首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Carbonyl iron (2.5% w/w) in rat chow was used to induce iron loading in rat hepatocytes.2. Acute exposure of cultured hepatocytes from control and iron-loaded rats to ethanol (25–100 mM) resulted in a significant inhibition of protein synthesis.3. Inhibition of protein synthesis in hepatocytes from iron-loaded rats was primarily due to impaired amino acid uptake by these cells.4. High concentrations of ethanol stimulated the rate of protein degradation by hepatocytes from iron-loaded rats.5. Acute administration of ethanol to hepatocytes from control animals did not stimulate the absolute rates of collagen biosynthesis nor induce Type I procollagen mRNA.6. Acute administration of ethanol did not inhibit procollagen synthesis.7. Iron overload induced Type I procollagen mRNA and increased the absolute rates of collagen synthesis in hepatocytes.8. These findings may be relevant for the development of hepatic fibrosis in patients with genetic hemochromatosis who consume excess ethanol.  相似文献   

2.
3.
4.
5.
6.
The expression of type I collagen, the most component of dentin extracellular matrix proteins (ECMs) in odontoblast is correlated with the activity of dentin formation. Since odontoblast possesses a distinct cellular process for protein transport into the dentinal tubule, it is important to examine the intracellular protein localization. However, a study focusing on odontoblast processes has not been performed. Type I collagen is synthesized as procollagen, which is immediately converted to collagen upon secretion. After characterization of antiserum to rat type I procollagen, we investigated the intracellular localization of type I procollagen in odontoblasts during and after dentinogenesis, using immunohistochemistry and in situ hybridization. The level of mRNA expression decreased during dentinogenesis, whereas the intracellular localization of type I procollagen in odontoblast processes become more distinct. The percentage of dentinal tubules with type I procollagen increased significantly with aging. Odontoblasts in pulp horn, in particular, showed moderate expression of type I procollagen after dentinogenesis. Since loss of occlusion also caused a significant decrease in type I procollagen, we concluded that occlusal stimulation activated type I procollagen synthesis in odontoblasts. We also suggest that analysis of intracellular transport of type I procollagen via odontoblast processes may be a new approach to evaluation of odontoblast function.  相似文献   

7.
Type I procollagen C-proteinase enhancer (PCPE) exists in hepatic stellate cells (HSCs) which can produce collagen. The deduced amino acid sequence of PCPE contains motifs specific for RNA-binding proteins. The effect of PCPE on the syntheses of collagen and noncollagenous protein was studied using an HSC clone derived from cirrhotic rat liver. When the cells were cultured in the presence of an antisense oligonucleotide (AS) against PCPE mRNA, the synthesis of noncollagenous protein as well as collagen was reduced compared to the cells cultured with addition of a nonsense oligonucleotide (NS). The extent of the reduction was similar in both syntheses. The total RNA content of the AS-treated cells and NS-treated cells did not differ. In the presence of actinomycin D, however, such total RNA content was decreased more rapidly in the AS-treated cells than in the NS-treated cells. PCPE may be involved in stabilization of RNA strands in noncollagenous protein synthesis as well as collagen synthesis.  相似文献   

8.
Hepatocytes were obtained from rat liver and maintained in primary culture for periods up to 14 days. Collagen synthesis was maximal after 3–5 days and declined thereafter. The rate of collagen production was appox. one-tenth that observed by the rat skin fibroblasts of the same animals after 3–5 passages. Type I procollagen, the major macromolecular collagenous species, was identified as a 450 000 dalton molecule which was converted to 120 000 dalton, denatured, reduced procollagen chains. Prior pepsin digestion of the native procollagen released 95 000 dalton collagen chains identified as α1(I) and α2(I) by co-migration with carrier rat skin type I collagen chains. The production of type III procollagen was also tentatively identified by DEAE-cellulose chromatography. This material was isolated and identified with type-specific antibodies developed against the amino-terminal extension peptide of bovine skin type III procollagen. The relative distribution of type I:type III procollagen was estimated at 7:3 similar to the ratio previously found in whole rat liver. No evidence of type IV or type V procollagen biosynthesis was observed. These results suggest that rat hepatocytes in primary culture are capable of interstitial type I and type III collagen biosynthesis in a ratio similar to that found in their parent hepatic tissue in situ. They also suggest that the less abundant type IV (basement membrane-associated) or type V are nor major collagenous products of these cells.  相似文献   

9.
We present, here, evidence for a pretranslational role of procollagen propeptides in the regulation of collagen synthesis. Amino- and carboxyl-terminal type I procollagen propeptides were isolated and purified from chick calvaria and tendon cultures. Human lung fibroblasts (IMR-90) were incubated in medium containing varying concentrations of propeptides. Amino-propeptides at 10 nM caused an 80% decrease in collagen synthesis compared to control. Higher concentrations of amino-propeptides did not decrease collagen synthesis further and no significant effect on non-collagen synthesis was found throughout the entire concentration range. Carboxyl-propeptides also inhibited collagen synthesis. At 10 nM, collagen synthesis was decreased by 30% and a concentration of 40 nM caused an 80% reduction. However, at the latter concentration non-collagen synthesis was also affected, decreasing by 20% relative to control. To assess possible pretranslational effects of propeptides, IMR-90 fibroblasts were treated with varying concentrations of each propeptide and levels of type I procollagen mRNA was determined by dot hybridization with a 32P-alpha 2(I) cDNA probe. Both propeptides caused significant concentration-dependent decreases in procollagen type I mRNA levels. At 10 nM, the amino-propeptide resulted in a 55% decrease in collagen mRNA levels while at 40 nM these levels decreased by 72% compared to control. Carboxyl-propeptides were also inhibitory, decreasing mRNA levels by 33% at 10 nM and 73% at 40 nM. Messenger RNA levels of a representative noncollagenous protein, beta-actin, were unaffected by either propeptide throughout the concentration range.  相似文献   

10.
11.
Rats were administered CCl4, a well-defined nephrotoxin, for 20 weeks to produce glomerular sclerosis. Tubular degeneration and necrosis with interstitial fibrosis was clearly evident by histological examination. Kidneys were homogenized in phosphate-buffered saline and a collagen synthesis-stimulating factor was isolated by Sephadex G-50 gel filtration. The 5 kDa component stimulated both type I and type IV procollagen synthesis by mesangial cells and type I procollagen synthesis by rat skin fibroblasts. In each cell type, 2-6-fold increases in procollagen protein production or cell proliferation was noted. The steady-state levels of mRNA encoding for procollagen alpha 1(I) and procollagen alpha 1(IV) chains in mesangial cells were determined by by hybridization to their corresponding cDNA clones. The type I procollagen mRNA was elevated 1.4-fold compared to a 1.6-fold increase in mRNA encoding for type IV procollagen. The similar properties and chemical characteristics of this fibrogenic factor with a factor from fibrotic liver suggests they are the same and that a common endogenous collagen synthesis stimulator may be present in fibrosing organs, thus providing a driving force for collagen over-production.  相似文献   

12.
We have employed in situ hybridization to evaluate the molecular mechanisms responsible for hypoalbuminemia and increased liver collagen content in murine schistosomiasis. Results were compared using a simplified method of hybridizing isolated hepatocytes from Schistosoma mansoni-infected and normal mouse liver with mouse albumin (pmalb-2) and chick pro-alpha 2(l) collagen (pCg45) probes. Whereas hepatocytes from infected mice showed significantly less albumin mRNA than hepatocytes from control, there were more grains of procollagen mRNA in hepatocytes from infected as compared with control liver. Hybridization of infected liver tissue sections with the collagen probe showed more grains per field in granulomas than in liver regions, whereas with the albumin probe there was more hybridization in liver tissue than in granulomas. These results suggest that in murine schistosomiasis a reduction in albumin mRNA sequence content may be associated with decreased albumin synthesis and ultimately leads to hypoalbuminemia. In addition, although the granuloma seems to be the primary source of type I collagen synthesis, hepatocytes are also capable of synthesizing collagen, especially under fibrogenic stimulation.  相似文献   

13.
14.
15.
1. The effects of chronic ethanol feeding on muscles containing a predominance of either Type I (aerobic, slow-twitch) or Type II (anaerobic, fast-twitch) fibres were studied. Male Wistar rats, weighing approx. 90 g or 280 g, were pair-fed on a nutritionally complete liquid diet containing 36% of total energy as ethanol, or isovolumetric amounts of the same diet in which ethanol was replaced by isoenergetic glucose. After 6 weeks feeding, fractional rates of protein synthesis were measured with a flooding dose of L-[4-(3)H]-phenylalanine and muscles were analysed for protein, RNA and DNA. 2. Ethanol feeding decreased muscle weight, protein, RNA and DNA contents in both small and large rats. Type-II-fibre-rich muscles showed greater changes than did Type-I-fibre-rich muscles. Changes in protein paralleled decreases in DNA. 3. The capacity for protein synthesis (RNA/protein), fractional rates of protein synthesis and absolute rates of protein synthesis were decreased by ethanol feeding in both small and large rats. The amounts of protein synthesized relative to RNA and DNA were also decreased. Changes were less marked in Type-I than in Type-II-fibre-rich muscles. Loss of protein, RNA and DNA was greater in small rats, but protein synthesis was more markedly affected in large rats. 4. It was concluded that chronic ethanol feeding adversely affects protein metabolism in skeletal muscle. Fibre composition and animal size are also important factors in determining the pattern of response.  相似文献   

16.
The aim of this study was to set up an in vitro model for studying the importance of an altered extra-cellular matrix composition and its importance for the resistance to oxidative stress, in hepatocytes from normal and iron loaded rats. Primary cultures of hepatocytes from iron loaded and normal rats were plated on a laminin rich extracellular matrix or on collagen type I, and incubated with tert-butyl hydroperoxide (TBH). Malon dialdehyde (MDA) and the activities of lactate dehydrogenase (LDH) in cell culture medium were analyzed. The protein synthesis, the concentrations of glutathione and the expression of manganese-superoxide dismutase and ferritin genes were measured. All hepatocytes contained lower concentrations of glutathione when plated on collagen than on EHS. Ferritin H and Mn-SOD gene expression showed no difference. The rate of lipid peroxidation in iron loaded hepatocytes exposed to TBH was higher on collagen than in those plated on EHS (0.95 +/- 0.28 microM MDA vs. 1.62 +/- 0.22 microM MDA, p < 0.05). Iron loaded cells were in general more susceptible to TBH than were normal hepatocytes (MDA, LDH, protein synthesis and glutathione content). Lipid peroxidation could be prevented by adding desferrioxamine. In conclusion, we show that the combination of iron overload and collagen matrix in rat hepatocytes leads to an increased susceptibility to oxidative stress. These findings may be of interest for the further studies on effects of iron overload and the altered matrix composition in liver fibrosis.  相似文献   

17.
A complementary DNA (cDNA) clone was constructed for chick pro alpha 2(I) collagen mRNA. This and previously constructed cDNA clones for chick and human pro alpha 1(I) collagen mRNAs were used to measure levels of type I procollagen messenger RNAs in two experimental models: viscose cellulose sponge-induced experimental granulation tissue and silica-induced experimental lung fibrosis in rats. Both Northern RNA blot and RNA dot hybridizations were used to quantitate procollagen mRNAs during formation of granulation tissue. The period of rapid collagen synthesis was characterized by high levels of procollagen mRNAs, which were reduced when collagen production returned to a low basal level. The rate of collagen synthesis and the levels of procollagen mRNAs during the period of rapid reduction in collagen production did not, however, parallel with each other. This suggests that translational control mechanisms are important during this time in preventing overproduction of collagen. In silicotic lungs, the early stages of fibroblast activation follow a similar path but appear faster. At a later stage, however, the RNA levels increase again and permit collagen synthesis to continue at a high rate, resulting in massive collagen accumulation.  相似文献   

18.
Type II procollagen messenger ribonucleic acid (mRNA) was isolated from chick sternum and rat chondrosarcoma cells and translated in a reticulocyte lysate cell-free system. A high molecular weight band was identified as type II procollagen by gel electrophoresis, collagenase digestion, and specific immunoprecipitation. The translation of type II mRNA was specifically inhibited by addition of type I procollagen amino-terminal extension peptide. When this peptide was added to the media of cultured fetal calf chondrocytes, chick sternal chondrocytes, or chick tendon fibroblasts, no inhibition of collagen synthesis was evident. These data suggest a general regulation of collagen biosynthesis by these peptides in the cell-free translation system. However, as indicated by the cell culture experiments, cellular characteristics and evolutionary divergence of animal species seem to restrict the effect of the peptides.  相似文献   

19.
We previously have reported that 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3], dexamethasone, and retinoic acid inhibit collagen synthesis in rat osteoblast-like cell primary cultures. We also have found that dexamethasone increases 1,25-(OH)2D3 receptor levels in these cells. Furthermore, this increase in 1,25-(OH)2D3 receptor level is paralleled by an enhanced inhibition of collagen synthesis when dexamethasone and 1,25-(OH)2D3 are used in combination. In contrast, retinoic acid at high doses decreases 1,25-(OH)2D3 receptor level in rat osteoblast-like cells and attenuates 1,25-(OH)2D3 inhibition of collagen synthesis. In the present study, we have used a [32P]cDNA probe for rat pro alpha 1 (I) to determine if these osteotropic agents act by modulating steady state procollagen mRNA levels. Hybridization with a [32P]cDNA probe for human actin was used as a control. We find that the steady state levels of procollagen mRNA are decreased in all cases, while there are negligible changes in actin mRNA levels. Dexamethasone, at the low dose of 13 nM, acts synergistically with 1,25-(OH)2D3 in decreasing procollagen mRNA levels. The effects of retinoic acid and 1,25-(OH)2D3 are additive at low doses (13 and 130 nM); however, at a high dose of retinoic acid (1.3 microM), combined treatment with 1,25-(OH)2D3 does not reduce procollagen mRNA levels beyond the decrease due to retinoic acid alone. The reduction in procollagen mRNA level after each of these treatments falls in the same range as inhibition of collagen synthesis measured at the protein level. These data suggest that the synthesis of collagen under these treatments is controlled primarily through modulation of steady state procollagen mRNA levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
To study how collagen synthesis is regulated in developing chick embryonic skin, hydroxyproline synthesis, incorporation of proline, and translational activity and content of collagen mRNA in 12-, 15-, and 18-day skins were determined and compared with each other. Hydroxyproline synthesis in the 18-day skins was markedly increased over that in the 12-day skins, whereas proline incorporation was moderately increased. The increase in collagen synthesis from day 15 to 18 was accompanied by increases in both the translational activity and the content of type I procollagen mRNA, with a selective increase in the lower-molecular-weight species of pro alpha 1 (I) collagen mRNA. In contrast, the stimulation of collagen synthesis from day 12 to day 15 did not parallel the levels of type I procollagen mRNA. These results suggest that the stimulation of collagen synthesis is regulated by collagen mRNA levels only in the later stage of development (from day 15 to day 18). Both the collagen synthesis and type I procollagen mRNA levels in the fibroblasts isolated on each corresponding day were constant. The difference in collagen synthesis under two different culture conditions suggests that cell-matrix interaction and/or some serum factors, including several growth factors, are essential for the marked stimulation of collagen synthesis observed in 12- to 18-day skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号