首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this article is to summarize and map bifenthrin sediment measurements from California waterbodies from 2001 to 2010 to show sites where bifenthrin has been measured in sediment (including both detected and non-detected concentrations) and where corresponding toxicity or its lack has been reported or predicted. Bifenthrin measurements were available from depositional areas at 359 sites with concurrent total organic carbon (TOC) measurements in California waterbodies and values from approximately 37% of these sites were below the level of detection. Sediment toxicity data based on Hyalella azteca single species ambient toxicity tests were available for 268 sites with concurrent bifenthrin measurements and 62% of these sites showed no significant toxicity. Sixteen percent of the 140 California sites with non-detected bifenthrin concentrations had some significant sediment toxicity thus suggesting that toxicity at these sites is due to factors other than bifenthrin. One percent TOC normalized bifenthrin measurements reported from 268 sites showed no predicted significant toxicity at 83% of the sites based on a comparison with a Hyalella azteca acute value of 6.1 ng/g while 99.3% of the sites showed no predicted significant toxicity based on a Chironomus tentans acute toxicity value of 177.5 ng/g. The test species toxicity data (i.e., Hyalella or Chironomus) used to predict bifenthrin toxicity in the field is therefore critical as the use of Hyalella toxicity data (a highly sensitive species to bifenthrin) may be overprotective and this species is less representative of most California waterbodies when compared with Chironomids.  相似文献   

2.
Most terrestrial ecosystems support a similar suite of biogeochemical processes largely dependent on the availability of water and labile carbon (C). Here, we explored the biogeochemical potential of soils from Earth’s driest ecosystem, the Atacama Desert, characterized by extremely low moisture and organic C. We sampled surface soil horizons from sites ranging from the Atacama’s hyper-arid core to less-arid locations at higher elevation that supported sparse vegetation. We performed laboratory incubations and measured fluxes of the greenhouse gases carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) as indices of potential biogeochemical activity across this gradient. We were able to stimulate trace gas production at all sites, and treatment responses often suggested the influence of microbial processes. Sites with extant vegetation had higher C concentrations (0.13–0.68%) and produced more CO2 under oxic than sub-oxic conditions, suggesting the presence of aerobic microbial decomposers. In contrast, abiotic CO2 production appeared to predominate in the most arid and C-poor (<0.08% C) sites without plants, with one notable exception. Soils were either a weak source or sink of CH4 under oxic conditions, whereas anoxia stimulated CH4 production across all sites. Several sites were rich in nitrate, and we stimulated N2O fluxes in all soils by headspace manipulation or dissolved organic matter addition. Peak N2O fluxes in the most C-poor soil (0.02% C) were very high, exceeding 3 ng nitrogen g?1 h?1 under anoxic conditions. These results provide evidence of resilience of at least some soil biogeochemical capacity to long-term water and C deprivation in the world’s driest ecosystem. Atacama soils appear capable of responding biogeochemically to moisture inputs, and could conceivably constitute a regionally-important source of N2O under altered rainfall regimes, analogous to other temperate deserts.  相似文献   

3.
A new method for determination of Delta(9)-tetrahydrocannabinol (THC), cannabidiol (CBD) and cannabinol (CBN) in hair based on alkaline hair hydrolysis, extraction by iso-octane, combined derivatization with N,O-bis-(trimethylsilyl)-trifluoroacetamide and headspace solid phase microextraction of the extract residue, and gas chromatography-mass spectrometry was developed and evaluated. The limits of detection of the three compounds were 0.01-0.02 ng/mg. The method was routinely applied to more than 250 hair samples. In 77 positive samples, the concentrations ranged from LOD to 4.2 ng/mg for THC (mean 0.49 ng/mg), to 12.1 ng/mg for CBD (mean 0.37 ng/mg) and to 0.85 ng/mg for CBN (mean 0.12 ng/mg) using a sample amount of 30 mg. The frequently observed increase of the segmental drug concentrations from proximal to distal is explained by progressive accumulation in the hair shaft from sebum or side stream smoke.  相似文献   

4.
Representative soil samples (n = 60) collected from suburban agricultural land in Tianjin were analyzed to determine 16 PAHs in this study. Accelerated solvent extraction, GPC (Gel Permeation Chromatography), and SPE (Solid Phase Extraction) clean-up procedures were employed for PAH preparation prior to analysis with gas chromatography–mass spectrometry. The concentrations of the total PAHs (T-PAHs) ranged from 228.6 ng/g to 14722.1 ng/g with the mean value of 613.1 ng/g. Bap concentrations in many sites exceeded the suggested standards. Spatial variation of PAHs in soil was illustrated; the pollution status and comparison to other cities were also investigated. Severe PAH soil pollution was observed in some sites near urban areas. Higher PAH concentrations were detected at the downwind side of the urban areas, indicating the influence of human activities. Two indicative ratios (Fl/(Fl+Pyr, Baa/(Baa+Chr)) and principal component analysis were used to identify the possible sources of PAHs. These suggested that coal combustion was still the most important source of PAHs in Tianjin, which coincided well with the previous studies. These data can be further used to assess the health risk associated with soils polluted by PAHs and can help local government find proper ways to reduce PAHs’ pollution in soils.  相似文献   

5.
A simple, rapid and sensitive method termed dispersive liquid-liquid microextraction (DLLME) combined with gas chromatography-mass spectrometry (GC/MS) was developed for the determination of tricyclic antidepressants (TCAs) in human urine sample. An appropriate mixture of methanol (disperser solvent), carbon tetrachloride (extraction solvent), and acetic anhydride (derivatization reagent) was injected rapidly into human urine sample. After extraction, the sedimented phase was analyzed by GC/MS. The calibration curves obtained with human urine were linear with a correlation coefficient of over 0.99 in the range of 2.0/5.0-100 ng mL(-1). Under the optimum conditions (carbon tetrachloride: 10 μL, methanol: 150 μL), the detection limits and the quantification limits of the tricyclic antidepressants were 0.5-2.0 ng mL(-1) and 2.0-5.0 ng mL(-1), respectively. The average recoveries of TCAs were 88.2-104.3%. Moreover, the inter- and intra-day precision and accuracy was acceptable at all concentrations. The results showed that DLLME is applicable to the determination of trace amounts of TCAs in human urine sample.  相似文献   

6.
Portable meters and simplified gas Chromatographic (GC) techniques were investigated for monitoring volatile hydrocarbon (HC), CO2, and O2, concentrations in groundwater, exhaust gases, and soil vapor during in situ remediation using soil vapor extraction (SVE) and air sparging (AS). Results of groundwater samples analyzed in‐house using a headspace technique compared well to split samples analyzed by a certified analytical laboratory (r2 = 0.94). SVE exhaust gas HC and CO2 concentrations measured using a GT201 portable HC/O2 meter and a RA‐411A meter (GasTech), respectively, were highly correlated with in‐house laboratory GC analyses (r2 = 0.91). O2 concentrations fell in a small range and meter analyses were not well correlated with laboratory analyses. Results of soil gas monitoring were not as well correlated as those for exhaust gases for HC, CO2, or O2, perhaps due to environmental conditions such as changes in relative humidity or the wider range of soil gas values. Overall, the meters were good indicators of vapor contamination, they greatly simplified estimates of total HC mass removal, and they allowed estimates of the biological contribution to contaminant removal during the remediation process.  相似文献   

7.
排水对若尔盖高原泥炭地土壤有机碳储量的影响   总被引:5,自引:0,他引:5  
泥炭地作为陆地上生态系统一个重要碳汇,存储了全球土壤有机碳储量的25%—43%。泥炭地排水与其他土地利用导致了大量的土壤有机碳损失。然而,有关排水对中国泥炭地土壤有机碳储量的影响研究报道较少,因此,为了获得更多可靠的泥炭地碳储量信息,以便减少它们估算的不确定性。选取了我国若尔盖高原未排水泥炭地和排水泥炭地进行土壤剖面取样,定量评价排水对泥炭地土壤有机碳储量的影响。研究表明:(1)未排水泥炭地土壤有机碳储量平均值为(923.71±107.18)t C/hm~2,为中国陆地和全球陆地土壤有机碳储量的8.1和9.4倍;而排水泥炭地土壤有机碳储量平均值为(574.01±66.86)t C/hm~2,为中国和全球陆地的5.1和5.8倍。(2)泥炭地排水后,导致表层(0—30 cm)土壤有机碳储量增加(59.11±9.31)t C/hm~2,可能源于土壤容重增加。(3)然而,完全考虑泥炭剖面深度后,排水泥炭地土壤有机碳储量较对照样地减少了349.7 t C/hm~2,这可能是由于泥炭地排水后,水位降低,加速了泥炭氧化,降低了泥炭厚度。  相似文献   

8.
A relatively simple fugacity‐based model is developed for predicting the effectiveness of soil vapor extraction (SVE), an in situ soil remediation technique used for removing volatile organic chemicals from unsaturated soils. The model accounts for the natural processes of volatilization, degradation, and leaching, as well as gas‐phase advection due to SVE. Model predictions are compared with published data for a field‐scale SVE operation. An exponentially declining sweep efficiency for SVE is introduced to improve the fit between simulated and measured soil extraction gas concentrations. The model permits the magnitudes of the various processes affecting the fate and transport of 1,1,1‐trichloroethane (TCA) and perchloroethylene (PCE) in soils to be evaluated. Without SVE, the dominant removal process is biodegradation, but the rate of degradation is low, requiring more than 9 years for soil gas concentrations from a spill of about 13 kg of TCA to be reduced to a concentration of 0. 001 μg/l. The removal time may be reduced to only about 2 years if SVE is used. Moreover, substantially less chemical leaches into the underlying groundwater, greatly reducing the potential extent of ground water contamination.  相似文献   

9.
Lake Victoria, the world's largest tropical freshwater lake, is an important resource, ecologically and economically. THg distribution in the northern parts of the lake are not well known, so to answer this gap, patterns in total mercury (THg) in water, soil and two dated sediment cores from northern Lake Victoria were determined. Water THg concentrations ranged from 0.7 to 5.8 ng/L, and there were no apparent differences observed between Napoleon and Winam Gulfs. Two precipitation samples had Hg concentrations of 7 and 31 ng/L. Surface soil samples collected from various agricultural sites around Jinja, Napoleon Gulf, have THg concentrations between 12.7 and 48.4 ng/g dry weight; they were correlated with organic carbon, total phosphorus and % clay. A near-shore core taken in Itome Bay in Napoleon Gulf, and an offshore core collected from the deepest part of the lake had similar THg concentrations and profiles (78 to 458 ng/g dry weight). The increase in THg concentration in the profiles of both cores began around 1960 and peaked around 1980. The similar sedimentary THg profiles and fluxes in the cores suggest that the THg sources to L. Victoria are primarily atmospheric, with some erosion inputs, and that equatorial African ecosystems are not exempt from the global increase in baseline THg concentrations.  相似文献   

10.
A simple procedure for determining trace phthalic acid monoesters (PAMs) in sediments/soils was developed. The method used ultrasonic extraction, silylation derivatization, and GC-MS. After ultrasonic extraction, the supernatants were reextracted with dichloromethane, silylated, and did not require further clean-up before GC-MS analysis. Effects of parameters, such as extraction solvents, pH of water as extraction solvent and sediment/soil properties, on the recovery of PAMs were studied. Five sediments from Tianjin city and one red soil from Jiangxi province were used. The results showed that organic carbon (OC) content played an important role in the recovery of PAMs. The optimal extraction solvent for sediments/soils with >1% of OC content and high CEC was 0.01 M HCl aqueous solution and pure water was better for sediments/soils with <1% of OC content. In 5 g sediment/soil sample (dry weight), the method detection limit (MDL) was below 0.04 ng/g for mono-n-butyl phthalate (MBP) and 0.02 ng/g for mono-(2-ethylhexyl)-phthalate (MEHP). Average recoveries of MBP and MEHP were 81.6%?105.2% and 76.0%?95.6%, respectively, with relative standard deviations ≤ 6.6%. MBP and MEHP in the sediment and soil samples studied were detected at levels of 9.2–57.1 and 13.0–166.7 ng/g, respectively.  相似文献   

11.
Organic carbon reservoirs and respiration rates in soils have been calculated for most major biomes on Earth revealing patterns related to temperature, precipitation, and location. Yet data from one of the Earth's coldest, driest, and most southerly soil ecosystems, that of the McMurdo Dry Valleys of Antarctica, are currently not a part of this global database. In this paper, we present the first regional calculations of the soil organic carbon reservoirs in a dry valley ecosystem (Taylor Valley) and report measurements of CO2 efflux from Antarctic soils. Our analyses indicate that, despite the absence of visible accumulations of organic matter in most of Taylor Valley's arid soils, this soil environment contained a significant percentage (up to 72%) of the seasonally unfrozen organic carbon reservoir in the terrestrial ecosystem. Field measurements of soil CO2‐efflux in Taylor Valley soils were used to evaluate biotic respiration and averaged 0.10 ± 0.08 μmol CO2 m?2 s?1. Laboratory soil microcosms suggested that this respiration rate was sensitive to increases in temperature, moisture, and carbon addition. Finally, a steady‐state calculation of the mean residence time for organic carbon in Taylor Valley soils was 23 years. Because this value contradicts all that is currently known about carbon cycling rates in the dry valleys, we suggest that the dry valley soil carbon dynamics is not steady state. Instead, we suggest that the dynamic is complex, with at least two (short‐ and long‐term) organic carbon reservoirs. We also suggest that organic carbon in the dry valley soil environment may be more important, and play a more active role in long‐term ecosystem processes, than previously believed.  相似文献   

12.

We assessed hydro-physicochemical (HP) settings and soil color attributes including redoximorphic features (RMFs) at four forested wetlands in Northern Virginia, USA, to identify whether four simply measurable HP attributes—inundation/saturation frequency, bulk density, soil moisture, and percent sand—can provide an explanatory framework for characterizing and classifying soil color attributes related to hydric soil field indicators. Study plots (n?=?16) were grouped by site for initial characterizations and comparisons of HP (n?=?4) and color attributes (n?=?11); each attribute was additionally characterized and compared between three HP-based clusters formulated through k-means clustering analysis. Whereas only one HP attribute (inundation/saturation frequency) significantly differed between sites, all HP attributes but percent sand differed between HP-based clusters (p?<?0.05), with PCA Dimensions 1 and 2 explaining over 80% of variability in plot HP attributes. Moreover, more sets of color attributes were significantly different when plots were grouped by HP-based cluster (n?=?5: frequency of concentrations, non-matrix color count, hue, chroma, and depth to concentrations) compared to by site (n?=?3: value, frequency of depleted matrices, depth to depletions) (p?<?0.10). Simply measurable HP attributes are thus closely associated with certain soil RMF and color characteristics beyond site identity, potentially serving as a suite of measurements that can be adopted to assess and monitor redoximorphic features indicative of wetland soils.

  相似文献   

13.
During the last two decades, free air CO2 enrichment (FACE) studies have been conducted to study the effects of rising atmospheric CO2 concentrations on ecosystems. The distances between fumigated and control plots differ widely among those projects, but no experimental data are available how far into the surrounding area an effect of CO2 fumigation can be detected. As the CO2 gas added to the fumigated plots has a different 13C label than ambient atmospheric CO2, its carbon can be traced into plants and soil organic matter (SOM). The Swiss FACE in Eschikon had been conducted for 10 years on a grassland site. After it had ended, we analysed soil samples from three transects extending from the plots to the surrounding area for their organic carbon (Corg) content and carbon isotopic signature. We determined the maximum spatial extension to which carbon originating from the fumigation was incorporated into SOM. A budget of the fumigation gas‐derived Corg in the upper 10 cm of the soil showed that approximately 50 kg C were stored within the plots, and an additional 31 kg C were stored in their immediate surroundings up to a distance of 9 m from the gas pipes. The presented approach provides us with a method to determine a posteriori the extension to which the CO2 fumigation treatment contaminated its immediate surroundings during a FACE experiment. In the presented example, this showed that the distances between plots could have been reduced significantly. Although not generalizable to other experimental settings, the finding indicates that optimizing the spatial layout, e.g. by modelling gas dispersion, will be useful when planning future large‐scale FACE infrastructures. Our approach provides a solid basis to test such gas‐dispersion models on existing FACE sites before planning new sites.  相似文献   

14.
Many studies have shown that elevated atmospheric CO2 concentrations result in increased plant carbon inputs to soil that can accelerate the decomposition of native soil organic matter, an effect known as priming. Consequently, it is important to understand and quantify the priming effect for future predictions of carbon–climate feedbacks. There are potential pitfalls, however, when representing this complex system with a simple, first‐order model. Here, we show that a multi‐pool soil carbon model can match the change in bulk turnover time calculated from overall respiration and carbon stocks (a one‐pool approach) at elevated CO2, without a change in decomposition rate constants of individual pools (i.e., without priming). Therefore, the priming effect cannot be quantified using a one‐pool model alone, and even a two‐pool model may be inadequate, depending on the effect size as well as the distribution of soil organic carbon and turnover times. In addition to standard measurements of carbon stocks and CO2 fluxes, we argue that quantifying the fate of new plant inputs requires isotopic tracers and microbial measurements. Our results offer insights into modeling and interpreting priming from observations.  相似文献   

15.
Restoring native plant communities on sites formerly occupied by invasive nitrogen‐fixing species poses unique problems due to elevated soil nitrogen availability. Mitigation practices that reduce available nitrogen may ameliorate this problem. We evaluated the effects of tree removal followed by soil preparation or mulching on native plant growth and soil nitrogen transformations in a pine–oak system formerly occupied by exotic nitrogen‐fixing Black locust (Robinia pseudoacacia) trees. Greenhouse growth experiments with native grasses, Andropogon gerardii and Sorghastrum nutans, showed elevated relative growth rates in soils from Black locust compared with pine–oak stands. Field soil nutrient concentrations and rates of net nitrification and total net N‐mineralization were compared 2 and 4 years since Black locust removal and in control sites. Although soil nitrogen concentrations and total net N‐mineralization rates in the restored sites were reduced to levels that were similar to paired pine–oak stands after only 2 years, net nitrification rates remained 3–34 times higher in the restored sites. Other nutrient ion concentrations (Ca, Mg) and organic matter content were reduced, whereas phosphorus levels remained elevated in restored sites. Thus, 2–4 years following Black locust tree removal and soil horizon mixing achieved through site preparation, the concentrations of many soil nutrients returned to preinvasion levels. However, net nitrification rates remained elevated; cover cropping or carbon addition during restoration of sites invaded by nitrogen fixers could increase nitrogen immobilization and/or reduce nitrate availability, making sites more amenable to native plant establishment.  相似文献   

16.
Dissolved organic carbon (DOC) concentration and dissolved organic matter (DOM) character were investigated in soil water (15 and 40 cm) and streams at eleven sites in Olympic National Park. In addition, the effect of added nitrogen on soil water DOM concentration and composition was tested. Forested plots covering a gradient of precipitation, climate, slope, and aspect in Olympic National Park were fertilized with the addition of 20, 10 and zero (control) kg urea-N ha–1 y–1. Seven sites had the two different fertilizer treatments and control plots, while the additional four sites had no fertilizer treatments. Soil water DOC concentrations ranged from 0.5 mg C/L to 54.1 mg C/L, with an average value of 14.1 mg C/L. Streams had low DOC concentrations ranging from 0.2 mg C/L to 4.4 mg C/L, with an average value of 1.2 mg C/L. DOM composition was examined with regard to molar ratios, H:C, O:C and N:C, index of unsaturation, average carbon oxidation state, and specific absorbance. Fertilizer had no consistent effect on either DOM concentration or composition across the study sites. Soil depth influenced both DOM concentration and composition. Shallow soil water DOM had greater concentrations, higher specific absorbance, a higher degree of unsaturation, and had lower molar ratios compared to deep soil water samples. Overall, changes in DOM stoichiometry and specific absorbance as a function of soil depth were consistent despite the diversity of the forested study sites sampled.  相似文献   

17.
Here we report measurements of organic and inorganic nitrogen (N) fluxes from the high-elevation Green Lakes Valley catchment in the Colorado Front Range for two snowmelt seasons (1998 and 1999). Surface water and soil samples were collected along an elevational gradient extending from the lightly vegetated alpine to the forested subalpine to assess how changes in land cover and basin area affect yields and concentrations of ammonium-N (NH4-N), nitrate-N (NO3-N), dissolved organic N (DON), and particulate organic N (PON). Streamwater yields of NO3-N decreased downstream from 4.3 kg ha−1 in the alpine to 0.75 kg ha−1 at treeline, while yields of DON were much less variable (0.40–0.34 kg ha−1). Yields of NH4-N and PON were low and showed little variation with basin area. NO3-N accounted for 40%–90% of total N along the sample transect and was the dominant form of N at all but the lowest elevation site. Concentrations of DON ranged from approximately 10% of total N in the alpine to 45% in the subalpine. For all sites, volume-weighted mean concentrations of total dissolved nitrogen (TDN) were significantly related to the DIN:DON ratio (R 2 = 0.81, P < 0.001) Concentrations of NO3-N were significantly higher at forested sites that received streamflow from the lightly vegetated alpine reaches of the catchment than in a control catchment that was entirely subalpine forest, suggesting that the alpine may subsidize downstream forested systems with inorganic N. KCl-extractable inorganic N and microbial biomass N showed no relationship to changes in soil properties and vegetative cover moving downstream in catchment. In contrast, soil carbon–nitrogen (C:N) ratios increased with increasing vegetative cover in catchment and were significantly higher in the subalpine compared to the alpine (P < 0.0001) Soil C:N ratios along the sample transect explained 78% of the variation in dissolved organic carbon (DOC) concentrations and 70% of the variation in DON concentrations. These findings suggest that DON is an important vector for N loss in high-elevation ecosystems and that streamwater losses of DON are at least partially dependent on catchment soil organic matter stoichiometry. Received 26 July 2001; accepted 6 May 2002.  相似文献   

18.
We compared data on the extent of bioremediation in soils polluted with oil. The data were obtained using conventional methods of hydrocarbon determination: extraction gas chromatography-mass spectrometry, extraction IR spectroscopy, and extraction gravimetry. Due to differences in the relative abundances of the stable carbon isotopes (13C/12C) in oil and in soil organic matter, these ratios could be used as natural isotopic labels of either substance. Extraction gravimetry in combination with characteristics of the carbon isotope composition of organic products in the soil before and after bioremediation was shown to be the most informative approach to an evaluation of soil bioremediation. At present, it is the only method enabling quantification of the total petroleum hydrocarbons in oil-polluted soil, as well as of the amounts of hydrocarbons remaining after bioremediation and those microbially transformed into organic products and biomass.  相似文献   

19.
The establishment of either forest or grassland on degraded cropland has been proposed as an effective method for climate change mitigation because these land use types can increase soil carbon (C) stocks. This paper synthesized 135 recent publications (844 observations at 181 sites) focused on the conversion from cropland to grassland, shrubland or forest in China, better known as the ‘Grain‐for‐Green’ Program to determine which factors were driving changes to soil organic carbon (SOC). The results strongly indicate a positive impact of cropland conversion on soil C stocks. The temporal pattern for soil C stock changes in the 0–100 cm soil layer showed an initial decrease in soil C during the early stage (<5 years), and then an increase to net C gains (>5 years) coincident with vegetation restoration. The rates of soil C change were higher in the surface profile (0–20 cm) than in deeper soil (20–100 cm). Cropland converted to forest (arbor) had the additional benefit of a slower but more persistent C sequestration capacity than shrubland or grassland. Tree species played a significant role in determining the rate of change in soil C stocks (conifer < broadleaf, evergreen < deciduous forests). Restoration age was the main factor, not temperature and precipitation, affecting soil C stock change after cropland conversion with higher initial soil C stock sites having a negative effect on soil C accumulation. Soil C sequestration significantly increased with restoration age over the long‐term, and therefore, the large scale of land‐use change under the ‘Grain‐for‐Green’ Program will significantly increase China's C stocks.  相似文献   

20.
Carbon storage in aboveground tree biomass and soil organic matter (in depth of A layer development i.e., up to 20 cm) was studied in 22–32 year-old post-mining sites in the northwest of the Czech Republic. Four replicated sites afforested with different tree species (spruce, pine, larch, oak, lime or alder) were compared with sites left to natural regeneration which were dominated by aspen, birch and willow. No topsoil was applied at the sites; hence carbon accumulation resulted from in situ soil development on alkaline tertiary clays that were dumped on the heaps. In aboveground tree biomass, carbon storage ranged from 17.0 ± 5.9 (mean ± SEM) to 67.6 ± 5.9 t ha−1 and the rate of C accumulation increased from 0.60 ± 0.09 to 2.31 ± 0.23 t ha−1 year−1 (natural regeneration < pine < spruce < oak < lime < alder < larch). Carbon storage in soil organic matter varied from 4.5 ± 3.7 to 38.0 ± 7.1 t ha−1 and the rate of C accumulation in soil organic matter increased from 0.15 ± 0.05 to 1.28 ± 0.34 t ha−1 year−1 at sites in the order: natural regeneration < spruce < pine, oak < larch < alder < lime. Carbon storage in the soil was positively correlated with aboveground tree biomass. Soil carbon was equivalent to 98.1% of the carbon found in aboveground tree biomass at lime dominated sites, but only 21.8% at sites with natural regeneration. No significant correlation was found between C storage in soil and aboveground litter input. Total soil carbon storage was correlated positively and significantly with earthworm density, and occurrence of earthworm cast in topsoil, which indicated that bioturbation could play an important role in soil carbon storage. Hence, not only restoring of wood production, but also restoring of soil community is critical for C storage in soil and whole ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号