首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A kinetic study of the irreversible inhibition of an enzyme measured in the presence of a coupling enzyme system has been carried out to assess the type of mechanism of the irreversible inhibition. By using the algebraic criteria proposed here it should be possible to discriminate between these mechanisms and to calculate their corresponding kinetic constants. An experimental design has been developed and applied to fluorescein isothiocyanate as inhibitor of the ATPase activity from sarcoplasmic reticulum.  相似文献   

2.
DTNB对人肌肌酸激酶不可逆抑制作用的研究   总被引:1,自引:1,他引:1  
本文研究了DTNB对人肌肌酸激酶的不可逆抑制作用.研究结果表明,与兔肌肌酸激酶不同,人肌肌酸激酶分子中有四个可反应SH.用邹承鲁作图法定量处理结果表明,在这四个可反应的SH中,有一个快反应SH,两个慢反应SH且这两个慢反应SH是酶的必需基团,此外还有一个反应很慢的SH.用邹承鲁提出的在抑制剂存在条件下,酶活性不可逆改变动力学方法,测定了一系列动力学常数,并对DTNB的作用机制进行了探讨.  相似文献   

3.
This work presents a kinetic study on irreversible inhibition of trypsin by TLCK, using a new experimental approach. The method consists of the incubation of the enzyme with an irreversible inhibitor in the presence of a substrate which allows enzyme turnover as well as continuous measurement of the appearance of the product, a simultaneous change in the initial concentrations of the irreversible inhibitor and enzyme being undertaken, though a constant ratio between the latter, is maintained. This new approach enables the kinetic constants for TLCK, k2 and K1, to be determined.  相似文献   

4.
In the present paper a kinetic study is made of the behaviour of a Michaelis-Menten enzyme-catalysed reaction in the presence of irreversible inhibitors rendered unstable in the medium by their reaction with the product of enzymatic catalysis. A general mechanism involving competitive, non-competitive, uncompetitive and mixed irreversible inhibition with one or two steps has been analysed. The differential equation that describes the kinetics of the reaction is non-linear and computer simulations of its dynamic behaviour are presented. The results obtained show that the systems studied here present kinetic co-operativity for a target enzyme that follows the simple Michaelis-Menten mechanism in its action on the substrate, except in the case of an uncompetitive-type inhibitor.  相似文献   

5.
Study of the complete time-course of irreversible enzyme inhibition by an unstable inhibitor yields more information than can be obtained by recording data only at the end point of reaction. Time-course analysis of co-operative irreversible enzyme inhibition by an unstable inhibitor has been shown to be considerably less susceptible to ill-conditioning than the "end-point" method for the determination of kinetic parameters describing inactivation. As a result, mechanisms that cannot be distinguished by the "end-point" method are readily differentiated by time-course analysis without the need to isolate intermediate species.  相似文献   

6.
Rapid irreversible inhibition of enzymes constitutes a difficult problem and demands sophisticated techniques to meet contemporary expectations of accuracy and precision. Modern computerized, analytical techniques now allow inhibition to be measured in the presence of a chromogenic substrate, the decomposition product of which can be followed by a conventional method and in a continuous mode. This article has been written to fulfill a need for guidelines to aid the designer of experiments for the irreversible inhibition of enzymes. Thus the scope and limitations of the continuous competitive method for the irreversible inhibition of enzymes is examined here. Examples of acetylcholinesterase inhibition by two diagonally different phosphonate inhibitors are used for illustrating accuracy and precision of the competitive irreversible inhibition technique at different levels of enzyme saturation with inhibitor and substrate.  相似文献   

7.
Inhibition of monoamine oxidase by substituted hydrazines   总被引:1,自引:1,他引:0  
1. The initial rate of inhibition of monoamine oxidase by phenethylhydrazine was shown to be similar, in pH-dependence and kinetic properties, to the oxidation of that compound by monoamine oxidase. 2. The time-course of irreversible inhibition of monoamine oxidase by phenethylhydrazine lags behind that of reversible inhibition. 3. Hydralzine was shown to be a reversible competitive inhibitor of monoamine oxidase, but phenylhydrazine is an irreversible inhibitor. Inhibition by the latter compound is not affected by the absence of oxygen, and the presence of substrate exerts no protective action. 4. Hydrazine does not inhibit monoamine oxidase unless a substrate and oxygen are present. 5. Phenethylidenehydrazine was found to be a time-dependent inhibitor of monoamine oxidase and the rate of inhibition was hindered by increasing oxygen concentration. 6. A mechanism for the inhibition of the enzyme by phenethylhydrazine is proposed in which the product of oxidation of this compound is a potent reversible inhibitor and an irreversible inhibitor of the enzyme. A computer simulation of such a mechanism predicts time-courses of inhibition that are in reasonable agreement with those observed experimentally.  相似文献   

8.
The kinetics of thermal inactivation of Penaeus penicillatus acid phosphatase have been studied using a kinetic method related to the substrate reaction during irreversible inhibition of the enzyme activity as previously described by Tsou (Adv. Enzymol. Relat. Areas Mol. Biol. (1988) 61, 381-436). The kinetics of thermal inactivation of the enzyme show that the reaction is irreversible. The microscopic rate constants were determined for thermal inactivation of free enzyme and the enzyme--substrate complex. The results show that the presence of substrate has a significant protective effect against thermal inactivation of the enzyme.  相似文献   

9.
Abstract

Rapid irreversible inhibition of enzymes constitutes a difficult problem and demands sophisticated techniques to meet contemporary expectations of accuracy and precision. Modern computerized, analytical techniques now allow inhibition to be measured in the presence of a chromogenic substrate, the decomposition product of which can be followed by a conventional method and in a continuous mode. This article has been written to fulfill a need for guidelines to aid the designer of experiments for the irreversible inhibition of enzymes. Thus the scope and limitations of the continuous competitive method for the irreversible inhibition of enzymes is examined here. Examples of acetylcholinesterase inhibition by two diagonally different phosphonate inhibitors are used for illustrating accuracy and precision of the competitive irreversible inhibition technique at different levels of enzyme saturation with inhibitor and substrate.  相似文献   

10.
3-(4-[(3-Chlorophenyl)methoxy]phenyl)-5-[(methylamino)methyl]-2- oxazolidinone methanesulphonate (compound MD 780236) is a selective inhibitor of the B-form of monoamine oxidase. Inhibition involves an initial non-covalent interaction between enzyme and inhibitor followed by a time-dependent process resulting in irreversible inhibition. The initial, reversible, phase of inhibition was found to be competitive with respect to phenethylamine and 5-hydroxytryptamine, and a comparison of the Ki values indicated the affinity of the inhibitor for the B-form of the enzyme to be some 7-fold greater than its affinity for the A-form. This selectivity was considerably enhanced by preincubation of the enzyme and inhibitor. Time courses showed that complete inhibition was not achieved under conditions where the inhibitor concentration was over 100-fold greater than that of the enzyme. Assay of the activity of monoamine oxidase by determining the release of hydrogen peroxide fluorometrically showed compound MD 780236 to be a substrate for, as well as an inhibitor of, monoamine oxidase, and kinetic analysis revealed that the rate of product formation was some 530-fold greater than that of the process leading to irreversible inhibition of the B-form of the enzyme.  相似文献   

11.
Abstract

A systematic procedure for the kinetic study of irreversible inhibition when the enzyme is consumed in the reaction which it catalyses, has been developed and analysed. Whereas in most reactions the enzymes are regenerated after each catalytic event and serve as reusable transacting effectors, in the consumed enzymes each catalytic center participates only once and there is no enzyme turnover. A systematic kinetic analysis of irreversible inhibition of these enzyme reactions is presented. Based on the algebraic criteria proposed in this work, it should be possible to evaluate either the mechanism of inhibition (complexing or non-complexing), or the type of inhibition (competitive, non-competitive, uncompetitive, mixed non-competitive). In addition, all kinetic constants involved in each case could be calculated. An experimental application of this analysis is also presented, concerning peptide bond formation in vitro. Using the puromycin reaction, which is a model reaction for the study of peptide bond formation in vitro and which follows the same kinetic law as the enzymes under study, we have found that: (i) the antibiotic spiramycin inhibits the puromycin reaction as a competitive irreversible inhibitor in a one step mechanism with an association rate constant equal to 1.3 × 104M-1s-1 and, (ii) hydroxylamine inhibits the same reaction as an irreversible non-competitive inhibitor also in a one step mechanism with a rate constant equal to 1.6 × 10-3 M-1s-1.  相似文献   

12.
The kinetics of the irreversible inhibition of acetylcholinesterase (acetylcholine acetylhydrolase, EC 3.1.1.7) by diisopropyl fluorophosphate and paraoxon have been studied by the approach of following the substrate reaction continuously in the presence of both the substrate and the inhibitor based on kinetic equations previously derived (Tsou, C.-L. (1965) Acta Biochim. Biophys. Sinica 5, 387-417). From determinations of the effects of different concentrations of substrate and the inhibitors on the apparent rate constants for the irreversible inhibition reactions it can be shown that these inhibitors are of the competitive complexing type. Both the reversible dissociation constant for the enzyme inhibitor complex and the rate constant for the subsequent phosphorylation step can be obtained from suitable plots of the experimental data.  相似文献   

13.
V L Davidson  L H Jones 《Biochemistry》1991,30(7):1924-1928
Cyclopropylamine acted as a mechanism-based inhibitor of the quinoprotein methylamine dehydrogenase from Paracoccus denitrificans. The protein-bound quinone cofactor of this enzyme was rapidly reduced by addition of a stoichiometric amount of cyclopropylamine, but this compound did not serve as a substrate for the enzyme in the steady-state kinetic assay. Time-dependent inactivation of the enzyme by cyclopropylamine was observed only in the presence of a reoxidant. Saturation behavior was observed, and values of KI of 3.9 microM and K(inact) of 1.7 min-1 were determined. Enzyme inactivation was irreversible, as no restoration of activity was evident after gel filtration of methylamine dehydrogenase which had been incubated with cyclopropylamine in the presence of a reoxidant. The inactivated enzyme exhibited an altered absorption spectrum. Electrophoretic analysis of inactivated methylamine dehydrogenase indicated that covalent cross-linking of the alpha and beta subunits of this alpha 2 beta 2 oligomeric enzyme had occurred and that the quinone cofactor had been modified. A mechanism for this inhibition is proposed which is based upon the data presented and is consistent with the available structural information on methylamine dehydrogenase.  相似文献   

14.
Ulva pertusa Kjellm alkaline phosphatase (EC 3.3.3.1) is a metalloenzyme, the active site of which contains a tight cluster of two zinc ions and one magnesium ion. The kinetic theory described by Tsou of the substrate reaction during irreversible inhibition of enzyme activity has been employed to study the kinetics of the course of inactivation of the enzyme by EDTA. The kinetics of the substrate reaction at different concentrations of the substrate p-nitrophenyl phosphate (PNPP) and inactivator EDTA indicated a complexing mechanism for inactivation by, and substrate competition with, EDTA at the active site. The inactivation kinetics are single phasic, showing that the initial formation of an enzyme-EDTA complex is a relative rapid reaction, following by a slow inactivation step that probably involves a conformational change of the enzyme. The presence of Zn2+ apparently stabilizes an active-site conformation required for enzyme activity.  相似文献   

15.
The kinetics of thermal inactivation of rabbit muscle lactate dehydrogenase at different temperatures has been studied using the kinetic method for the substrate reaction during irreversible inhibition of enzyme activity previously described by Tsou [Adv. Enzymol. Relat. Areas Mol. Biol. (1988), 61, 381–436]. The results show that thermal inactivation of the enzyme is an irreversible reaction. Microscopic rate constants were determined for thermal inactivation of the free enzyme and the enzyme–substrate complex. The inactivation rate constant of the free enzyme is much larger than the rate constant of the enzyme–substrate complex. The results suggest that the presence of the substrate has a certain protective effect against thermal inactivation of the enzyme.  相似文献   

16.
Green crab (Scylla Serrata) alkaline phosphatase (EC 3.1.3.1.) is a metalloenzyme, the each active site in which contains a tight cluster of two zinc ions and one magnesium ion. The kinetic theory of the substrate reaction during irreversible inhibition of enzyme activity previously described by Tsou has been applied to a study on the kinetics of the course of inactivation of the enzyme by ethylenediaminetetraacetic acid disodium (EDTA). The kinetics of the substrate reaction with different concentrations of the substrate p-nitrophenyl phosphate (PNPP) and inactivator EDTA suggested a complexing mechanism for inactivation by, and substrate competition with, EDTA at the active site. The inactivation kinetics are single phasic, showing the initial formation of an enzyme-EDTA complex is a relatively rapid reaction, followed a slow inactivation step that probably involves a conformational change of the enzyme. Zinc ions are finally removed from the enzyme. The presence of metal ions apparently stabilizes an active-site conformation required for enzyme activity.  相似文献   

17.
The use of suicide substrates remains a very important and useful method in enzymology for studying enzyme mechanisms and designing potential drugs. Suicide substrates act as modified substrates for the target enzymes and bind to the active site. Therefore the presence of a competitive reversible inhibitor decreases the rate of substrate-induced inactivation and protects the enzyme from this inactivation. This lowering on the inactivation rate has evident physiological advantages, since it allows the easy acquisition of experimental data and facilitates kinetic data analysis by providing another variable (inhibitor concentration). However despite the importance of the simultaneous action of a suicide substrate and a competitive reversible inhibition, to date no corresponding kinetic analysis has been carried out. Therefore we present a general kinetic analysis of a Michaelis-Menten reaction mechanism with double inhibition caused by both, a suicide substrate and a competitive reversible inhibitor. We assume rapid equilibrium of the reversible reaction steps involved, while the time course equations for the reaction product have been derived with the assumption of a limiting enzyme. The goodness of the analytical solutions has been tested by comparison with the simulated curves obtained by numerical integration. A kinetic data analysis to determine the corresponding kinetic parameters from the time progress curve of the product is suggested. In conclusion, we present a complete kinetic analysis of an enzyme reaction mechanism as described above in an attempt to fill a gap in the theoretical treatment of this type of system.  相似文献   

18.
In male subjects, peripheral aromatization of androgens accounts for most of the estrogen production, and skin is an important site of such enzymatic activity. We have studied the effects of a mechanism-based, irreversible aromatase inhibitor, 10-(2-propynyl)-estr-4-ene-3,17-dione (MDL 18,962) on androgen action and metabolism in cultured human foreskin fibroblasts. Cells were incubated simultaneously in the presence of substrate, androstenedione, and inhibitor, MDL 18,962. Aromatase activity was linear with time up to 3 h of incubation at 37 degrees C in the absence and presence of 1.0-10 nM inhibitor. The IC50 for four different cell strains ranged from 4.0 to 8.6 nM MDL 18,962. Kinetic analysis of competitive inhibition by the Eadie-Hofstee method yielded an apparent Ki of 2.75 nM for the inhibitor. Preincubation of cells with MDL 18,962 resulted in irreversible inhibition of aromatase activity which was time- and concentration-dependent. We calculated a Ki of 7.6 nM for MDL 18,962. Preincubation of cells with 25 nM MDL 18,962 suppressed enzyme activity for up to 6 h following removal of the inhibitor, before a return of enzyme activity due to synthesis of new enzyme. MDL 18,962 (0.2-20 microM) did not influence the 5 alpha-reduction of testosterone (200 nM). In addition, binding of dihydrotestosterone (2 nM) to androgen receptors was not affected by MDL 18,962 (25-1000 nM). In summary, MDL 18,962 is a specific, high potency inhibitor of aromatase. By virtue of its high binding affinity to the enzyme active site, it competes very effectively with substrate, resulting in irreversible inactivation of aromatase.  相似文献   

19.
The half-time method for the determination of Michaelis parameters from enzyme progress-curve data (Wharton, C.W. and Szawelski, R.J. (1982) Biochem. J. 203, 351-360) has been adapted for analysis of the kinetics of irreversible enzyme inhibition by an unstable site-specific inhibitor. The method is applicable to a model in which a product (R) of the decomposition of the site-specific reagent, retaining the chemical moiety responsible for inhibitor specificity, binds reversibly to the enzyme with dissociation constant Kr: (formula; see text). Half-time plots of simulated enzyme inactivation time-course data are shown to be unbiased, and excellent estimates of the apparent second-order rate constant for inactivation (k +2/Ki) and Kr can be obtained from a series of experiments with varying initial concentrations of inhibitor. Reliable estimates of k +2 and Ki individually are dependent upon the relative magnitudes of the kinetic parameters describing inactivation. The special case, Kr = Ki, is considered in some detail, and the integrated rate equation describing enzyme inactivation shown to be analogous to that for a simple bimolecular reaction between enzyme and an unstable irreversible inhibitor without the formation of a reversible enzyme-inhibitor complex. The half-time method can be directly extended to the kinetics of enzyme inactivation by an unstable mechanism-based (suicide) inhibitor, provided that the inhibitor is not also a substrate for the enzyme.  相似文献   

20.
Effect of captopril on mushroom tyrosinase activity in vitro   总被引:8,自引:0,他引:8  
The study presented here demonstrates that the antihypertensive drug captopril ([2S]-N-[3-mercapto-2-methylpropionyl]-L-proline) is an irreversible non-competitive inhibitor and an irreversible competitive inhibitor of the monophenolase and diphenolase activities of mushroom tyrosinase when L-tyrosine and L-DOPA were assayed spectrophotometrically in vitro, respectively. Captopril was rendered unstable by tyrosinase catalysis because of the interaction between the enzymatic-generated product (o-quinone) and captopril to give rise to a colourless conjugate. Therefore, captopril was able to prevent melanin formation. The spectrophotometric recordings of the inhibition of tyrosinase by captopril were characterised by the presence of a lag period prior to the attainment of an inhibited steady state rate. The lag period corresponded to the time in which captopril was reacting with the enzymatically generated o-quinone. Increasing captopril concentrations provoked longer lag periods as well as a concomitant decrease in the tyrosinase activity. Both lag period and steady state rate were dependent of captopril, substrate and tyrosinase concentrations. The inhibition of both monophenolase and diphenolase activities of tyrosinase by captopril showed positive kinetic co-operativity which arose from the protection of both substrate and o-quinone against inhibition by captopril. Inhibition experiments carried out using a latent mushroom tyrosinase demonstrated that captopril only bound the enzyme at its active site. The presence of copper ions only partially prevented but not reverted mushroom tyrosinase inhibition. This could be due to the formation of both copper-captopril complex and disulphide interchange reactions between captopril and cysteine rich domains at the active site of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号