首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Plant pathogens usually originate and diversify in geographical regions where hosts and pathogens co-evolve. Erysiphe necator, the causal agent of grape powdery mildew, is a destructive pathogen of grapevines worldwide. Although Eastern US is considered the centre of origin and diversity of E. necator, previous reports on resistant native wild and domesticated Asian grapevines suggest Asia as another possible origin of the pathogen. By using multi-locus sequencing, microsatellites and a novel application of amplicon sequencing (AmpSeq), we show that the population of E. necator in Israel is composed of three genetic groups: Groups A and B that are common worldwide, and a new group IL, which is genetically differentiated from any known group in Europe and Eastern US. Group IL showed distinguished ecological characteristics: it was dominant on wild and traditional vines (95%); its abundance increased along the season; and was more aggressive than A and B isolates on both wild and domesticated vines. The low genetic diversity within group IL suggests that it has invaded Israel from another origin. Therefore, we suggest that the Israeli E. necator population was founded by at least two invasions, of which one could be from a non-East American source, possibly from Asian origin.  相似文献   

2.
Acidovorax citrulli can be divided into two genetic groups: group I and group II based primarily on pulsed‐field gel electrophoresis (PFGE) and multilocus sequence classification (MLST). To distinguish more rapidly between strains of the two groups, a pair of specific primer for specific polymerase chain reaction (PCR) that can identify group II strains was designed based on the pilL gene of a group II strain, AAC00‐1. PCR results showed that a 332‐bp band was generated for 51 of 52 group II strains whereas only three of 93 group I strains were positive, largely consisting with previous studies of A. citrulli classification. Results of PCR showed the primers were able to detect group II strains of A. citrulli and distinguish between strains of groups I and II rapidly and accurately.  相似文献   

3.
Aims: In this study, three facile repetitive‐sequence PCR (rep‐PCR) techniques have been compared with the pulsed‐field gel electrophoresis (PFGE) method for differentiating the genetic relatedness of clinical Stenotrophomonas maltophilia isolates. Methods and Results: The dendrograms of 20 S. maltophilia isolates were constructed based on the data obtained from PFGE and three PCR‐based methods, i.e. enterobacterial repetitive intergenic consensus‐PCR (ERIC‐PCR), BOX‐PCR and repetitive extragenic palindromic‐PCR (REP‐PCR). When compared with PFGE, ERIC‐PCR displayed a much lower discriminatory power, whereas BOX‐PCR and REP‐PCR had a comparable discriminatory power for close genetic‐related isolates. Conclusion: BOX‐PCR and REP‐PCR can be convenient and effective methods for evaluating the close genetic relatedness of clinical S. maltophilia isolates. Significance and Impact of the Study: A rapid method for determining S. maltophilia’s close genetic relatedness provides a convenient tool for understanding the epidemiology of S. maltophilia.  相似文献   

4.
Microsatellites are powerful markers to infer population genetic parameters. We used 10 microsatellite loci to characterize the genetic diversity and structure of 79 samples of Sclerotinia sclerotiorum isolated from four Brazilian dry bean populations and observed that eight of them were polymorphic within populations. We identified 102 different haplotypes ranging from 6 to 18 per locus. Analyses based on genetic diversity and fixation indices indicated variability among and within populations of 28.79% (FST = 28793) and 71.21%, respectively. To examine genetic relatedness among S. sclerotiorum isolates, we used internal spacer (ITS1‐5.8S‐ITS2) restriction fragment length polymorphism (PCR‐RFLP) and sequencing analysis. PCR‐RFLP analysis of these regions failed to show any genetic differences among isolates. However, we detected variability within the sequence, which does not support the hypothesis of clonal populations within each population. High variability within and among populations may indicate the introduction of new genotypes in the areas analysed, in addition to the occurrence of clonal and sexual reproduction in the populations of S. sclerotiorum in the Brazilian Cerrado.  相似文献   

5.
The molecular epidemiology and carbapenem resistance mechanisms of clinical isolates of Acinetobacter baumannii obtained from a south Indian tertiary care hospital were investigated by repetitive extragenic palindromic sequence PCR (REP‐PCR) and multi‐locus sequence typing (MLST). Analysis of resistant determinants was achieved by PCR screening for the presence of genes encoding OXA‐carbapenemases, metallo‐β‐lactamases (MBLs) and efflux pumps. REP‐PCR generated around eight clusters of high heterogeneity; of these, two major clusters (I and V) appeared to be clonal in origin. Analysis of representative isolates from different clusters by MLST revealed that most of the isolates belonged to sequence type 103 of CC103B. Second most prevalent ST belonged to clonal complex (CC) 92B which is also referred to as international clone II. Most of the isolates were multi‐drug resistant, being susceptible only to polymyxin‐B and newer quinolones. Class D β‐lactamases such as blaOXA‐51‐like (100%), blaOXA‐23‐like (56.8%) and blaOXA‐24‐like (14.8%) were found to be predominant, followed by a class B β‐lactamase, namely blaIMP‐1 (40.7%); none of the isolates had blaOXA‐58 like, blaNDM‐1 or blaSIM‐1. Genes of efflux‐pump adeABC were predominant, most of isolates being biofilm producers that were PCR‐positive for autoinducer synthase gene (>94%). Carbapenem non‐susceptible isolates were highly diverse and present throughout the hospital irrespective of type of ward or intensive care unit. Although previous reports have documented diverse resistant mechanisms in A. baumannii, production of MBL and OXA‐type of carbapenamases were found to be the predominant mechanism(s) of carbapenem resistance identified in strains isolated from Southern India.  相似文献   

6.
Aims: This study was performed to describe the epidemiological traits of ceftazidime‐resistant Acinetobacter baumannii clinical isolates from Korea. Methods and Results: Antimicrobial susceptibilities were determined by disk diffusion assay. PCR experiments were performed to detect genes encoding extended‐spectrum β‐lactamases and metallo‐β‐lactamases. Detection of ISAba1 upstream of the blaADC gene was also performed by PCR amplification. The genetic organization of the blaPER‐1 gene was investigated by PCR mapping and sequencing of the regions surrounding the gene. Multilocus sequence typing was performed using seven housekeeping genes. A. baumannii isolates of clonal complex (CC) 92 exhibited a higher resistance rate (286/289, 99%) against ceftazidime compared to A. baumannii isolates of non‐CC92 (7/87, 8%). Amongst 286 ceftazidime‐resistant isolates of CC92, 100 (35%) isolates carried the blaPER‐1 gene, while none of the 87 isolates of non‐CC92 carried the gene. The blaADC gene associated with an ISAba1 element was detected in 98% (281/286) of ceftazidime‐resistant isolates of CC92 and in all seven ceftazidime‐resistant isolates of non‐CC92. The blaPER‐1 gene was located on a transposon, Tn1213 (ISPa12blaPER‐1‐Δgst‐ISPa13), in 95 isolates and on a complex class 1 integron (orf513blaPER‐1‐putative ABC transporter gene) in five isolates. Southern blot experiments confirmed the chromosomal location of the blaPER‐1 gene. Conclusions: Acinetobacter baumannii CC92 which has acquired ceftazidime resistance by the production of PER‐1 extended‐spectrum β‐lactamases and/or the overproduction of Acinetobacter‐derived cephalosporinase is widely disseminated in Korea. Significance and Impact of the Study: This study shows the mechanisms of acquiring ceftazidime resistance in A. baumannii and the epidemiological traits of ceftazidime‐resistant A. baumannii isolates from Korea.  相似文献   

7.
Telomeres generally consist of short repeats of minisatellite DNA sequences and are useful in chromosome identification and karyotype analysis. To date, telomeres have not been characterized in the economically important brown seaweed Saccharina japonica, thus its full cytogenetic research and genetic breeding potential has not been realized. Herein, the tentative sequence of telomeres in S. japonica was identified by PCR amplification with primers designed based on the Arabidopsis‐type telomere sequence (TTTAGGG)n, which was chosen out of three possible telomeric repeat DNA sequences typically present in plants and algae. After PCR optimization and cloning, sequence analysis of the amplified products from S. japonica genomic DNA showed that they were composed of repeat units, (TTTAGGG)n, in which the repeat number ranged from 15 to 63 (n = 46). This type of repeat sequence was verified by a Southern blot assay with the Arabidopsis‐type telomere sequence as a probe. The digestion of S. japonica genomic DNA with the exonuclease Bal31 illustrated that the target sequence corresponding to the Arabidopsis‐type telomere sequence was susceptible to Bal31 digestion, suggesting that the repeat sequence was likely located at the outermost ends of the kelp chromosomes. Fluorescence in situ hybridizations with the aforementioned probe provided the initial cytogenetic evidence that the hybridization signals were principally localized at both ends of S. japonica chromosomes. This study indicates that the telomeric repeat of the kelp chromosomes is (TTTAGGG)n which differs from the previously reported (TTAGGG)n sequence in Ectocarpus siliculosus through genome sequencing, thereby suggesting distinct telomeres in brown seaweeds.  相似文献   

8.
Cephalosporin‐resistant Escherichia coli has been increasingly reported worldwide. In this study, 32 cephalosporin resistant E. coli isolates identified from cancer patients in Cairo, Egypt in 2009–2010 were analyzed. Twenty‐three were of phylogenetic group D, seven A and one each B1 and B2. By rep‐PCR 15 phylogroup D isolates were grouped in four clusters, one with sequence type (ST) 405 and three ST68. Seventeen isolates showed single patterns. blaCTX‐M‐15 and aac(6')‐Ib‐cr were the most common resistance determinants. blaOXA‐48 and blaVIM were also detected. Multidrug resistant E. coli seriously affects healthcare, especially in immunocompromised hosts, such as cancer patients.  相似文献   

9.
Cross‐species PCR amplification of Armillaria mellea group taxa with previously reported A. ostoyae microsatellite markers, indicative of flanking sequence conservation, was exploited for the species‐specific isolation of simple sequence repeat (SSR) motifs from A. gallica. Six SSR motifs were sequence characterized from cloned PCR fragments generated with primers previously developed from A. ostoyae. Five novel primer pairs, designed from motif flanking regions, allowed for improved, efficient amplification in this species. One original A. ostoyae primer pair was used directly. Polymorphims were observed at wide geographical levels only. Relative cross‐species amplification intensities generally supported the currently accepted molecular phylogeny of this group.  相似文献   

10.
Linkage analysis was used to determine the genetic map location of er-1, a recessive gene conditioning resistance to powdery mildew, on the Pisum sativum genome. Genetic linkage was demonstrated between er-1 and linkage group 6 markers after analyzing the progeny of two crosses, an F2 population and a set of recombinant inbred lines. The classes of genetic markers surrounding er-1 include RFLP, RAPD and allozyme markers as well as the morphological marker Gty. A RAPD marker tightly linked to er-1 was identified by bulked segregant analysis. After DNA sequence characterization, specific PCR primers were designed to convert this RAPD marker into a sequence characterized amplified region (SCAR).  相似文献   

11.
Southwest China is an important biodiversity hotspot. The interactions among the complex topography, climate change, and ecological factors in the dry‐hot valley areas in southwest China may have profoundly affected the genetic structure of plant species in this region. In this study, we determined the effects of the Tanaka Line on genetic variation in the wild Bombax ceiba tree in southwest China. We sampled 224 individuals from 17 populations throughout the dry‐hot valley regions. Six polymorphic expressed sequence tag–simple sequence repeat primers were employed to sequence the PCR products using the first‐generation Sanger technique. The analysis based on population genetics suggested that B. ceiba exhibited a high level of gene diversity (HE: 0.2377–0.4775; I: 0.3997–0.7848). The 17 populations were divided into two groups by cluster analysis, which corresponded to geographic characters on each side of the Tanaka Line. In addition, a Mantel test indicated that the phylogeographic structure among the populations could be fitted to the isolation‐by‐distance model (r2 = .2553, < .001). A barrier test indicated that there were obstacles among populations and between the two groups due to complex terrain isolation and geographic heterogeneity. We inferred that the Tanaka Line might have promoted the intraspecific phylogeographic subdivision and divergence of B. ceiba. These results provide new insights into the effects of the Tanaka Line on genetic isolation and population differentiation of plant species in southwest China.  相似文献   

12.
Crude glycerol – a by‐product of the large scale production of diesel oil from rape – is examined for its possible use as a cheap feedstock for the biotechnological synthesis of poly(3‐hydroxybutyrate) (PHB). The glycerol samples of various manufacturers differ in their contamination with salts (NaCl or K2SO4), methanol or fatty acids. At high cell density fermentation these pollutants could possibly accumulate to inhibiting concentrations. The bacteria used were Paracoccus denitrificans and Cupriavidus necator JMP 134, which accumulate PHB from pure glycerol to a content of 70 % of cell dry mass. When using crude glycerol containing 5.5 % NaCl, a reduced PHB content of 48 % was observed at a bacterial dry mass of 50 g/L. Furthermore the PHB yield coefficient was reduced, obviously due to osmoregulation. The effect of glycerol contaminated with K2SO4 was less pronounced. The molecular weight of PHB produced with P. denitrificans or C. necator from crude glycerol varies between 620000 and 750000 g/mol which allows the processing by common techniques of the polymer industry.  相似文献   

13.
Nine polymorphic single sequence repeat (SSR) primers were developed in Japanese persimmon using inter‐SSR (ISSR) suppression polymerase chain reaction (PCR). These primers were tested on 30 individuals from Japan and China. The number of alleles per locus ranged from five to 20. Expected (HE) and observed (HO) heterozygosities at each locus ranged from 0.42 to 0.77 and 0.27 to 0.59, respectively. The SSR primers developed herein could be applied to cultivar identification, estimation of genetic diversity and divergence in Diospyros spp.  相似文献   

14.
Isolates of the obligately biotrophic fungus Uncinula necator cluster in three distinct genetic groups (groups I, II, and III). We designed PCR primers specific for these groups in order to monitor field populations of U. necator. We used the nucleotide sequences of the gene that encodes eburicol 14α-demethylase (CYP51) and of the ribosomal DNA internal transcribed spacer 1 (ITS1), ITS2, and 5.8S regions. We identified four point mutations (three in CYP51 and one in ITS1) that distinguished groups I and II from group III based on a sample of 132 single-spore isolates originating from Europe, Tunisia, Israel, India, and Australia. We developed a nested allele-specific PCR assay in which the CYP51 point mutations were used to detect and distinguish groups I and II from group III in crude mildewed samples from vineyards. In a preliminary study performed with samples from French vineyards in which isolates belonging to genetic groups I and III were present, we found that a shift from a population composed primarily of group I isolates to a population composed primarily of group III isolates occurred during the grapevine growing season.  相似文献   

15.
Aims: The objective of this study was to investigate the molecular diversity of CTX genetic element within toxigenic Vibrio cholerae genomes and to determine the genetic diversity of V. cholerae population collected in a 6‐year period (2004–2009) in Iran. Methods and Results: The results of mismatch amplification mutation assay (MAMA)‐PCR and sequencing showed cytosine nucleotide in positions 203 and 115 in all 50 El Tor V. cholerae strains, which is the same as classical ctxB sequence. One strain yielded amplicons with both El Tor and classical biotype primers in MAMA‐PCR indicative of presence of two copies of CTX phages with different genotypes (rstRET ctxBclass and rstRET ctxBET) integrated within the genome of this isolate, which suggested the integration of two different CTX phages at different occasions or point mutation in one copy of CTX. Sequencing and PCR analysis indicated the presence of hybrid CTX genotype (rstRET ctxclass) in 70·6% of the isolates; however, only El Tor RS1 phage has been integrated in flanking to the CTX phages with different genotypes. Conclusions: Enterobacterial repetitive intergenic consensus‐PCR (ERIC‐PCR) and ribosomal gene spacer‐PCR (RS‐PCR) showed a relatively homogenous population in different years. Our findings indicate that sequence analysis of RS and ctxB regions has more discriminative power than restriction‐based methods. Significance and Impact of the Study: Investigating the molecular diversity of CTX prophage among V. cholerae strains helps to establish a new valuable database of genetic information about isolates, which is of great importance for epidemiologic studies in Iran and other countries encountering cholera epidemics.  相似文献   

16.
The porcine major histocompatibility complex (MHC) harbors the highly polymorphic swine leukocyte antigen (SLA) class I and II gene clusters encoding glycoproteins that present antigenic peptides to T cells in the adaptive immune response. In Austria, the majority of commercial pigs are F 2 descendants of F 1 Large White/Landrace hybrids paired with Pietrain boars. Therefore, the repertoire of SLA alleles and haplotypes present in Pietrain pigs has an important influence on that of their descendants. In this study, we characterized the SLA class I ( SLA‐1 , SLA‐2 , SLA‐3 ) and class II ( SLA‐DRB1 , SLA‐DQB1 , SLA‐DQA ) genes of 27 purebred Pietrain pigs using a combination of the high‐resolution sequence‐based typing (SBT) method and a low‐resolution (Lr) PCR‐based method using allele‐group, sequence‐specific primers (PCR‐SSP). A total of 15 class I and 13 class II haplotypes were identified in the studied cohort. The most common SLA class I haplotype Lr‐43.0 ( SLA‐1 *11XX– SLA‐3 *04XX– SLA‐2 *04XX) was identified in 11 animals with a frequency of 20%. For SLA class II, the most prevalent haplotype, Lr‐0.14 [ SLA‐DRB1 *0901– SLA‐DQB1 *0801– SLA‐DQA *03XX], was found in 14 animals with a frequency of 26%. Two class II haplotypes, tentatively designated as Lr‐Pie‐0.1 [ SLA‐DRB1 *01XX/be01/ha04– SLA‐DQB1 *05XX– SLA DQA*blank] and Lr‐Pie‐0.2 [ SLA‐DRB1 *06XX– SLA‐DQB1 *03XX– SLA‐DQA *03XX], appeared to be novel and have never been reported so far in other pig populations. We showed that SLA genotyping using PCR‐SSP‐based assays represents a rapid and cost‐effective way to study SLA diversity in outbred commercial pigs and may facilitate the development of more effective vaccines or identification of disease‐resistant pigs in the context of SLA antigens to improve overall swine health.  相似文献   

17.
18.
Several studies in Europe and North America have shown that cultivated Brassica napus will readily hybridise with wild Brassica rapa but at widely different frequencies. To understand the implications of this phenomenon with regard to transgene flow, we examined the rate at which cultivated B. napus cv. Westar containing a capsid (coat protein, CP)‐coding sequence from Turnip mosaic virus (Potyvirus) hybridised under glasshouse conditions with wild B. rapa from Culham, in Oxfordshire, UK. We found that the hybridisation rate, as judged using simple sequence repeat (SSR)‐PCR and primer oligonucleotides specific for either the C or the A genomes in progeny from individual crosses varied from 5% to 100%. In hybrids (F1 progeny), transgene transfer was always observed (inferred by SSR‐PCR) when hybrids were detected. Our observations revealed a hitherto unrecorded source of variability in transgene flow to wild UK B. rapa.  相似文献   

19.
A comparative analysis of differentially expressed proteins in a susceptible grapevine (Vitis vinifera ‘Cabernet Sauvignon’) during the infection of Erysiphe necator, the causal pathogen of grapevine powdery mildew (PM), was conducted using iTRAQ. The quantitative labeling analysis revealed 63 proteins that significantly changed in abundance at 24, 36, 48, and 72 h post inoculation with powdery mildew conidiospores. The functional classification of the PM‐responsive proteins showed that they are involved in photosynthesis, metabolism, disease/defense, protein destination, and protein synthesis. A number of the proteins induced in grapevine in response to E. necator are associated with the plant defense response, suggesting that PM‐susceptible Cabernet Sauvignon is able to initiate a basal defense but unable to restrict fungal growth or slow down disease progression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号