首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A variety of remediation technologies are available to address hydrocarbon contamination, including free product recovery, soil venting, air sparging, groundwater recovery and treatment, and in situ bioremediation. These technologies address hydrocarbon contamination distributed between free, adsorbed, and dissolved phases in both the vadose and saturated zones. Selection of appropriate technologies is dependent on a number of factors, including contaminants, site‐specific characteristics, clean‐up goals, technology feasibility, cost, and regulatory and time requirements. This article describes a decision framework for selecting appropriate remediation technologies at hydrocarbon‐contaminated sites in a structured and tiered manner. Decision modules include (1) site characterization and product recovery; (2) vadosezone treatment: soil venting, bioremediation, and excavation; (3) saturated zone treatment: sparging, bioremediation, groundwater recovery, and excavation; and (4) groundwater treatment: carbon, air stripping, advanced oxidation, and bioreactors. Selection criteria for treatment technologies that address vadose‐ and saturated‐zone soils, as well as recovered groundwater, are described. The decision framework provides a systematic process to formulate solutions to complex problems and documents the rationale for selecting remediation systems designed to achieve closure at hydrocarbon‐contaminated sites.  相似文献   

2.
A diagnostic test designed to assess air distribution and oxygen delivery rate to the aquifer during in situ air sparging (IAS) is described. The conservative tracer gas, sulfur hexafluoride (SF6), is added upstream of the air injection manifold during steady IAS operation and groundwater samples are collected from the target treatment zone after some time period (usually 4 to 24 h). The appearance of SF6 in groundwater is used to characterize the air distribution in the target treatment zone, while the SF6 concentration increase with time is used to assess oxygen transfer rates to the target treatment zone. Conversion from SF6 concentration to oxygen mass transfer rate involves correcting the SF6 concentration increase over time for differences in the relevant chemical properties and injection air concentration. Data presented from a field demonstration site illustrate the utility of this test for identifying air distribution details not readily identified by deep vadose zone helium and groundwater pressure transducer response tests. Oxygen transfer rates at this site ranged from 0 to 20 mg-O2/L-H2O/d. Finally, a comparison of short-term SF6 test data with longer-term dissolved oxygen data illustrated this test's utility for anticipating long-term dissolved oxygen distributions.  相似文献   

3.
In situ air sparging (IAS) pilot test procedures have been developed that provide rapid, on-site information about IAS performance. The standard pilot test consists of six activities conducted to look for indicators of infeasibility and to characterize the air distribution to the extent necessary to make design decisions about IAS well placement. In addition, safety hazards that need to be addressed prior to full-scale design are identified. Two additional pilot test activities are described in those cases where air distribution must be more precisely defined. The test activities include both chemical tests (tracking contaminant concentrations, dissolved oxygen and tracers) and physical tests (air flow rate and injection pressure, groundwater pressure response). Pilot test data from Eielson Air Force Base, Alaska illustrates implementation of the pilot test and interpretation of the data.  相似文献   

4.
1. Groundwater nitrate contamination has become a worldwide problem as increasing amounts of nitrogen fertilisers are used in agriculture. Alluvial groundwater is uniquely juxtaposed between soils and streams. Hydrological connections among these subsystems regulate nutrient cycling. 2. We measured denitrification using an in situ acetylene‐block assay in a nitrate‐contaminated portion of the Garonne River catchment along a gradient of surface water–ground water mixing during high (snowmelt) and low flow. 3. During high flow (mid‐April to early June) the water table rose an average of 35 cm and river water penetrated the subsurface to a great extent in monitoring wells. Denitrification rates averaged 5.40 μgN2O L?1 min?1 during the high flow period, nearly double the average rate (2.91 μgN2O L?1 min?1) measured during base flow. This was driven by a strong increase in denitrification in groundwater under native riparian vegetation. Nitrate concentrations were significantly lower during high flow compared with base flow. Riparian patches had higher dissolved organic carbon concentrations that were more aromatic compared with the gravel bar patch closest to the river. 4. Multiple linear regression showed that the rate of denitrification was best predicted by the concentration of low molecular weight organic acids. These molecules are probably derived from decomposition of soil organic matter and are an important energy source for anaerobic respiratory processes like denitrification. The second best predictor was per cent surface water, reflecting higher denitrification rates during spring when hydrological connection between surface water and ground water was greatest. 5. Our results indicate that, while denitrification rates in Garonne River alluvium were spatially and temporally variable, denitrification was a significant NO3 sink during transport from the NO3‐contaminated floodplain to the river. DOC availability and river–floodplain connectivity were important factors influencing observed spatial and temporal patterns.  相似文献   

5.
1. Extraction of coalbed natural gas (CBNG) often results in disposal of large quantities of CBNG product water, which may affect aquatic ecosystems. We evaluated the effects of CBNG development on fish assemblages in tributary streams of the Powder and Tongue rivers. We used treatment and control, impact versus reference sites comparisons, surveys of CBNG product‐water streams and in situ fish survival approaches to determine if CBNG development affected fish assemblages. 2. Several of our results suggested that CBNG development did not affect fish assemblages. Species richness and index of biotic integrity (IBI) scores were similar in streams with and streams without CBNG development, and overall biotic integrity was not related to the number or density of CBNG wells. Fish occurred in one stream that was composed largely or entirely of CBNG product water. Sentinel fish survived in cages at treatment sites where no or few fish were captured, suggesting that factors such as lack of stream connectivity rather than water quality limited fish abundance at these sites. Fish species richness did not differ significantly from 1994 to 2006 in comparisons of CBNG‐developed and undeveloped streams. Biotic integrity declined from 1994 to 2006; however, declines occurred at both impact and reference sites, possibly because of long‐term drought. 3. Some evidence suggested that CBNG development negatively affected fish assemblages, or may do so over time. Specific conductivity was on average higher in treatment streams and was negatively related to biotic integrity. Four IBI species richness metrics were negatively correlated with the number or density of CBNG wells in the catchment above sampling sites. Bicarbonate, one of the primary ions in product water, was significantly higher in developed streams and may have limited abundance of longnose dace (Rhinichthys cataractae). Total dissolved solids, alkalinity, magnesium and sulphate were significantly higher in developed streams. 4. Biological monitoring conducted before the development of CBNG, and continuing through the life of development and reclamation, together with data on the quantity, quality and fate of CBNG product water will allow robust assessment of potential effects of future CBNG development worldwide.  相似文献   

6.
Nitrate, ammonium, dissolved organic N, and dissolved oxygen were measured in stream water and shallow groundwater in the riparian zones of two tropical watersheds with different soils and geomorphology. At both sites, concentrations of dissolved inorganic N (DIN; NH4 +- and NO3 -N) were low in stream water (< 110 ug/L). Markedly different patterns in DIN were observed in groundwater collected at the two sites. At the first site (Icacos watershed), DIN in upslope groundwater was dominated by NO3 -N (550 ug/L) and oxygen concentrations were high (5.2 mg/L). As groundwater moved through the floodplain and to the stream, DIN shifted to dominance by NH4 +-N (200–700 ug/L) and groundwater was often anoxic. At the second site (Bisley watershed), average concentrations of total dissolved nitrogen were considerably lower (300 ug/L) than at Icacos (600 ug/L), and the dominant form of nitrogen was DON rather than inorganic N. Concentrations of NH4 + and NO3 were similar throughout the riparian zone at Bisley, but concentrations of DON declined from upslope wells to stream water. Differences in speciation and concentration of nitrogen in groundwater collected at the two sites appear to be controlled by differences in redox conditions and accessibility of dissolved N to plant roots, which are themselves the result of geomorphological differences between the two watersheds. At the Icacos site, a deep layer of coarse sand conducts subsurface water to the stream below the rooting zone of riparian vegetation and through zones of strong horizontal redox zonation. At the Bisley site, infiltration is impeded by dense clays and saturated flow passes through the variably oxidized rooting zone. At both sites, hydrologic export of nitrogen is controlled by intense biotic activity in the riparian zone. However, geomorphology appears to strongly modify the importance of specific biotic components.  相似文献   

7.
1. For seepage and drainage lakes of the Adirondack mountain region (NY, U.S.A) hydrologic regime is correlated with physical and chemical differences that can affect phytoplankton and planktonic food webs (e.g. presence and influence of wetlands, dissolved organic carbon concentration, anoxia, nutrient cycling). We conducted short‐term (48 h), in situ enclosure experiments to evaluate the relative importance of macrozooplankton grazing and nutrient limitation of phytoplankton biomass in small Adirondack seepage and drainage lakes (N = 18, 1–137 ha). Epilimnetic dissolved organic carbon (DOC) concentrations and pH values represented the diversity of the region. We measured chlorophyll a changes in response to grazer removal (> 120 μm) and nutrient addition (~ 10× ambient N, P, or N + P), and evaluated changes with respect to in situ light, temperature, NO3, NH4, SRP, and crustacean assemblage characters. 2. Nutrient addition stimulated significant increase in chlorophyll a concentration at 11 of 18 sites (GLM, Tukey–Kramer). Phytoplankton of clearwater drainage lakes were P‐limited, whereas clearwater and brownwater seepage lakes responded to additions of N and/or N + P. Relative light availability explained half the variance in response to nutrient addition in drainage (r2 = 0.48), but not seepage lake experiments (P > 0.05). 3. We observed responses to grazer removal at eight of 18 sites, usually clearwater drainage lakes. Crustacean grazing may be as significant as nutrient limitation of [chl a] for many drainage lake phytoplankton assemblages. Responses were related to in situ density of zooplankton only in drainage lakes. Light explained some variability in response to grazer removal for drainage (r2 = 0.35) and seepage lake experiments (r2 = 0.35). 4. These experiments provide evidence that hydrology may ultimately play an important role in determining nutrient and grazer regulation of phytoplankton. Proximate mechanisms affecting our results may be associated with differences in wetland vegetation, [DOC], and nutrient cycling.  相似文献   

8.
The first field pilot-scale demonstration of a technology for in situ remediation of vadose zone soils contaminated with high explosives (HEs) has been performed at the Department of Energy's Pantex Plant. The HEs of concern at the demonstration site were hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and the 2,4,6-trinitrotoluene (TNT) metabolite 1,3,5-trinitrobenzene (TNB). Concentrations ranged from 70 ppm, above the (prior to 1999) risk reduction clean-up criteria of 2.6 and 0.51 ppm, respectively. The shallow (<10?m depth) soils at the site could not be excavated due to the presence of buried utilities. Based on previous laboratory studies, it was found that the contaminated soils had indigenous microbial populations that could be stimulated to degrade the RDX and TNB anaerobically. A 5-spot well pattern with injection at the central well and extraction at the four outer wells (each 4.6?m from the injection well) was used to flood the target vadose zone soils with nitrogen gas with the intent of stimulating the activity of the HE degraders. The system was monitored periodically for gas composition as well as HE concentrations and microbial activity in retrievable soil samples. After 295 days of in situ treatment, the average target HE concentrations were approximately one-third lower than the initial site averages. Operation of the pilot-scale treatment system continues.  相似文献   

9.
DNA methyltransferase1o (Dnmt1o), which is specific to oocyte and preimplantation embryo, plays a role in maintaining DNA methylation in mammalian cells. Here, we investigated the methylation status of CpGs sites in the Dnmt1o 5′‐flanking region in germ cells at different stages of oogenesis or spermatogenesis. The methylation levels of the CpG sites at the 5′‐flanking regions were hypermethylated in growing oocytes of all follicular stages, while the oocytes in meiotic metaphase II (MII) were demethylated. The methylation pattern within the CpGs sites in the 5′‐flanking region, however, was dramatically changed during spermatogenesis. We observed that there was significant non‐CpG methylation both in MII oocytes and spermatocytes. Although a low methylation level in non‐CpG sites was observed in primary and secondary oocytes, the CpA site of position 25 and CpT site of position 29 within the no‐CpG region in the 5′‐flanking region of Dnmt1o was highly methylated in MII oocytes. During spermatogenesis, the low degree of methylation at CpG sites in spermatocytes increased to a higher degree in sperm, while the high ratio of methylation in non‐CpG sites in spermatocytes decreased. Together, germ cells showed inverted methylation patterns between CpG and non‐CpG sites in the Dnmt1o 5′‐upstream region, and the methylation pattern during oogenesis did not drastically change, remaining generally hypomethylated at the MII stage. Mol. Reprod. Dev. 80: 212–222, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
Chemically enhanced solubilization (CES) is an advanced variant of pump‐andtreat that results in more effective and more rapid remediation of groundwater contaminated with organic solvents and other dense nonaqueous‐phase liquids (DNAPLs). Attempts to remediate DNAPL‐contaminated groundwater by pump‐and‐treat have generally not been successful, due to the low aqueous solubility of most DNAPLs. Regions of undissolved, organic liquids slowly release additional contamination to surrounding groundwater, in effect acting as in situ sources of contamination and hindering the progress of remediation attempts. Cleaning up an aquifer can take many decades or more of pump‐and‐treat. CES accelerates pump‐and‐treat by using surfactants at low concentration to increase the solubility of organic contaminants by up to three orders of magnitude, while maintaining hydraulic control. The surfactants are chosen to maximize contaminant solubilization while minimizing decreases in the DNAPL/ water interfacial tension in order to prevent mobilization of DNAPL to uncontaminated regions. The surfactants are also selected to be nontoxic and biodegradable (many are U.S. Food and Drug Administration‐ (FDA‐) approved food additives). After the contaminants have been solubilized, they are pumped to the surface and treated by air stripping and other methods as in traditional pump‐and‐treat operations. CES has had extensive laboratory development and is now being field tested at three sites. The first field test is at Canadian Forces Base Borden, a military facility in Ontario, Canada. The field test involves the controlled contamination of a shallow sand aquifer with approximately 240 L of tetrachloroethylene (PCE). CES increased the contaminant concentration in the extracted water to over 10,000 ppm of PCE, compared with an aqueous solubility of 200 ppm. At latest report, more than 80% of the residual PCE has been removed. A second field test is currently in preparation at a chlorinated solvent manufacturing facility in Texas and a third at a DOE site with PCE, 1,1,1‐trichloroethane (TCA), and trichloroethylene (TCE) contamination.  相似文献   

11.
Advances in In Situ Air Sparging/Biosparging   总被引:1,自引:0,他引:1  
In situ air sparging (IAS) is a technology commonly used for treatment of submerged source zones and dissolved groundwater plumes. The acceptance of IAS by regulatory agencies, environmental consultants, and industry is remarkable considering the degree of skepticism initially surrounding the technology in the early 1990s. Much has been learned and reported in the literature since that time, but it appears that practice has changed little. In particular, conventional pilot testing, design, and operation practices reflect a lack of appreciation of the complex phenomena governing IAS performance and the unforgiving nature of this technology. Many systems are poorly monitored and likely to be inefficient or ineffective. Key lessons-learned since the early 1990s are reviewed and their implications for practice are discussed here. Of particular importance are issues related to: (a) the understanding of air flow distributions and the effects of geology and injection flowrate, (b) the need to characterize air flow distributions at the pilot- and field-scale, (c) how changes in operating conditions (e.g., pulsing) can affect performance improvements and reduce equipment costs, and (d) how conventional monitoring approaches are incapable of assessing if systems are performing as designed.  相似文献   

12.
Future climates have the potential to alter decomposition rates in tropical forest with implications for carbon emissions, nutrient cycling and retention of standing litter. However, our ability to predict impacts, particularly for seasonally wet forests in the old world, is limited by a paucity of data, a limited understanding of the relative importance of different aspects of climate and the extent to which decomposition rates are constrained by factors other than climate (e.g. soil, vegetation composition). We used the litterbag method to determine leaf litter decay rates at 18 sites distributed throughout the Australian wet tropics bioregion over a 14‐month period. Specifically, we investigated regional controls on litter decay including climate, soil and litter chemical quality. We used both in situ litter collected from litterfall on site and a standardized control leaf litter substrate. The control litter removed the effect of litter chemical quality and the in situ study quantified decomposition specific to the site. Decomposition was generally slower than for other tropical rainforests globally except in our wet and nutrient‐richer sites. This is most likely attributable to the higher latitude, often highly seasonal rainfall and very poor soils in our system. Decomposition rates were best explained by a combination of climate, soil and litter quality. For in situ litter (native to the site) this included: average leaf wetness in the dry season (LWDS; i.e. moisture condensation) and the initial P content of the leaves, or LWDS and initial C. For control litter (no litter quality effect) this included: rainfall seasonality (% dry season days with 0‐mm rainfall), soil P and mean annual temperature. These results suggest that the impact of climate change on decomposition rates within Australian tropical rainforests will be critically dependent on the trajectory of dry season moisture inputs over the coming decades.  相似文献   

13.
In in situ bioremediation demonstration at the Savannah River Site in Aiken, South Carolina, trichloroethylene-degrading microorganisms were stimulated by delivering nutrients to the TCE-contaminated subsurface via horizontal injection wells. Microbial and chemical monitoring of groundwater from 12 vertical wells was used to examine the effects of methane and nutrient (nitrogen and phosphorus) dosing on the methanotrophic populations and on the potential of the subsurface microbial communities to degrade TCE. Densities of methanotrophs increased 3–5 orders of magnitude during the methane- and nutrient-injection phases; this increase coincided with the higher methane levels observed in the monitoring wells. TCE degradation capacity, although not directly tied to methane concentration, responded to the methane injection, and responded more dramatically to the multiple-nutrient injection. These results support the crucial role of methane, nitrogen, and phosphorus as amended nutrients in TCE bioremediation. The enhancing effects of nutrient dosing on microbial abundance and degradative potentials, coupled with increased chloride concentrations, provided multiple lines of evidence substantiating the effectiveness of this integrated in situ bioremediation process. Received 13 November 1995/ Accepted in revised form 12 September 1996  相似文献   

14.
Question: In fen meadows with Junco‐Molinion plant communities, falling groundwater levels may not lead to a boosted above‐ground biomass production if limitation of nutrients persists. Instead, depending on drainage intensity and micro‐topography, acidification may trigger a shift into drier and more nutrient‐poor plant communities. Location: Nature reserve, central Netherlands, 5 m a.s.l. Methods: Long‐term study (1988‐1997) in a fen meadow along a gradient in drainage intensity at different scales. Results: Above‐ground biomass increased only slightly over ten years, despite a lower summer groundwater table. The accountable factors were probably a limited availability of nutrients (K in the higher well‐drained plots, P in the intermediate plots and N in the lower hardly drained plots), plus removal of hay. Junco‐Molinion species increased in dry sites and Parvo‐caricetea species increased in wet sites, presumably primarily because of soil acidification occurring when rainwater becomes more influential than base‐rich groundwater. The extent of the shift in species composition depends primarily on the drainage intensity and secondarily on microtopography. Local hydrological measures have largely failed to restore wetter and more basic‐rich conditions. Conclusions: Acidification and nutrient removal, leaching and immobilization resulted in the succession towards Junco‐Molinion at the cost of Calthion palustris elements. Lower in the gradient this change was reduced by the presence of buffered groundwater in slightly drained sites. To conserve the typical plant communities of the Junco‐Molinion to Calthion gradient in the long term, further acidification must be prevented, for example by inundation with base‐rich surface water.  相似文献   

15.
Question: Is raising groundwater tables successful as a wetland restoration strategy? Location: Kennemer dunes, The Netherlands; Moksloot dunes, The Netherlands and Bullock Creek fen, New Zealand. Methods: Generalizations were made by analysing soil dynamics and the responsiveness of integrative plant traits on moisture, nutrient regime and seed dispersal in three case studies of re wetted vs. control wetlands with the same actual groundwater levels. Soil conditions included mineral (calcareous and non‐calcareous) soils with no initial vegetation, mineral soils with established vegetation and organic soils with vegetation. Results: The responsiveness of traits to raised groundwater tables was related to soil type and vegetation presence and depended on actual groundwater levels. In the moist‐wet zone, oligotrophic species, ‘drier’ species with higher seed longevity occupied gaps created by vegetation dieback on rewetting. The other rewetted zones still reflected trait values of the vegetation prevalent prior to rewetting with fewer adaptations to wet conditions, increased nutrient richness and higher seed longevity. Moreover, ‘eutrophic’ and ‘drier’ species increased at rewetted sites, so that these restored sites became dissimilar to control wetlands. Conclusions: The prevalent traits of the restored wetlands do not coincide with traits belonging to generally targeted plant species of wetland restoration. Long‐term observations in restored and control wetlands with different groundwater regimes are needed to determine whether target plant species eventually re vegetate restored wetlands.  相似文献   

16.
Summary Seasonal patterns of net N mineralization and nitrification in the 0–10 cm mineral soil of 9 temperate forest sites were analyzed using approximately monthlyin situ soil incubations. Measured nitrification rates in incubated soils were found to be good estimates of nitrification in surrounding forest soils. Monthly net N mineralization rates and pools of ammonium-N in soil fluctuated during the growing season at all sites. Nitrate-N pools in soil were generally smaller than ammonium-N pools and monthly nitrification rates were less variable than net N mineralization rates. Nitrate supplied most of the N taken up annually by vegetation at 8 of the 9 sites. Furthermore, despite the large fluctuations in ammonium-N pools and monthly net N mineralization, nitrate was taken up at relatively uniform rates during the growing season at most sites.  相似文献   

17.
We investigated the effect of climate change on Poa secunda Presl. and soils in a shrub‐steppe ecosystem in south‐eastern Washington. Intact soil cores containing P. secunda were reciprocally transplanted between two elevations. Plants and soils were examined, respectively, 4.5 and 5 years later. The lower elevation (310 m) site is warmer (28.5 °C air average monthly maximum) and drier (224 mm yr?1) than the upper elevation (844 m) site (23.5 °C air average monthly maximum, 272 mm yr?1). Observations were also made on undisturbed plants at both sites. There was no effect of climate change on plant density, shoot biomass, or carbon isotope discrimination in either transplanted plant population. The cooler, wetter environment significantly reduced percent cover and leaf length, while the warmer, drier environment had no effect. Warming and drying reduced percent shoot nitrogen, while the cooler, wetter environment had no effect. Culm density was zero for the lower elevation plants transplanted to the upper site and was 10.3 culms m?2 at the lower site. There was no effect of warming and drying on the culm density of the upper elevation plants. Culm density of in situ lower elevation plants was greater than that of the in situ upper elevation plants. Warming and drying reduced total soil carbon 32% and total soil nitrogen 40%. The cooler, wetter environment had no effect on total soil C or N. Of the C and N that was lost over time, 64% of both came from the particulate organic matter fraction (POM, > 53 µ m). There was no effect of warming and drying on the upper population of P. secunda while exposing the lower population to the cooler, wetter environment reduced reproductive effort and percent cover. With the warmer and drier conditions that may develop with climate change, total C and N of semiarid soils may decrease with the active fraction of soil C also rapidly decreasing, which may alter ecosystem diversity and function.  相似文献   

18.
Patches of organic matter have been found to be important `hotspots' of denitrification in both surface and subsurface soils, but the factors controlling the formation and maintenance of these patches are not well established. We compared the concentration of patches of organic matter and root biomass in the subsurface (saturated zone) beneath poorly drained riparian wetland soils at four sites in Rhode Island, USA - two dominated by red maple (Acer rubrum) and two dominated by white pine (Pinus strobus). Denitrification enzyme activity (DEA) and carbon (C) content of patch material were compared between sites and between patches with different visual characteristics. Root decomposition was measured in an 8-week ex-situ incubation experiment that compared the effects of water content, root species, and soil matrix origin on CO2 evolution. We observed significantly greater concentrations of patches at 55 cm at one red maple site than all other sites. DEA and percent C in patches was generally higher in patches than matrix soil and did not vary between sites or by patch type. White pine roots decomposed at a faster rate than red maple roots under unsaturated conditions. Our results suggest that faster root decomposition could result in lower concentrations of patches of organic material in subsurface soils at sites dominated by white pine. Tree species composition and root decomposition may play a significant role in the formation of patches and the creation and maintenance of groundwater denitrification hotspots in the subsurface of riparian wetlands. Abbreviations: DEA – denitrification enzyme activity; DOC – dissolved organic carbon; PD – poorly drained; RM-1 – red maple-1 site; RM-2 – red maple-2 site; WP-1 – white pine-1 site; WP-2 – white pine-2 site.  相似文献   

19.
Spilled crude petroleum from oil wells contains numerous hydrocarbons, some of which are toxic and threaten life. We have studied the mobility and persistence of hydrocarbons in waterlogged soils that contain large proportions of fermented organic matter (Histosols) and large concentrations of dissolved organic carbon (DOC) in the State of Tabasco, Mexico. We sampled soil and phreatic water at sites polluted by oil spills for several decades, as well as at sites that had only recently (few weeks) been polluted, and compared their hydrocarbon contents with those of unaffected sites in the same area. Samples were analyzed for 16 non-alkylated polyaromatic hydrocarbons (PAHs) and n-alkanes from nC9 to nC34. The spilled hydrocarbons had remained predominantly in the organic surface horizons of the soil where spillage occurred; there was little evidence of movement within the soil. The fraction of low molecular weight compounds was larger at sites of recent spills than where spills happened several decades ago. Nevertheless, sites of old spills still contained large concentrations of hydrocarbons, among which those of low molecular weight represented from 30 to 49% of total PAHs and from 50 to 84% of total n-alkanes, indicating that volatilization or microbial degradation is slow in these soils. In the peat horizons the measured organic carbon partition coefficients (K oc ) for the higher molecular weight PAHs were consistently smaller than those estimated by empirical equations by up to two orders of magnitude. The dissolved organic carbon of these peat soils seems to influence this behavior. At sites of old spills, partition coefficients for the PAHs were larger than at sites of recent spills.  相似文献   

20.
The purpose of this article is to review both laboratory and field observations of RDX adsorption to soils and to use those results to estimate the effects of a planned remedial action. Adsorption isotherms for RDX are generally observed to be linear and reversible. Statistical tests were performed to determine the relationship between Kd and various soil characteristics. A linear relationship between Kd and soil organic carbon was observed, as expected, but regression of Kd to organic carbon content indicated a non-zero intercept, suggesting that other sorbents may also be significant at low OC (e.g., > 0.5 %). No other soil properties were significantly related to Kd so the mechanism of adsorption at low organic carbon was not determined. These results were used to interpret observations of RDX in the vadose zone at Milan Army Ammunition Plant (MAAP), TN. MAAP exhibits widespread soil contamination by RDX. Depth to groundwater ranges from 40 to 80?ft. Unsaturated soils are fine grained near the surface, and sandy near the water table. RDX is concentrated in the upper 2?ft, where concentrations in some places exceed 1 %. Subsurface concentrations are generally less than 50?mg/kg. The distribution of RDX in soil, soil moisture and groundwater, and soil physical testing data were interpreted using simple models. The distribution of RDX is consistent with the following conceptual model: ??Water containing RDX was dis charged to the land surface (prior to 1983); ??Crystalline RDX remains in surface soil (remedial activities are ongo ing); ??Infiltrating rainwater leaches RDX from surface soils; ??This leachate carries RDX through the deeper vadose zone, resulting in significant soil contamination through out the full thickness of the vadose zone; these soils can generate leachate and adversely affect ground- water quality for many years to come. Field results were consistent with the adsorption studies. Simple models consistent with the field and laboratory observations indicate that deeper soils that are not planned to be remediated may continue to leach unacceptable concentrations to groundwater for approximately 180 years. The Army intends to evaluate whether it will be most cost-effective to address this continuing source by treating soils or groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号