首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Pituitary cation-sensitive neutral endopeptidase splits peptide bonds on the carboxyl side of hydrophobic amino acids (chymotrypsin-like activity), basic amino acids (trypsin-like activity), and acidic amino acids (peptidyl-glutamyl-peptide bond hydrolyzing activity). All three activities copurify, are inhibited by cations, and reside in a single high-molecular weight soluble protein complex. Treatment with sodium dodecylsulfate and 2-mercaptoethanol dissociates this complex into five low-molecular weight components. Incubation of the complex at 37 degrees C in buffers of high ionic strength produces aggregation and progressive loss of all three activities. Experiments with inhibitors and activators indicate that the three activities are catalyzed by distinct components. Benzyloxycarbonyl-glycyl-glycyl-leucinal, a peptide aldehyde transition state analog of the substrate used to measure the chymotrypsin-like activity, exclusively inhibits that activity (Ki = 2.5 x 10(-4) M), while markedly activating the trypsin-like activity. The trypsin-like activity is inhibited by leupeptin (Ki = 1.2 x 10(-6) M) and by sulfhydryl blocking agents, and activated by thiols, suggesting that this activity is due to a thiol protease. The peptidylglutamyl-peptide hydrolyzing activity is activated almost 10-fold by low concentrations of sodium dodecylsulfate, inhibited by bovine serum albumin, and suppressed at high enzyme concentrations, suggesting that this component readily interacts with other proteins, including the complex itself. The results indicate that cation-sensitive neutral endopeptidase is a multicatalytic protease complex whose distinct proteolytic activities are associated with separate components of this high-molecular weight protein.  相似文献   

2.
1. Lobster muscles contain a latent multicatalytic proteinase; heating at 60 degrees C for 1-2 min converts the latent form to a heat-activated form with enhanced proteolytic activity. Both forms have three endopeptidase activities, which are classified as the trypsin-like, chymotrypsin-like, and peptidylglutamylpeptide bond hydrolyzing activities. 2. Sulfhydryl reagents (mersalyl acid, N-ethylmaleimide, hemin, iodoacetamide, and p-chloromercurisulfonic acid), benzamidine, and chloromethyl ketones inhibited all three activities of the heat-activated form. Leupeptin and antipain inhibited only the trypsin-like activity, while the chymotrypsin-like activity was the most sensitive to diisopropyl fluorophosphate, phenylmethanesulfonyl fluoride, aprotinin, and soybean trypsin inhibitor. Pepstatin and L-trans-epoxysuccinylpeptides had little effect on the peptidase activities. 3. Sodium dodecyl sulfate and oleic acid preferentially activated the peptidylglutamyl-peptide hydrolyzing activity of the latent form, whereas N-ethylmaleimide stimulated both the trypsin-like and peptidylglutamyl-peptide hydrolases. These results suggest that the lobster enzyme is an atypical serine proteinase.  相似文献   

3.
The multicatalytic proteinase complex (MPC) exhibits three proteolytic activities designated as trypsin-like, chymotrypsin-like, and peptidylglutamyl-peptide hydrolyzing (PGPHA). Evidence based on inhibitor and specificity studies indicates that each of the three activities is associated with a different component of the complex. Inactivation of the three activities by the serine proteinase inhibitor, 3,4-dichloroisocoumarin (DCI), reveals the presence of an additional DCI-resistant component that cleaves natural peptides including neurotensin, dynorphin, angiotensin II, the oxidized B-chain of insulin, and also proinsulin at a rate greater than that of the native uninhibited complex. Examination of the reaction products of neurotensin (NT) and proinsulin degradation showed cleavage of the Ile12-Leu13 bond in NT and cleavage of the Leu44-Ala45 and Val39-Gly40 bonds within the connecting peptide (C-chain) of bovine proinsulin, suggesting preferential cleavage of bonds on the carboxyl side of branched chain amino acids. Although resistant to inhibition by DCI, the component was sensitive to inhibition by the isocoumarin derivatives, 7-amino-4-chloro-3-[3-(isothioureido)propoxy]isocoumarin and 4-chloro-7-guanidino-3-(2-phenylethoxy)isocoumarin. Degradation of NT was activated by leupeptin, chymostatin, and antipain indicating that binding of these aldehyde inhibitors at one site can stimulate proteolytic activity at a different site of the complex. The DCI-resistant component seems to constitute a major component of the complex active in degradation of natural peptides and proteins.  相似文献   

4.
The multicatalytic proteinase complex (MPC), also referred to as proteasome, is a large molecular mass intracellular particle (approximately 700 kDa), which exhibits three distinct proteolytic activities designated as chymotrypsin-like, trypsin-like, and peptidylglutamyl-peptide hydrolyzing (PGPH), all sensitive to inhibition by 3,4-dichloroisocoumarin (DCI). The presence of a component resistant to inhibition by DCI with an apparent preference toward bonds on the carboxyl side of branched-chain amino acids has also been recently established. Peptide aldehydes and peptide alpha-keto esters containing a hydrophobic residue in the P1 position have been tested as potential inhibitors of the chymotrypsin-like activity. Three peptide aldehydes (benzyloxycarbonyl)-Leu-Leu-phenylalaninal (Z-LLF-CHO), N-acetyl-Leu-Leu-norleucinal (Ac-LLnL-CHO), and N-acetyl-Leu-Leu-methioninal (Ac-LLM-CHO) were found to be slow-binding reversible inhibitors with Ki values of 0.46, 5.7, and 33 microM, respectively. The simplest kinetic model for inhibition is consistent with a mechanism involving a slow and reversible association of the enzyme with the inhibitor to form a EI complex. The aldehyde inhibitors also inhibited the trypsin-like and PGPH activities of the complex albeit with much higher Ki values than those for chymotrypsin-like activity. Z-LLF-CHO, the most selective of the three aldehydes, did not inhibit the PGPH activity at concentrations of up to 200 microM and inhibited the trypsin-like activity with a Ki approximately 2 orders of magnitude higher than that for the chymotrypsin-like activity. The activity of the DCI-resistant component was not affected by Z-LLF-CHO.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The multicatalytic proteinase. Multiple proteolytic activities   总被引:9,自引:0,他引:9  
The multicatalytic proteinase is a high molecular weight nonlysosomal proteinase which has been isolated from a variety of mammalian tissues and has been suggested to contain several distinct catalytic sites. The enzyme degrades protein and peptide substrates and can cleave bonds on the carboxyl side of basic, hydrophobic, and acidic amino acid residues. The three types of activity have been referred to as trypsin-like, chymotrypsin-like, and peptidyl-glutamyl peptide bond hydrolyzing activities, respectively. All of these proteolytic activities are associated with a single band on native polyacrylamide gels. The pH optimum of the proteinase (pH 7.5-9.5) depends on the substrate. Using synthetic peptide substrates it was possible to demonstrate two distinct activities. Trypsin-like activity is inhibited at concentrations of the peptide aldehyde inhibitors leupeptin and antipain or of N-ethylmaleimide which have little or no effect on chymotrypsin-like activity. Results of mixed-substrate experiments also suggest that there are at least two distinct types of catalytic sites. All proteolytic activity is lost following dissociation by urea or by acid treatment. Polyclonal antibodies raised against the intact multicatalytic proteinase precipitate the complex but have little effect on its proteolytic activities.  相似文献   

6.
The effect of N-acetylimidazole, a mild acetylating reagent, on the catalytic activities and subunit structure of the bovine pituitary multicatalytic proteinase complex (MPC) was studied. The trypsin-like activity (cleavage of Cbz-D-Ala-Leu-Arg-2-naphthylamide) and the peptidylglutamyl-peptide bond hydrolyzing (PGP) activity (cleavage of Cbz-Leu-Leu-Glu-2-naphthylamide) of MPC were rapidly inactivated by N-acetylimidazole, whereas the chymotrypsin-like activity (cleavage of Cbz-Gly-Gly-Leu-p-nitroanilide) was inactivated slowly. However, the hydrolysis of casein was markedly stimulated. Hydrolysis of casein by the acetylated enzyme generated a stable intermediate (21 kDa) which could be further degraded by native MPC. Treatment of acetylated MPC with hydroxylamine reversed the changes in trypsin-like and caseinolytic activities but did not restore the PGP activity. N-Acetylimidazole did not dissociate MPC but altered its migration on nondissociating gels presumably by acetylation of epsilon-amino groups of lysine residues. Hydroxylamine did not alter the gel electrophoretic appearance of the acetylated enzyme. These results indicate that acetylation of thiol or tyrosyl groups changes the trypsin-like and caseinolytic activities, and that amino group acetylation inhibits the PGP activity. Degradation of casein by MPC appears to be a sequential process with initial cleavage catalyzed by a component distinct from the chymotrypsin-like, trypsin-like, and PGP activities. The latter three components likely participate in the secondary proteolysis of the generated intermediates.  相似文献   

7.
A multicatalytic proteinase (MCP) purified from lobster claw and abdominal muscles degrades a variety of peptide and protein substrates. The enzyme is activated by low concentrations (0.03%) of sodium dodecyl sulfate (SDS) and brief (1 min) heating at 60 degrees C. The lobster MCP can assume three stable and functionally distinct states in vitro; these are classified as the basal, heat-activated, and SDS-activated forms. The basal MCP possessed high trypsin-like peptidase activity and low chymotrypsin-like peptidase, peptidylglutamyl-peptide hydrolase, and caseinolytic activities; incubation of the basal form with SDS stimulated the peptidylglutamyl-hydrolase activity about 30-fold and inhibited the other three activities 80% to 100%. Heating the basal form stimulated caseinolytic activity about 6-fold with little effect on the peptidase activities. The heat-activated enzyme also degraded myosin, tropomyosin, troponin, and actin depolymerizing factor; alpha-actinin was resistant to proteolysis. Incubation of the heat-activated MCP with SDS inhibited the trypsin-like, chymotrypsin-like, and proteinase activities 95 to 100% and stimulated the peptidylglutamyl-hydrolase activity about 16-fold. Incubation of myosin with either the basal or the heat-activated forms in the presence of SDS generated identical proteolytic fragments of the myosin heavy chain, suggesting that SDS induced a third form that can be produced from either the basal or the heat-activated forms. The heat-activated form produced proteolytic fragments of myosin heavy chain different from those generated by either basal or heat-activated enzymes in the presence of SDS. Furthermore, 100 mM KCl stimulated the caseinolytic activity of the heat-activated form 24% and inhibited the trypsin-like and peptidylglutamyl-hydrolase activities 56 and 20%, respectively. These results, though indirect, suggest that heating induced a proteinase activity that was distinct from the three peptidase activities. Activation of the basal form with SDS was reversible, since precipitation of dodecyl sulfate with 100 mM KCl restored trypsin-like activity and inhibited peptidylglutamyl-hydrolase activity. In contrast, removal of dodecyl sulfate from the SDS-activated form that was derived from the heat-activated MCP induced its conversion to the basal form. Thus, although heat-activation was irreversible, the heat-activated form was converted back to the basal form via the SDS-activated form.  相似文献   

8.
M Orlowski 《Biochemistry》2001,40(50):15318-15326
Two distinct activities cleaving bonds after hydrophobic amino acids have been identified in the bovine pituitary 20 S proteasome. One, expressed by the X subunit, that cleaves bonds after aromatic and branched chain amino acids was designated as chymotrypsin-like (ChT-L).(1) The second, expressed by the Y subunit, that cleaves bonds after acidic amino acids was designated as peptidylglutamyl-peptide hydrolyzing (PGPH) but also cleaves bonds after branched chain amino acids. Low micromolar concentrations of the arginine-rich histone H3 (H3) are shown to induce changes in the specificity of the proteasome by selectively activating cleavages after branched chain and acidic amino acids while inhibiting cleavage of peptidyl-arylamide bonds in synthetic substrates. H3 activates 15-fold cleavage after leucine but not phenylalanine residues in model synthetic substrates. The activation is associated with a decrease in K(m) and an increase in V(max), suggesting positive allosteric activation. H3 activates more than 60-fold degradation of the oxidized B-chain of insulin, by cleaving mainly bonds after acidic and branched chain amino acids, and accelerates the degradation of casein and lysozyme, the latter in the presence of dithiothreitol. The degradation of lysozyme in the presence of H3 generates fragments that differ from those in its absence, indicating H3-induced specificity changes. H3 inhibits cleavage of the Trp3-Ser4 and Tyr5-Gly6 bonds in gonadotropin releasing hormone, bonds cleaved by the ChT-L activity in the absence of H3. The results suggest H3-selective activation of the Y subunit and specificity changes that could potentially affect proteasomal function in the nuclear compartment.  相似文献   

9.
The finding that the activity of the multicatalytic proteinase complex (MPC) is greatly activated by low concentrations of sodium dodecyl sulfate (SDS) and fatty acids led to the proposal that the proteolytic activity of the complex is latent and that activation is needed for expression of full activity. Kinetic examination of the nature of the latency with Cbz-Leu-Leu-Glu-2-naphthylamide, a substrate cleaved by the peptidylglutamyl-peptide hydrolyzing activity (PGPH activity) of the complex, showed that plots of velocity versus substrate concentration yield sigmoidal curves, implying the presence of two or more substrate binding sites and the presence of cooperative interactions between the sites. Hill plots of log [v/(Vmax-v)] versus log [S] gave slopes with a Hill coefficient of 2.2-2.4, suggesting that more than two subunits are expressing the PGPH activity. At saturating substrate concentrations, SDS and lauric acid exposed a masked component of PGPH activity that was about equal in magnitude to the overt activity measured in the absence of these detergents, showing that under the latter conditions only about half of the enzyme activity is expressed. Activation by SDS and lauric acid was greater at low than at high substrate concentrations and was associated with a shift of the substrate concentration at half-Vmax (apparent Km) toward lower values. The decrease in the apparent Km in the presence of SDS (but not in the presence of lauric acid) was associated with a decrease in cooperativity. The presence of at least two distinct PGPH activity components with different reactivities was also indicated by the finding of two distinct inactivation rate constants in reactions with 3,4-dichloroisocoumarin, an irreversible inhibitor of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
H Djaballah  A J Rivett 《Biochemistry》1992,31(16):4133-4141
The multicatalytic proteinase (MCP) complex or proteasome is a major nonlysosomal proteinase of eukaryotic cells. The proteinase can cleave peptide bonds on the carboxyl side of hydrophobic, basic, or acidic amino acid residues. These activities have been referred to as "chymotrypsin-like", "trypsin-like", and "peptidylglutamyl-peptide hydrolase" activities, respectively, and have been shown to be catalyzed at distinct sites. The latter activity is often assayed with the synthetic peptide substrate Z-Leu-Leu-Glu-beta-naphthylamide (LLE-NA). N-tBoc-Ala-Ala-Asp-SBzl is also a substrate for the rat liver MCP, suggesting a broader specificity for cleavage on the carboxyl side of acidic residues than the peptidylglutamyl-peptide hydrolase activity previously reported. The pH optimum is in the range of pH 7.0-7.5. Studies of the dependence of velocity on LLE-NA concentration show (a) that there is a high-affinity site (LLE1) which obeys Michaelis-Menten kinetics with a Km value of approximately 100 microM and (b) that at higher substrate concentrations (LLE2) the curve is sigmoidal, suggesting either allosteric activation of the proteinase at a second site or the involvement of multiple catalytic sites which display positive cooperativity. Activity at the high-affinity site (LLE1) can be distinguished from that of the activity of the LLE2 component by the effect of inhibitors, divalent metal ions, and KCl, as well as by its response to heat treatment. The addition of 1 mM MnCl2 stimulates both LLE1 and LLE2 activities and also permits saturation of MCP with substrate at concentrations of LLE-NA below the solubility limit of this peptide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
C Cardozo  C Michaud  M Orlowski 《Biochemistry》1999,38(30):9768-9777
Two catalytic components of the multicatalytic proteinase complex (MPC, proteasome) designated as chymotrypsin-like (ChT-L) and branched chain amino acid preferring (BrAAP) cleave bonds after hydrophobic amino acids. The possible involvement of the ChT-L and peptidylglutamyl-peptide hydrolyzing (PGPH) activities in the cleavage of bonds attributed to the BrAAP component was examined. Several inhibitors of the ChT-L activity containing a phenylalaninal group did not affect the BrAAP activity at concentrations that were more than 150 times higher than their K(i) values for the ChT-L activity. Concentrations of lactacystin that inactivated more than 90% of the ChT-L activity had no effect on the BrAAP activity. Concentrations of 3,4-dichloroisocoumarin (DCI) that inactivated the ChT-L activity activated by up to 10-fold the BrAAP activity toward synthetic substrates and by more than 2-fold the degradation of the insulin B chain in a reaction not inhibited by Z-LGF-CHO, a selective inhibitor of the ChT-L activity. These findings are incompatible with any significant involvement of the ChT-L activity in the cleavage of BrAAP substrates. Both the native and DCI-treated MPC cleaved the insulin B chain mainly after acidic residues in a reaction inhibited by Z-GPFL-CHO, an inhibitor of the BrAAP and PGPH activities. DCI exposure did not result in acylation of the N-terminal threonine in the active site of the Y subunit. These results suggest involvement of the PGPH activity in the cleavage of BrAAP substrates, but this conclusion is incompatible with DCI activation of the BrAAP activity and inactivation of the PGPH activity, and with the finding that proteins inhibiting the PGPH activity had no effect on the BrAAP activity. Rationalization of these contradictions is discussed.  相似文献   

12.
We present here a detailed study of the effect of detergents on the three peptidase activities (hydrolysis of the LLVY, ARR, and LLE peptides) of the purified multicatalytic proteinase from rat liver. At Triton X-100 and sodium dodecyl sulfate (SDS) concentrations of 0.1%, all three peptidase activities are inhibited. Lower concentrations of the two detergents (0.01%) do not affect the hydrolysis of the ARR peptide, whereas they behave differently on the hydrolysis of the LLVY and LLE peptides. Triton X-100 inhibits and SDS strongly activates LLVY peptide hydrolysis by decreasing and increasing Vmax, respectively. In the absence of detergents, the saturation curve for the LLE peptide can be analyzed as the result of two components, one showing cooperative (nH = 1.6) with higher affinity (S0.5 = 60 microM) and lower Vmax than a second, noncooperative component (Km = 320 microM). SDS (0.01%) activates LLE peptide hydrolysis by suppressing cooperativity, slightly increasing Vmax, and decreasing the half-saturation concentration (Km = 30 microM) of the enzyme. Triton X-100 (0.01%) also suppresses the cooperativity and decreases the half-saturation concentration (Km = 25 microM) for the LLE peptide; in contrast, it reduces Vmax by inhibition of the low affinity, high Vmax component observed in the absence of detergents. Based on these observations, it can be concluded that both detergents behave like allosteric activators of peptidylglutamyl-peptide hydrolyzing activity and that the multicatalytic proteinase has at least three different classes of active sites: two independent noncooperative sites that catalyze the hydrolysis of trypsin and chymotrypsin-like substrates and one class for peptidylglutamyl-peptide hydrolysis having two components: one cooperative (two or more sites) and one noncooperative.  相似文献   

13.
Hemorrhagic toxin f (HT-f) was isolated from Crotalus atrox (Western Diamondback Rattlesnake) venom by a five-step purification procedure. Homogeneity was established by the formation of a single band in acrylamide gel electrophoresis, isoelectric focusing, and sodium dodecyl sulfate (SDS)-electrophoresis. HT-f has a molecular weight of 64,000 and contains 572 amino acid residues. It contains 1 mol of zinc per mol of protein. Zinc is essential for both hemorrhagic and proteolytic activities. HT-f possesses proteolytic activity hydrolyzing the Val-Asn, Gln-His, Leu-Cys, His-Leu, Ala-Leu, and Tyr-Leu bonds of oxidized insulin B chain. HT-f did not coagulate fibrinogen to fibrin, yet it did hydrolyze the gamma chain of fibrinogen without affecting either the A alpha or B beta chains. This is the first time that a hemorrhagic toxin was shown to have fibrinogenase activity. HT-f was shown to differ immunologically from other hemorrhagic toxins such as HT-a and HT-c. HT-f also possesses lethal toxicity. When zinc was removed the apo-HT-f lost its lethal toxicity. HT-f produced not only local hemorrhage in the skin and muscle, but also produced systemic hemorrhage in internal organs such as the intestine, kidney, lung, heart, and liver.  相似文献   

14.
《Insect Biochemistry》1990,20(5):467-477
Manduca sexta pharate pupal molting fluid contains more than 10 proteolytic enzymes that differ in relative mobility during electrophoresis in polyacrylamide gels containing sodium dodecyl sulfate and gelatin. The major gelatin digesting enzyme was an endoprotease with an apparent molecular weight of 100 kDa. Gel filtration on a Sephacryl S-300 column resolved another endoprotease of similar size that digests azocoll and [3H]casein. In addition we found an aminopeptidase-like enzyme (MWapp 500 kDa) and at least three carboxypeptidase-like enzymes (MWapp 10–60 kDa). Use of pseudosubstrates and inhibitors suggested the presence of both trypsin-like and chymotrypsin-like enzymes with the former activity approx. 10-fold greater than the latter. However, none of the proteolytic enzymes were substantially inhibited by diisopropylphosphorofluoridate or phenylmethylsulfonyl fluoride which are poteint inhibitors of trypsin and chymotrypsin. No carboxyl or sulfhydryl proteases were detected. The enzymes were most active in the neutral to alkaline pH range, but they were relatively unstable during storage which precluded their purification to homogeneity. Proteolysis of Manduca cuticular protein appears to involve a rather complex and unique mixture of endo- and exo-cleaving proteolytic enzymes.  相似文献   

15.
The proteasome (multicatalytic protease complex), a high molecular weight protein complex, has been purified from spinach leaves by successive chromatography on DEAE-cellulose, Bio-Gel A-1.5m, DEAE-TOYOPEARL 650C, and DEAE-5PW. The molecular mass was estimated to be 850 kDa by gel filtration. Polyacrylamide gel electrophoresis of the proteasome gave a single protein band under nondenaturing conditions and at least 10 bands in the range of 21-32 kDa in the presence of sodium dodecyl sulfate. By electron microscopy after negative staining with uranyl acetate, the proteasome from spinach appeared as symmetrical ring-shaped particles. The substrate specificity of proteasomes indicates that they contain at least three types of activity, namely, chymotrypsin-like, Staphylococcus aureus V8 protease-like, and trypsin-like activities. The former two activities were enhanced by poly-L-lysine or sodium dodecyl sulfate. Moreover, we examined the immunological reactivities of proteasomes from various eukaryotes. As a result, cross-immunoreactivities of some subunits were observed. These properties of the proteasome are similar to those of proteasomes isolated from various other eukaryotic sources.  相似文献   

16.
A strong proteolytic activity is unmasked and solubilized when E. coli outer membrane fragments are preincubated with 0.083% sodium dodecyl sulfate. This proteolytic activity cleaves αS1 casein into the same degradation products as protease IV, a recently described protease of E.coli located in the outer membrane (Ph. Régnier, preceding paper), it is concluded that sodium dodecyl sulfate solubilizes the same protease. Protease IV has been purified 11,200 fold, probably to homogenetiy, by sodium dodecyl sulfate polyacrylamide gel electrophoresis followed by elution of the protein from gel slices. The purified enzyme is fully active, its molecular weight, determined from its migration in denaturating gels is 23,500. αS1 casein is cleaved by protease IV into two large polypeptides which are not further degraded and some small peptides of about 5,000 daltons. The production of discrete polypeptide species suggests that protease IV is an endoproteolytic enzyme.  相似文献   

17.
Restoration of blood flow to ischemic myocardial tissue results in an increase in the production of oxygen radicals. Highly reactive, free radical species have the potential to damage cellular components. Clearly, maintenance of cellular viability is dependent, in part, on the removal of altered protein. The proteasome is a major intracellular proteolytic system which degrades oxidized and ubiquitinated forms of protein. Utilizing an in vivo rat model, we demonstrate that coronary occlusion/reperfusion resulted in declines in chymotrypsin-like, peptidylglutamyl-peptide hydrolase, and trypsin-like activities of the proteasome as assayed in cytosolic extracts. Analysis of purified 20 S proteasome revealed that declines in peptidase activities were accompanied by oxidative modification of the protein. We provide conclusive evidence that, upon coronary occlusion/reperfusion, the lipid peroxidation product 4-hydroxy-2-nonenal selectively modifies 20 S proteasome alpha-like subunits iota, C3, and an isoform of XAPC7. Occlusion/reperfusion-induced declines in trypsin-like activity were largely preserved upon proteasome purification. In contrast, loss in chymotrypsin-like and peptidylglutamyl-peptide hydrolase activities observed in cytosolic extracts were not evident upon purification. Thus, decreases in proteasome activity are likely due to both direct oxidative modification of the enzyme and inhibition of fluorogenic peptide hydrolysis by endogenous cytosolic inhibitory protein(s) and/or substrate(s). Along with inhibition of the proteasome, increases in cytosolic levels of oxidized and ubiquitinated protein(s) were observed. Taken together, our findings provide insight into potential mechanisms of coronary occlusion/reperfusion-induced proteasome inactivation and cellular consequences of these events.  相似文献   

18.
Lifelong caloric restriction (CR) reduces the rate of mitochondrial oxidant production and the accumulation of oxidized proteins and prevents some of the age-associated decline in 20S proteasome activity. However, few studies have investigated how rapidly the beneficial effects of CR take place. We investigated whether 2 mo of CR in 6-mo-old rats would be of sufficient duration to elicit these beneficial changes. Mitochondrial oxidant production was significantly diminished in the CR rats compared with the ad libitum-fed animals. Short-term CR also caused a significant decrease in mitochondrial superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities, but there were no differences in cytosolic SOD and GPX activities, whereas mitochondrial and cytosolic catalase (CAT) activity was increased with CR. However, protein carbonyl content was significantly elevated in both the mitochondrial and cytosolic fractions from CR rats. Of the three major 20S proteasome activities (chymotrypsin-like, trypsin-like, and peptidylglutamyl-peptide hydrolase), the peptidylglutamyl-peptide hydrolase activity was significantly elevated in the CR animals, possibly because of the fact that there were more oxidized proteins to be degraded. Although fewer oxidants were produced in the CR animals, it is possible that the ability to scavenge oxidants was transiently suppressed because of the reduction in mitochondrial antioxidant enzyme activities, which may explain the observed increases in carbonyl content.  相似文献   

19.
W K?ller  P E Kolattukudy 《Biochemistry》1982,21(13):3083-3090
Cutinase from Fusarium solani f. sp. pisi was inhibited by diisopropyl fluorophosphate and phenylboronic acid, indicating the involvement of an active serine residue in enzyme catalysis. Quantitation of the number of phosphorylated serines showed that modification of one residue resulted in complete loss of enzyme activity. One essential histidine residue was modified with diethyl pyrocarbonate. This residue was buried in native cutinase and became accessible to chemical modification only after unfolding of the enzyme by sodium dodecyl sulfate. The modification of carboxyl groups with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide in the absence of sodium dodecyl sulfate did not result in inactivation of the enzyme; however, such modifications in the presence of sodium dodecyl sulfate resulted in complete loss of enzyme activity. The number of residues modified was determined by incorporation of [14C]glycine ethyl ester. Modification of cutinase in the absence of sodium dodecyl sulfate and subsequent unfolding of the enzyme with detergent in the presence of radioactive glycine ester showed that one buried carboxyl group per molecule of cutinase resulted in complete inactivation of the enzyme. Three additional peripheral carboxyl groups were modified in the presence of sodium dodecyl sulfate. Carbethoxylation of the essential histidine and subsequent incubation with the esterase substrate p-nitrophenyl [1-14C]acetate revealed that carbethoxycutinase was about 10(5) times less active than the untreated enzyme. The acyl-enzyme intermediate was stabilized under these conditions and was isolated by gel permeation chromatography. The results of the present chemical modification study indicate that catalysis by cutinase involves the catalytic triad and an acyl-enzyme intermediate, both characteristic for serine proteases.  相似文献   

20.
A sialic acid-binding lectin, carcinoscorpin, has been purified to apparent homogeneity in 40% yield from the Indian horseshoe carb, Carcinoscorpius rotunda cauda. This glycoprotein lectin of molecular weight 420,000 was composed of two non-identical subunits of molecular weights 27,000 and 28,000 as determined by gel electrophoresis in the presence of sodium dodecyl sulfate. The hemagglutination activity of the lectin was susceptible to guanidine-HCl; modification of tyrosyl and tryptophanyl residues also inhibited the activity although alkylation of the -SH group, reduction of disulfide bonds or modification of amino and carboxyl groups were without any effect. The monomeric form of the lectin produced by succinylation of native protein was inactive in binding to sialoglycoconjugates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号