似文献   

10.
Trisomies 18 and 21 are genetic disorders in which cells possess an extra copy of each of the relevant chromosomes. Individuals with these disorders who survive birth generally have a shortened life expectancy. As telomeres are known to play an important role in the maintenance of genomic integrity by protecting the chromosomal ends, we conducted a study to determine whether there are differences in telomere length at birth between individuals with trisomy and diploidy, and between trisomic chromosomes and normal chromosomes. We examined samples of peripheral blood lymphocytes (PBLs) from 31 live neonates (diploidy: 10, trisomy 18: 10, trisomy 21: 11) and estimated the telomere length of each chromosome arm using Q-FISH. We observed that the telomeres of trisomic chromosomes were neither shorter nor longer than the mean telomere length of chromosomes as a whole among subjects with trisomies 18 and 21 (intra-cell comparison), and we were unable to conclude that there were differences in telomere length between 18 trisomy and diploid subjects, or between 21 trisomy and diploid subjects (inter-individual comparison). Although it has been reported that telomeres are shorter in older individuals with trisomy 21 and show accelerated telomere shortening with age, our data suggest that patients with trisomies 18 and 21 may have comparably sized telomeres. Therefore, it would be advisable for them to avoid lifestyle habits and characteristics such as obesity, cigarette smoking, chronic stress, and alcohol intake, which lead to marked telomere shortening.  相似文献   

11.
12.
Differentiated cells telomere length is an indicator of senescence or lifespan; however, in peripheral blood leukocytes the relative shortening of the telomere has been considered as a biological marker of aging, and lengthening telomere as an associated risk to cancer. Individual’s age, type of tissue, lifestyle, and environmental factors make telomere length variable. The presence of environmental carcinogens such as arsenic (As) influence as causal agents of these alterations, the main modes of action for As described are oxidative stress, reduction in DNA repair capacity, overexpression of genes, alteration of telomerase activity, and damage to telomeres. The telomeres of leukocytes resulting a finite capacity of replication due to the low or no activity of the telomerase enzyme, therefore, elongation telomere in this kind of cells is a potential biological marker associated with the development of chronic diseases and carcinogenesis.  相似文献   

13.
Telomere length predicts survival independent of genetic influences   总被引:1,自引:1,他引:0  
Telomeres prevent the loss of coding genetic material during chromosomal replication. Previous research suggests that shorter telomere length may be associated with lower survival. Because genetic factors are important for individual differences in both telomere length and mortality, this association could reflect genetic or environmental pleiotropy rather than a direct biological effect of telomeres. We demonstrate through within-pair analyses of Swedish twins that telomere length at advanced age is a biomarker that predicts survival beyond the impact of early familial environment and genetic factors in common with telomere length and mortality. Twins with the shortest telomeres had a three times greater risk of death during the follow-up period than their co-twins with the longest telomere measurements [hazard ratio (RR) = 2.8, 95% confidence interval 1.1–7.3, P  = 0.03].  相似文献   

14.
How can adverse experiences in early life, such as maltreatment, exert such powerful negative effects on health decades later? The answer may lie in changes to DNA. New research suggests that exposure to stress can accelerate the erosion of DNA segments called telomeres. Shorter telomere length correlates with chronological age and also disease morbidity and mortality. Thus, telomere erosion is a potential mechanism linking childhood stress to health problems later in life. However, an array of mechanistic, methodological, and basic biological questions must be addressed in order to translate telomere discoveries into clinical applications for monitoring health and predicting disease risk. This paper covers the current state of the science and lays out new research directions.  相似文献   

15.
Arnerić M  Lingner J 《EMBO reports》2007,8(11):1080-1085
Telomerase enables telomere length homeostasis, exhibiting increasing preference for telomeres as their lengths decline. This regulation involves telomere repeat-bound Rap1, which provides a length-dependent negative feedback mechanism, and the Tel1 and Mec1 kinases, which are positive regulators of telomere length. By analysing telomere elongation of wild-type chromosome ends at single-molecule resolution, we show that in tel1Delta cells the overall frequency of elongation decreases considerably, explaining their short telomere phenotype. At an artificial telomere lacking a subtelomeric region, telomere elongation no longer increases with telomere shortening in tel1Delta cells. By contrast, a natural telomere, containing subtelomeric sequence, retains a preference for the elongation of short telomeres. Tethering of the subtelomere binding protein Tbf1 to the artificial telomere in tel1Delta cells restored preferential telomerase action at short telomeres; thus, Tbf1 might function in parallel to Tel1, which has a crucial role in a TG-repeat-controlled pathway for the activation of telomerase at short telomeres.  相似文献   

16.
Although telomere length (TL) shortens with age in most tissues, an age‐related increase in length has been described in sperm through a mechanism that is not yet fully understood. Changes in TL with age in the same individual have not been explored. This longitudinal study examines TL dynamics in somatic tissue and gametes during an entire lifespan in an outbred mouse population (from 8 to up to 114 weeks of age). Our findings indicate a reduced life expectancy in males compared to females (84.75 ± 9.23 vs. 113.16 ± 0.20 weeks) and significant variability in TL dynamics between individuals. While with aging, a clear reduction in TL was produced in somatic cells and oocytes, telomeres in sperm cells significantly lengthened. Finally, we found evidence indicating that telomere elongation in sperm during aging may be dependent on different mechanisms, such as the survival of spermatogonia with longer telomeres and the alternative lengthening of telomeres mechanism in meiotic and postmeiotic spermatogenic cells.  相似文献   

17.
Telomeres are short tandem repeated sequences of DNA found at the ends of eukaryotic chromosomes that function in stabilizing chromosomal end integrity. In vivo studies of somatic tissue of mammals and birds have shown a correlation between telomere length and organismal age within species, and correlations between telomere shortening rate and lifespan among species. This result presents the tantalizing possibility that telomere length could be used to provide much needed information on age, ageing and survival in natural populations where longitudinal studies are lacking. Here we review methods available for measuring telomere length and discuss the potential uses and limitations of telomeres as age and ageing estimators in the fields of vertebrate ecology, evolution and conservation.  相似文献   

18.
Telomeres are nucleoprotein structures that cap the ends of linear chromosomes. Telomeric DNA comprises terminal tracts of G-rich tandem repeats, which are inherently difficult for the replication machinery to navigate. Structural aberrations that promote activation of the alternative lengthening of telomeres (ALT) pathway of telomere maintenance exacerbate replication stress at ALT telomeres, driving fork stalling and fork collapse. This form of telomeric DNA damage perpetuates recombination-mediated repair pathways and break-induced telomere synthesis. The relationship between replication stress and DNA repair is tightly coordinated for the purpose of regulating telomere length in ALT cells, but has been shown to be experimentally manipulatable. This raises the intriguing possibility that induction of replication stress can be used as a means to cause toxic levels of DNA damage at ALT telomeres, thereby selectively disrupting the viability of ALT cancers.  相似文献   

19.
Telomeres are the protein-nucleic acid structures at the ends of eukaryote chromosomes. Tandem repeats of telomeric DNA are templated by the RNA component (TER1) of the ribonucleoprotein telomerase. These repeats are bound by telomere binding proteins, which are thought to interact with other factors to create a higher-order cap complex that stabilizes the chromosome end. In the budding yeast Kluyveromyces lactis, the incorporation of certain mutant DNA sequences into telomeres leads to uncapping of telomeres, manifested by dramatic telomere elongation and increased length heterogeneity (telomere deregulation). Here we show that telomere deregulation leads to enlarged, misshapen "monster" cells with increased DNA content and apparent defects in cell division. However, such deregulated telomeres became stabilized at their elongated lengths upon addition of only a few functionally wild-type telomeric repeats to their ends, after which the frequency of monster cells decreased to wild-type levels. These results provide evidence for the importance of the most terminal repeats at the telomere in maintaining the cap complex essential for normal telomere function. Analysis of uncapped and capped telomeres also show that it is the deregulation resulting from telomere uncapping, rather than excessive telomere length per se, that is associated with DNA aberrations and morphological defects.  相似文献   

20.
Telomere length regulation is an important aspect of cell maintenance in eukaryotes, since shortened telomeres can lead to a number of defects, including impaired cell division. Although telomere length is correlated with lifespan in some bird species, its possible role in aging and lifespan determination is still poorly understood. Here we investigate telomere dynamics (changes in telomere length and attrition rate) and telomerase activity in the ant Lasius niger, a species in which different groups of individuals have evolved extraordinarily different lifespans. We found that somatic tissues of the short-lived males had dramatically shorter telomeres than those of the much longer-lived queens and workers. These differences were established early during larval development, most likely through faster telomere shortening in males compared with females. Workers did not, however, have shorter telomeres than the longer-lived queens. We discuss various molecular mechanisms that are likely to cause the observed sex-specific telomere dynamics in ants, including cell division, oxidative stress and telomerase activity. In addition, we discuss the evolutionary causes of such patterns in ants and in other species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号