首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have determined the 1H----3H exchange rate constants between water and C8H groups of purinic residues of alternating polynucleotides poly(dA-dT).poly(dA-dT), poly(dG-dC).poly(dG-dC) and poly(dA-dC).poly(dG-dT) as well as homopolynucleotides poly(dA).poly(dT) and poly(dG).poly(dC) in aqueous solutions with high-salt concentrations (3 M NaCl and 4-6 M CsF), in water-ethanol (60%) solution and in 0.15 M NaCl at 25 degrees C. The rate constants for adenine (kA) and guanine (kG) of polynucleotides were compared with corresponding constants for E. coli DNA. dGMP nd dAMP at the same conditions. The relation between exchange rates and conformations of polynucleotides permits the study of their conformational peculiarities in solution. Of three alternating polynucleotides examined in 0.15 M NaCl the exchange retardation was observed only for poly(dA-dT).poly(dA-dT) as compared with that in B-DNA, which is in good agreement with the B-alternating "wrinkled" DNA model. The conformations of poly(dG-dC).poly(dG-dC) and poly(dA-dC).poly(dG-dT), according to the exchange data obtained are within the B form. For homopolynucleotides in 0.15 M NaCl, the KA value for poly(dA).poly(dT) is nearly the same as kA for B-DNA, which indicates the similarity of their conformations, whereas the kG value for poly(dG).poly(dC) is 1.7-fold lower in comparison with the kG value in B-DNA. This seems to be connected with the existence of B = A conformation equilibrium for poly(dG).poly(dC) in solution. The increase of NaCl concentration to 3 M results in a B----Z transition in the case of poly(dG-dC).poly(dG-dC) and in the shift of B = A equilibrium towards the A-form in the case of poly(dG).poly(dC) as is evidenced by alterations of their KG values. Poly(dA-dT).poly(dA-dT) in 6 M CsF and poly(dA-dC).poly(dG-dT) in 4.3 M CsF maintain their inherent conformations in 0.15 M NaCl in spite of the fact that they are characterised by the "X-type" CD-spectrum at these conditions. According to the exchange data the conformation of poly(dA).poly(dT) in 6 M CsF corresponds to the "heteronomous" DNA model or some other structure with lower accessibility of C8H groups of adenylic residues.  相似文献   

2.
Abstract

We have determined the 1H→3H exchange rate constants between water and C8H groups of purinic residues of alternating polynucleotides poly(dA-dT)·poly(dA-dT), poly(dG-dC)·poly(dG- dC) and poly(dA-dC)·poly(dG-dT) as well as homopolynucleotides poly(dA)·poly(dT) and poly(dG)·poly(dC) in aqueous solutions with high-salt concentrations (3 M NaCl and 4–6 M CsF), in water-ethanol (60%) solution and in 0.15 M NaCl at 25°C. The rate constants for adenine (kA) and guanine (kG) of polynucleotides were compared with corresponding constants for E.coli DNA, dGMP nd dAMP at the same conditions. The relation between exchange rates and conformations of polynucleotides permits the study of their conformational peculiarities in solution.

Of three alternating polynucleotides examined in 0.15 M NaCl the exchange retardation was observed only for poly(dA-dT)·poly(dA-dT) as compared with that in B-DNA, which is in good agreement with the B-alternating “wrinkled” DNA model. The conformations of poly(dG-dC)·poly(dG-dC) and poly(dA-dC)·poly(dG-dT), according to the exchange data obtained, are within the B form. For homopolynucleotides in 0.15 M NaCl, the kA value for poly(dA)·poly(dT) is nearly the same as kA for B-DNA, which indicates the similarity of their conformations, whereas the kG value for poly(dG)·poly(dC) is 1.7-fold lower in comparison with the kG value in B-DNA. This seems to be connected with the existence of B? A conformation equilibrium for poly(dG)·poly(dC) in solution.

The increase of NaCl concentration to 3 M results in a B→Z transition in the case of poly(dG-dC)·poly(dG-dC) and in the shift of B?A equilibrium towards the A-form in the case of poly(dG)·poly(dC), as is evidenced by alterations of their KG values. Poly(dA-dT)·poly(dA-dT) in 6 M CsF and poly(dA-dC)·poly(dG-dT) in 4.3 M CsF maintain their inherent conformations in 0.15 M NaCl in spite of the fact that they are characterised by the “X-type” CD-spectrum at these conditions. According to the exchange data the conformation of poly(dA)·poly(dT) in 6 M CsF corresponds to the “heteronomous” DNA model or some other structure with lower accessibility of C8H groups of adenylic residues.  相似文献   

3.
Chiroptical properties of poly(dA-dU).poly(dA-dU) were studied in concentrated NaCl and CsF solutions to reveal the role of the alternating B conformation in the CsF-induced alternating B-X conformational transition of poly(dA-dT).poly(dA-dT). Poly(dA-dU).poly(dA-dU) has been chosen for this purpose because it has, instead of the alternating B conformation, a regular conformation like poly(dG-dC).poly(dG-dC) in low-salt solution. It was found that poly(dA-dU).poly(dA-dU) did not assume that Z form at high NaCl concentrations but exhibited extensive CsF-induced changes in the circular dichroism spectra like poly(dA-dT).poly(dA-dT). The changes of reflect two consecutive two-state conformational transitions of the polynucleotide, both taking place with fast kinetics and low cooperativity. The transition were interpreted as involving the regular and alternating B conformation at lower CsF concentrations and the alternating B and X conformation at higher CsF concentrations. A comparison of the behaviour of poly(dA-dU).poly(dA-dU) and poly(dA-dT).poly(dA-dT) in CsF solutions demonstrates that the thymine methyl groups promote the X form but are not crucial for its existence. On the other hand, the alternating B conformation appears to be the inevitable starting structure for DNA isomerization into the X form.  相似文献   

4.
P A Mirau  R W Behling  D R Kearns 《Biochemistry》1985,24(22):6200-6211
Proton NMR relaxation measurements are used to compare the molecular dynamics of 60 base pair duplexes of B- and Z-form poly(dG-dC).poly(dG-dC). The relaxation rates of the exchangeable guanine imino protons (Gim) in H2O and in 90% D2O show that below 20 degrees C spin-lattice relaxation is exclusively from proton-proton magnetic dipolar interactions while proton-nitrogen interactions contribute about 30% to the spin-spin relaxation. The observation that the spin-lattice relaxation is nonexponential and that the initial spin-lattice relaxation rate of the Gim, G-H8 and C-H6 protons depends on the selectivity of the exciting pulse shows that spin-diffusion dominates the spin-lattice relaxation. The relaxation rates of the Gim, C-H5, and C-H6 in B- and Z-form poly(dG-dC).poly(dG-dC) cannot be explained by assuming the DNA behaves as a rigid rod. The data can be fit by assuming large-amplitude out of plane motions (+/- 30-40 degrees, tau = 1-100 ns) and fast, large-amplitude local torsional motions (+/- 25-90 degrees, tau = 0.1-1.5 ns) in addition to collective torsional motions. The results for the B and Z forms show that the rapid internal motions are similar and large in both conformations although backbone motions are slightly slower, or of lower amplitude, in Z DNA. At high temperatures (greater than 60 degrees C), imino proton exchange with solvent dominates the spin-lattice relaxation of B-form poly(dG-dC).poly(dG-dC), but in the Z form no exchange contribution (less than 2 s-1) is observed at temperatures as high as 85 degrees C. Conformational fluctuations that expose the imino protons to the solvent are strikingly different in the B and Z forms. The results obtained here are compared with those previously reported for poly(dA-dT).poly(dA-dT).  相似文献   

5.
The article reviews data indicating that poly(dA-dT).poly(dA-dT) is able of adopting three distinct double helical structures in solution, of which only the A form conforms to classical notions. The other two structures have dinucleotides as double helical repeats. At low salt concentrations poly(dA-dT).poly(dA-dT) adopts a B-type alternating conformation which is exceptionally variable. Its architecture can gradually move in the limits demarcated by the CD spectra with inverted long wavelength CD bands and the 31P NMR spectra with a very low and a 0.6 ppm separation of two resonances. Contrary to Z-DNA, the 31P NMR spectrum of the limiting alternating B conformation of poly(dA-dT).poly(dA-dT) is characterized by an upfield shift of one resonance. We attribute the exceptional conformational flexibility of the alternating B conformation to the unequal tendency of bases in the dA-dT and dT-dA steps to stack. However, by assuming the limiting alternating B conformation, the variability of the synthetic DNA is not exhausted. Specific agents make it isomerize into another conformation by a fast, two-state mechanism, which is reflected by a further deepening of the negative long wavelength CD band and a downfield shift of the 31P NMR resonance of poly(dA-dT).poly(dA-dT) that was constant in the course of the gradual alterations of the alternating B conformation. These changes are, however, qualitatively different from the way poly(dG-dC).poly(dG-dC) behaves in the course of the B-Z isomerization. Poly(dG-dC).poly(dG-dC) displays purine-pyrimidine (dGpdC) resonance in the characteristic downfield position, while the downfield resonance of poly(dA-dT).poly(dA-dT) belongs to the pyrimidine-purine (dTpdA) phosphodiester linkages. Consequently, phosphodiester linkages in the purine-pyrimidine steps play a similar role in the appearance of the Z form to the pyrimidine-purine phosphodiesters in the course of the isomerization of poly(dA-dT).poly(dA-dT). This excludes that the high-salt structures of poly(dA-dT).poly(dA-dT) and poly(dG-dC).poly(dG-dC) are members of the same conformational family. We call the high-salt conformation of poly(dA-dT).poly(dA-dT) X-DNA. It furthermore follows from the review that synthetic molecules of DNA with alternating purine-pyrimidine sequences of bases can adopt either the Z form or the X form, or even both, depending on the environmental conditions. This introduces a new dimension into the DNA double helix conformational variability. The possible biological relevance of the X form is suggested by experiments with linear molecules of natural DNA.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
NMR relaxation rates (T1(-1) and T2(-1)) have been determined for 23Na in aqueous salt solutions containing various types of helical double-stranded deoxyribonucleic acids. These measurements were performed on three synthetic polynucleotides having different overall conformations, poly-(dA-dT).poly(dA-dT) (alternating B-DNA), poly(dG-dC).poly(dG-dC) at low salt (B-DNA), and Br-poly(dG-dC).Br-poly(dG-dC) (left-handed Z-DNA), and on four types of natural DNA differing in base composition, Clostridium perfringens (26% GC), calf thymus (40% GC), Escherichia coli (50% GC), and Micrococcus lysodeikticus (72% GC). For all types of DNA investigated, except poly(dA-dT).poly(dA-dT), the 23Na NMR spectra measured at 21 degrees C and an applied field of 4.7 T are non-Lorentzian. These non-Lorentzian spectra were analyzed on the basis of the two-state model and the standard theory of nonexponential quadrupolar relaxation processes in order to obtain estimates of the correlation times (tau c) characteristic of the sodium nuclei associated with the various nucleic acids. All of the correlation times estimated in this way are in the range of nanoseconds. The magnitudes of these correlation times show a significant dependence on the overall conformation of the nucleic acid (B vs. Z) but not on its base composition. To investigate the concentration dependence of tau c, sodium or magnesium salts were added to solutions of Br-poly(dG-dC).Br-poly(dG-dC) (Z-DNA).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The rates of H-D exchange for imino and amino protons in adenosine, calf thymus DNA, poly (dA-dT), poly(dG-dC), and poly (dG-me5dC) were determined using stopped flow kinetic methods in the presence of various concentrations of Tris, imidazole, Mg2+, and spermine in citrate buffer (pH 7, 25 degrees C). CD spectroscopic studies showed that all polynucleotides always remain in the B-form under these conditions. An increase in the concentration of Tris and imidazole from 5 mu M to 20 mM caused an increase in the rates of exchange of both fast-exchanging imino and slow-exchanging amino protons. The limiting rates of exchange at infinite concentrations of catalysts were found to be different for fast (31-57 sec-1) and slow (1-2 sec-1) exchanging protons. These results indicate that imino and amino protons of B-DNA exchange asymmetrically from two different open states as observed for Z-DNA. An increase in the concentration of spermine from a ratio of 1:50 to 1:2 of positive charge/phosphate decreased the rate of exchange of imino protons of calf-thymus DNA, poly(dG-dC), and poly(dG-me5dC), but increased the rate of exchange of the imino protons of poly(dA-dT) without affecting the exchange rate of the amino protons of any of the polynucleotides. These results are interpreted in terms of possible spermine-induced change of conformations of oligonucleotides of specific sequence that has been suggested by theoretical model building studies.  相似文献   

8.
T J Thomas  R P Messner 《Biochimie》1988,70(2):221-226
The effects of Ru(NH3)(3+)6 on the conformation of poly(dG-m5dC).poly(dG-m5dC) and poly(dG-dC).poly(dG-dC) were studied by circular dichroism (CD) spectroscopy. Ru(NH3)(3+)6 at very low concentrations provokes the Z-DNA conformation in both polynucleotides. In the presence of 50 mM NaCl, the concentration of Ru(NH3)(3+)6 at the midpoint of B to Z transition of poly(dG-m5dC).poly(dG-m5dC) is 4 microM compared to 5 microM for Co(NH3)(3+)6. The half-lives of B to Z transition of poly(dG-m5dC).poly(dG-m5dC) in the presence of 10 microM Ru(NH3)(3+)6 and Co(NHG3)(3+)6 are at 23 and 30 min, respectively. The concentration of Ru(NH3)(3+)6 at the midpoint of B to Z transition of poly(dG-dC).poly(dG-dC) is 50 microM. These results demonstrate that Ru(NH3)(3+)6 is a highly efficient trivalent cation for the induction of B to Z transition in poly(dG-m5dC).poly(dG-m5dC) and poly(dG-dC).poly(dG-dC). In contrast, Ru(NH3)(3+)6 has no significant effect on the conformation of calf thymus DNA, poly(dA-dT).poly(dA-dT) and poly(dA-dC).poly(dG-dT).  相似文献   

9.
Abstract

The article reviews data indicating that poly(dA-dT)?poly (dA-dT) is able of adopting three distinct double helical structures in solution, of which only the A form conforms to classical notions. The other two structures have dinucleotides as double helical repeats. At low salt concentrations poly(dA-dT)?poly(dA-dT) adopts a B-type alternating conformation which is exceptionally variable. Its architecture can gradually move in the limits demarcated by the CD spectra with inverted long wavelength CD bands and the 31P NMR spectra with a very low and a 0.6 ppm separation of two resonances. Contrary to Z-DNA, the 31P NMR spectrum of the limiting alternating B conformation of poly(dA-dT)?poly(dA-dT) is characterized by an upfield shift of one resonance. We attribute the exceptional conformational flexibility of the alternating B conformation to the unequal tendency of bases in the dA-dT and dT-dA steps to stack.

However, by assuming the limiting alternating B conformation, the variability of the synthetic DNA is not exhausted. Specific agents make it isomerize into another conformation by a fast, two-state mechanism, which is reflected by a further deepening of the negative long wavelength CD band and a downfield shift of the 31P NMR resonance of poly (dA-dT)?poly(dA-dT) that was constant in the course of the gradual alterations of the alternating B conformation. These changes are, however, qualitatively different from the way poly(dG-dC)?poly(dG-dC) behaves in the course of the B-Z isomerization. Poly(dG-dC) ?poly(dG-dC) displays purine-pyrimidine (dGpdC) resonance in the characteristic downfield position, while the downfield resonance of poly(dA-dT)?poly(dA-dT) belongs to the pyrimidine-purine (dTpdA) phosphodiester linkages. Consequently, phosphodiester linkages in the purine-pyrimidine steps play a similar role in the appearance of the Z form to the pyrimidine-purine phosphodiesters in the course of the isomerization of poly(dA-dT)?poly(dA-dT). This excludes that the high-salt structures of poly(dA-dT)?poly(dA-dT) and poly(dG-dC)?poly(dG-dC) are members of the same conformational family. We call the high-salt conformation of poly(dA-dT)?poly(dA-dT) X-DNA.

It furthermore follows from the review that synthetic molecules of DNA with alternating purine-pyrimidine sequences of bases can adopt either the Z form or the X form, or even both, depending on the environmental conditions. This introduces a new dimension into the DNA double helix conformational variability. The possible biological relevance of the X form is suggested by experiments with linear molecules of natural DNA. These indicate that Arich regions in natural DNAs can isomerize into the X form while the bulk of the molecule remains in the B form. The coexistence of both structures in a single DNA molecule may be understood in view of the favourable kinetic and thermodynamic properties with which the X form appears.  相似文献   

10.
O P Lamba  R Becka  G J Thomas 《Biopolymers》1990,29(10-11):1465-1477
Deuterium exchange of 8C protons of adenine and guanine in nucleic acids is conveniently monitored by laser Raman spectrophotometry, and the average exchange rate so determined [kA + kG] can be exploited as a dynamic probe of the secondary structure of DNA or RNA [J. M. Benevides and G. J. Thomas, Jr. (1985) Biopolymers 24, 667-682]. The present work describes a rapid Raman procedure, based upon optical multichannel analysis, which permits discrimination of the different 8CH exchange rates, kA of adenine and kG of guanine, in a single experimental protocol. For this procedure, simultaneous measurements are made of the intensity decay or frequency shift in separately resolved Raman bands of adenine and guanine, each of which is sensitive only to 8C deuteration of its respective purine. Resolution of the rates kA and kG is demonstrated for the mononucleotide mixtures, 5'-rAMP + 5'-rGMP and 5'-dAMP + 5'-dGMP, for the polynucleotides poly(dA-dT).poly(dA-dT) and poly(dG-dC).poly(dG-dC), for calf thymus DNA, and for the 17 base-pair operator OR3. We show that the different exchange rates of adenine and guanine, in nucleotide mixtures and in DNA, may also be calculated independently from intensity decay of the composite 1481-cm-1 band, comprising overlapped adenine and guanine components, over a time domain that encompasses two distinct regimes: (1) a relatively more rapid exchange of guanine, and (2) a concurrent slower exchange of adenine. Both methods developed here yield consistent results. We find, first, that exchange of guanine is approximately twofold more rapid than that of adenine when both purines are present in the same structure and solvent environment, presumably a consequence of the greater basicity of the 7N site of guanine. Second, we find that adenine suffers greater retardation of exchange than guanine when both purines are incorporated into a "classical" B-DNA secondary structure, such as that of calf thymus DNA. This finding suggests different microenvironments at the 7N-8C loci of adenine and guanine in aqueous B-DNA. We also confirm that adenine residues of B-form poly(dA-dT).poly(dA-dT) exchange much more slowly than those of other B-DNA sequences, implying a secondary structure for the alternating-AT sequence with unusual stereochemistry in the major groove. The greater resistance of adenine than guanine to 8CH exchange in the B-DNA secondary structure is more evident in high molecular weight calf thymus DNA and in the alternating AT and GC copolymer duplexes than in the smaller 17 base-pair operator OR3.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
We have studied the conformation of poly (dG-dC) . poly (dG-dC) in three conditions; i) associated with histones octamers, ii) alone at ionic strength 0.1, and ii) in solutions of over 2.5 M NaCl. The circular dichroism spectrum for the polymer bound to histones differs from that for the free polymer; the difference spectrum is similar to those for native and poly (dA-dT) . poly (dA-dT) core particles. Under the first two conditions, the 31P NMR spectrum is symmetric with line widths of 91 and 41 Hz, respectively, at 109.3 MHz. In high salt, two 31P peaks of equal intensity are observed, confirming recent results of Patel et al. (1) and indicating an alternating geometry for the phosphodiester backbone. Using this highly homogeneous DNA, we confirm that the Pohl-Jovin transition (2) is an intramolecular rearrangement, not requiring complete strand separation.  相似文献   

12.
We have studied the hydrogen-deuterium exchange kinetics of the exchangeable protons of the poly(dG-dC).poly(dG-dC) in the Z form of the polymer, using resonance Raman spectroscopy with 257 nm and 284 nm excitation wavelengths. In our experimental conditions (4.5 M NaCl, phosphate buffer pH7, 2 degrees C) the two amino protons and the imino proton of guanine are exchanged with the same exchange half-time of 13 min, whereas the two amino protons of cytosine are exchanged with the same exchange half-time of 51 min.  相似文献   

13.
Sequence-dependent mechanics of single DNA molecules   总被引:18,自引:0,他引:18  
Atomic force microscope-based single-molecule force spectroscopy was employed to measure sequence-dependent mechanical properties of DNA by stretching individual DNA double strands attached between a gold surface and an AFM tip. We discovered that in lambda-phage DNA the previously reported B-S transition, where 'S' represents an overstretched conformation, at 65 pN is followed by a nonequilibrium melting transition at 150 pN. During this transition the DNA is split into single strands that fully recombine upon relaxation. The sequence dependence was investigated in comparative studies with poly(dG-dC) and poly(dA-dT) DNA. Both the B-S and the melting transition occur at significantly lower forces in poly(dA-dT) compared to poly(dG-dC). We made use of the melting transition to prepare single poly(dG-dC) and poly(dA-dT) DNA strands that upon relaxation reannealed into hairpins as a result of their self-complementary sequence. The unzipping of these hairpins directly revealed the base pair-unbinding forces for G-C to be 20 +/- 3 pN and for A-T to be 9 +/- 3 pN.  相似文献   

14.
C V Mura  B D Stollar 《Biochemistry》1984,23(25):6147-6152
Interactions of chicken H1 and H5 histones with poly(dA-dT), poly(dG-dC), and the Z-DNA structure brominated poly(dG-dC) were measured by a nitrocellulose filter binding assay and circular dichroism. At low protein:DNA ratios, both H1 and H5 bound more Z-DNA than B-DNA, and binding of Z-DNA was less sensitive to interference by an increase in ionic strength (to 600 mM NaCl). H5 histone bound a higher percentage of all three polynucleotides than did H1 and caused more profound CD spectral changes as well. For spectral studies, histones and DNA were mixed in 2.0 M NaCl and dialyzed stepwise to low ionic strength. Prepared in this way or by direct mixing in 150 mM NaCl, complexes made with right-handed poly(dG-dC) showed a deeply negative psi spectrum (deeper with H5 than with H1). Complexes of histone and Br-poly(dG-dC) showed a reduction in the characteristic Z-DNA spectral features, with H5 again having a greater effect. Complexes of poly(dA-dT) and H5, prepared by mixing them at a protein:DNA ratio of 0.5, displayed a distinctive spectrum that was not achieved with H1 even at higher protein:DNA ratios. It included a new negative band at 287 nm and a large positive band at 255 nm, giving the appearance of an inverted spectrum relative to spectra of various forms of B-DNA. These findings may reflect an ability of the different lysine-rich histones to cause varying conformational changes in the condensation of chromatin in DNA regions of highly biased base sequence.  相似文献   

15.
The interaction between the B-form specific ligands netropsin (Nt) and distamycin-3 (Dst-3) and DNA duplexes has been studied under conditions of salt concentration and low water activity that modify the polymer conformation into a non-B DNA form, putatively a Z-like form. Three polymers with strict alternating purine-pyrimidine sequences and GC content from 100-0% have been tested: poly(dG-dC) . poly(dG-dC), poly(dA-dC) . poly(dG-dT) and poly(dA-dT) . poly(dA-dT). The titrations by Nt and Dst-3 were followed by circular dichroism. Although specific binding of Nt to the Z-form of poly(dG-dC) . poly(dG-dC) does not occur, Nt reverses this Z structure to the B-type conformation; Dst-3 is, however, totally inefficient. The presumed non-B or Z-like structure of poly(dA-dC) . poly(dG-dT) is reversed to the B-form upon interaction with Nt; Dst-3 also induces this reversal but at higher ligand ratios. The modified B-structure of poly(dA-dT) . poly(dA-dT) in low water activity is efficiently reversed to the B-form by interaction with both Nt and Dst-3.  相似文献   

16.
The exchange rate of the hydrogen-bonded guanine imino protons N(1) in the high-salt form of Poly(dG-dC) was measured by following the non-selective inversion-recovery of their 1H NMR signal at 360 MHz, in the temperature range between 77 degrees C and 90 degrees C. In a 4.5M NaCl solution, Poly(dG-dC) is believed to adapt the left-handed Z-conformation, and the results reported here represent the first quantitative measurements of this rate process for Z-DNA by Nuclear Magnetic Resonance, complementing previous measurements made by tritium exchange at 0 degrees C (Ramstein, J. and Leng, M. (1980) Nature 288, 413-414). The results confirm that this process is much slower in the Z-form, compared to the B-structure, and that this difference in rates results mainly from a large decrease in the entropy of activation for Z-DNA.  相似文献   

17.
Mechanical stability of single DNA molecules   总被引:10,自引:0,他引:10       下载免费PDF全文
Using a modified atomic force microscope (AFM), individual double-stranded (ds) DNA molecules attached to an AFM tip and a gold surface were overstretched, and the mechanical stability of the DNA double helix was investigated. In lambda-phage DNA the previously reported B-S transition at 65 piconewtons (pN) is followed by a second conformational transition, during which the DNA double helix melts into two single strands. Unlike the B-S transition, the melting transition exhibits a pronounced force-loading-rate dependence and a marked hysteresis, characteristic of a nonequilibrium conformational transition. The kinetics of force-induced melting of the double helix, its reannealing kinetics, as well as the influence of ionic strength, temperature, and DNA sequence on the mechanical stability of the double helix were investigated. As expected, the DNA double helix is considerably destabilized under low salt buffer conditions (相似文献   

18.
A T-jump investigation of the binding of Cyan40 [3-methyl-2-(1,2,6-trimethyl-4(1H)pyridinylidenmethyl)-benzothiazolium ion] and CCyan2 [3-methyl-2-[2-methyl-3-(3-methyl-2(3H)-benzothiazolylidene)-1-propenyl]-benzothiazolium ion] with poly(dA-dT) x poly(dA-dT) and poly(dG-dC) x poly(dG-dC) is performed at I = 0.1M (NaCl), 25 degrees C and pH 7. Two kinetic effects are observed for both systems. The binding process is discussed in terms of the sequence D + P <==> P,D <==> PD(I) <==> PD(II), which leads first to fast formation of a precursor complex P,D and then to a partially intercalated complex PD(I) which converts to the fully intercalate complex PD(II). Concerning CCyan2 the rate parameters depend on the polymer nature and their analysis shows that in the case of poly(dG-dC) x poly(dG-dC) the most stable bound form is the fully intercalated complex PD(II), whereas in the case of poly(dA-dT) x poly(dA-dT) the partially intercalated complex PD(I) is the most stable species. Concerning Cyan40, the rate parameters remain unchanged on going from A-T to G-C indicating that this dye is unselective.  相似文献   

19.

Background

Base dependent binding of the cytotoxic alkaloid harmalol to four synthetic polynucleotides, poly(dA).poly(dT), poly(dA-dT).poly(dA-dT), poly(dG).poly(dC) and poly(dG-dC).poly(dG-dC) was examined by various photophysical and calorimetric studies, and molecular docking.

Methodology/Principal Findings

Binding data obtained from absorbance according to neighbor exclusion model indicated that the binding constant decreased in the order poly(dG-dC).poly(dG-dC)>poly(dA-dT).poly(dA-dT)>poly(dA).poly(dT)>poly(dG).poly(dC). The same trend was shown by the competition dialysis, change in fluorescence steady state intensity, stabilization against thermal denaturation, increase in the specific viscosity and perturbations in circular dichroism spectra. Among the polynucleotides, poly(dA).poly(dT) and poly(dG).poly(dC) showed positive cooperativity where as poly(dG-dC).poly(dG-dC) and poly(dA-dT).poly(dA-dT) showed non cooperative binding. Isothermal calorimetric data on the other hand showed enthalpy driven exothermic binding with a hydrophobic contribution to the binding Gibbs energy with poly(dG-dC).poly(dG-dC), and poly(dA-dT).poly(dA-dT) where as harmalol with poly(dA).poly(dT) showed entropy driven endothermic binding and with poly(dG).poly(dC) it was reported to be entropy driven exothermic binding. The study also tested the in vitro chemotherapeutic potential of harmalol in HeLa, MDA-MB-231, A549, and HepG2 cell line by MTT assay.

Conclusions/Significance

Studies unequivocally established that harmalol binds strongly with hetero GC polymer by mechanism of intercalation where the alkaloid resists complete overlap to the DNA base pairs inside the intercalation cavity and showed maximum cytotoxicity on HepG2 with IC50 value of 14 µM. The results contribute to the understanding of binding, specificity, energetic, cytotoxicity and docking of harmalol-DNA complexation that will guide synthetic efforts of medicinal chemists for developing better therapeutic agents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号