首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Sixty km2 of the southern Hula Valley (northern Israel) peat lands were flooded in 1994 as part of the Hula Valley Restoration Project. The small, shallow lake (110 ha, mean depth < 1 m) and network of ca. 90 km of canals created were designed to ameliorate problems (e.g., underground fires, soil subsidence, increased nutrient loading downstream to Lake Kinneret) resulting from drying the Lake Hula wetlands in the 1950s. This new wetland area now serves as the focus for developing eco-tourism in northern Israel. The initial development of this new ecosystem has been followed closely by a multi-disciplinary team of researchers, with an emphasis on water quality in the new lake and the potential impact of the project on Lake Kinneret. Here we report an overview of developments in general water chemistry of Lake Agmon during its first three years (1994–1996). Water quality in Agmon was within general expectations for a shallow lake situated on peat. The first year of Agmon was characterized by the heavy influence of stream and drainage inflows with high pH, alkalinity, turbidity and electrical conductivity and high concentrations of sulfate and total dissolved solids. By the third year, however, many in lake processes (e.g., nutrient cycling and algal and macrophytic production) were well-developed and thus strongly affected lake water quality. Excessive phosphorus and nitrogen concentrations in the lake have led to hypertrophy, characterized by low dissolved oxygen concentrations and prolific blooms of nuisance algae. The management of this new ecosystem in the near future will require persistent, and innovative measures.  相似文献   

2.
Onondaga Lake is a hypereutrophic, industrially polluted lake located in Syracuse, NY. High hypolimnetic concentrations of H2S that develop after anoxia restrict the accumulation of total Fe2+ due to the formation of FeS, and may limit Fe-PO4 interactions. High water column concentrations of Ca2+ and high rates of CaCO3 deposition occur due to inputs of Ca2+ from an adjacent soda ash manufacturing facility. Patterns of P concentration and other water chemistry parameters in the lower waters, and results from chemical equilibrium calculations, suggest that Ca-PO4 minerals may regulate the supply of P from sediments to the water column in Onondaga Lake. These findings have important management implications for Onondaga Lake. First, declines in water column Ca2+ concentrations due to reductions in industrial CaCl2 input may result in conditions of undersaturation with respect to Ca-PO4 mineral solubility and increases in the release of P from sediments to the water column. Second, introduction of O2 from hypolimnetic oxygenation, as a lake remediation initiative, may enhance P supply from sediments, because of increased solubility of Ca-PO4 minerals at lower pH.  相似文献   

3.
Synechococcus strain GL24 is a unicellular cyanobacterium that was isolated from Fayetteville Green Lake, New York, a meromictic lake which has high Ca2+ and SO42- concentrations. Epicellular mineralization of Synechococcus cells in the lake is the mechanism by which extensive calcitic bioherms (or microbial reefs) have been formed on the lake's shore and a marl sediment has been built on the lake bottom. Previous studies have shown that calcium carbonate (calcite) formation on the Synechococcus surface is dependent upon an alkaline pH, which is produced in the cellular microenvironment by the cells as their activity increases with seasonal warming of the lake water. At the circumneutral pH of bulk lake water, calcium sulfate (gypsum) is formed. In this study, we show that Synechococcus mediates a similar sulfate-to-carbonate transformation when Sr2+ is the major divalent cation present, forming celestite and strontianite. In experimental systems to which equimolar amounts of Ca2+ and Sr2+, Ca2+ or Sr2+ and Mg2+, or all three ions together were added to artificial lake water, Ca2+ and Sr2+ were incorporated equally into mineral formation to form CaSr(CO3)2. No Mg2+ -containing carbonates were formed when either or both of the other two ions were present. Mineral formation takes place on a hexagonally arranged proteinaceous template (an S-layer) which forms the outermost surface of the Synechococcus cell. Our results provide evidence that the S-layer exhibits selectivity with respect to the ions bound and subsequently incorporated into carbonate minerals and that celestite and strontianite, previously thought to be purely evaporitic minerals, can be biogenically formed.  相似文献   

4.
Gophen  Moshe 《Hydrobiologia》2000,426(1):25-36
Shallow lake Agmon is a newly created subtropical wetland in north-eastern Israel. The lake is part of the Hula Project aimed at slowing down deterioration processes of the peat soils, to establish infrastructure for ecotourism as an income for the land owners, and nutrient removal from Lake Kinneret inputs. An onset of benthic filamentous macro-green algae during late winter–spring season, followed by submerged macrophytes vegetation during spring–summer was documented. The phosphorus summer loads are mostly plant–mediated internal fluxes and nitrogen intensively removed from lake waters by sedimentation and denitrification. The summer phytoplankton, mostly colonial cyanobacteria, are P limited. During 1995 and early 1996, dense Typha domingensisstands were developed in the southern half of the Lake (chalk-marl bottom sediments). The P-limited Typhavegetation collapsed within less than half a year and reappeared in the south-eastern part of the lake where sediments were exposed and oxidized. It is hypothesized that phosphorus cycle is a strong dependant of macrophyte mediation, and P deficiency in the sediments predominantly affected Typhadecline and an increase of P availability later enabled the reappearance of the Typhastands.  相似文献   

5.
A portion of the former Lake Hula wetland (northern Israel) was re-flooded in spring 1994 and the physical, chemical and biological developments within the resulting new lake and wetland complex (Agmon) was followed closely by a multi-disciplinary scientific team. The first three years of study relating to Lake Agmon are reported in this issue of Wetlands Ecology & Management. We provide in this paper a general background on the Lake Hula Draining Project in the 1950s and the recent re-flooding and creation of the Agmon wetland.  相似文献   

6.
Zohary  T.  Fishbein  T.  Kaplan  B.  Pollingher  U. 《Wetlands Ecology and Management》1998,6(2-3):133-142
The dynamics of the algal populations of Lake Agmon, a newly created shallow lake in the Hula Valley, Israel, were monitored following its filling in April 1994 through 1996. Additional limited field observations and measurements were taken throughout 1997. Following an initial establishment period, the dynamics of the algal populations showed a repetitive annual pattern comprised of three phases: I. a clear water phase in January–February, with low phytoplankton biomass and no metaphyton; II. a metaphyton dominance phase during March–June when mats of filamentous chlorophytes covered most of the lake's sediments while phytoplankton biomass remained low; and III. an intense phytoplankton bloom phase from June till December. The shifts from phase I to II and from phase II to III were gradual, resulting from interplay between phosphorus availability, the underwater light climate, temperature effects and zooplankton grazing pressure. The shift from phase III back to phase I was abrupt, due to winter flushing of Lake Agmon. The summer phytoplankton blooms intensified from 1994 to 1996 and shifted from chlorophyte dominance in 1994 and 1995 to cyanobacteria-dominance in 1996 and 1997. These observations, jointly with the nutrient chemistry of Lake Agmon, suggest intense eutrophication. Criteria based on phytoplankton taxonomy also indicate that Lake Agmon is eutrophic to hypertrophic. Due to the typical unstable nature of hypertrophic systems, careful management is essential to maintain the delicate ecological balance needed to ensure that the lake will fulfill its intended role as a center for eco-tourism.  相似文献   

7.
Microbialite‐forming microbial mats in a hypersaline lake on the atoll of Kiritimati were investigated with respect to microgradients, bulk water chemistry, and microbial community composition. O2, H2S, and pH microgradients show patterns as commonly observed for phototrophic mats with cyanobacteria‐dominated primary production in upper layers, an intermediate purple layer with sulfide oxidation, and anaerobic bottom layers with sulfate reduction. Ca2+ profiles, however, measured in daylight showed an increase of Ca2+ with depth in the oxic zone, followed by a sharp decline and low concentrations in anaerobic mat layers. In contrast, dark measurements show a constant Ca2+ concentration throughout the entire measured depth. This is explained by an oxygen‐dependent heterotrophic decomposition of Ca2+‐binding exopolymers. Strikingly, the daylight maximum in Ca2+ and subsequent drop coincides with a major zone of aragonite and gypsum precipitation at the transition from the cyanobacterial layer to the purple sulfur bacterial layer. Therefore, we suggest that Ca2+ binding exopolymers function as Ca2+ shuttle by their passive downward transport through compression, triggering aragonite precipitation in the mats upon their aerobic microbial decomposition and secondary Ca2+ release. This precipitation is mediated by phototrophic sulfide oxidizers whose action additionally leads to the precipitation of part of the available Ca2+ as gypsum.  相似文献   

8.
The Experimental Watershed Liming Study (EWLS) was initiated to evaluate the application of CaCO3 to a forested watershed in an effort to mitigate the acidification of surface water. The objective of the EWLS was to assess the response of the Woods Lake watershed to an experimental addition of CaCO3. During October 1989, 6.89 Mg CaCO3/ha was applied by helicopter to two subcatchments comprising about 50% (102.5 ha) of the watershed area. The EWLS involved individual investigations of the response of soil and soil water chemistry, forest and wetland vegetation, soil microbial processes, wetland, stream and lake chemistry, and phytoplankton and fish to the CaCO3 treatment. In addition, the Integrated Lake/Watershed Acidification (ILWAS) model was applied to the site to evaluate model performance and duration of the treatment. The results of these studies are detailed in this volume. The purposes of this introduction and synthesis paper are to: 1) present the overall design of the EWLS, 2) discuss the linkages between the individual studies that comprise the EWLS, and 3) summarize the response of the lakewater chemistry to watershed addition of CaCO3 and compare these results to previous studies of direct lake addition. An analysis of lake chemistry revealed the watershed treatment resulted in a gradual change in pH, acid neutralizing capacity (ANC) and Ca2+ in the water column. This pattern was in contrast to direct lake additions of CaCO3 which were characterized by abrupt changes following base addition and subsequent rapid reacidification. Over the three-year study period, the supply of ANC to drainage waters was largely derived from dissolution of CaCO3 in wetlands. Relatively little dissolution of CaCO3 occurred in freely draining upland soils. The watershed treatment had only minor effects on forest vegetation. The watershed treatment eliminated the episodic acidification of streamwater and the near-shore region of the lake during snowmelt, a phenomenon that occurred during direct lake treatments. Positive ANC water in the near-shore area may improve chemical conditions for fish reproduction, and allow for the development of a viable fish population. The watershed CaCO3 treatment also decreased the transport of Al from the watershed to the lake, and increased the concentrations of dissolved organic carbon (DOC) and dissolved silica (H4SiO4) in stream and lakewater. The watershed treatment appeared to enhance soil nitrification, increasing concentrations of NO3 in soilwater and surface waters. However, the acidity associated with this NO3 release was small compared to the increase in ANC due to CaCO3 addition and did not alter the acid-base status of Woods Lake. Acid neutralizing capacity (ANC) budgets for 12-month periods before and after the watershed treatment showed that the lake shifted from a large source of ANC to a minor source due to retention of SO4 2–, NO3 , Al and the elevated inputs of Ca2+ associated with the watershed CaCO3 application. In contrast to the direct lake treatments, Ca2+ inputs from the watershed application were largely transported from the lake.  相似文献   

9.
Sulfate Reduction in Peat from a New Jersey Pinelands Cedar Swamp   总被引:2,自引:0,他引:2       下载免费PDF全文
Microbial sulfate reduction rates in acidic peat from a New Jersey Pine Barrens cedar swamp in 1986 were similar to sulfate reduction rates in freshwater lake sediments. The rates ranged from a low of 1.0 nmol cm−3 day−1 in February at 7.5- to 10.0-cm depth to 173.4 nmol cm−3 day−1 in July at 5.0- to 7.5-cm depth. The presence of living Sphagnum moss at the surface generally resulted in reduced rates of sulfate reduction. Pore water sulfate concentrations and water table height also apparently affected the sulfate reduction rate. Concentrations of sulfate in pore water were nearly always higher than those in surface water and groundwater, ranging from 26 to 522 μM. The elevated pore water sulfate levels did not result from the evapotranspiratory concentration of infiltrating stream water or groundwater, but probably resulted from oxidation of reduced sulfur compounds, hydrolysis of ester sulfates present in the peat, or both. The total sulfur content of peat that had no living moss at the surface was 164.64 ± 1.5 and 195.8 ± 21.7 μmol g (dry weight)−1 for peat collected from 2.5 to 5.0 and 7.5 to 10.0 cm, respectively. Organosulfur compounds accounted for 84 to 88% of the total sulfur that was present in the peat. C-bonded sulfur accounted for 91 to 94% of the organic sulfur, with ester sulfate being only a minor constituent. Reduced inorganic sulfur species in peat from 2.5 to 7.5 cm were dominated by H2S-FeS (68%), while pyritic sulfide was the predominant inorganic sulfur species in the peat from depths of 7.5 to 10.0 cm (75%).  相似文献   

10.
Shy  E.  Beckerman  S.  Oron  T.  Frankenbergg  E. 《Wetlands Ecology and Management》1998,6(2-3):159-167
Lake Hula and its surrounding wetland in northern Israel were drained in the late 1950s and the dried wetlands were transformed into a diverse agricultural region with a 0.3 km2 nature reserve. A portion of the extinct Hula wetland was re-flooded in April 1994 by constructing a small lake, Agmon, and 90 km of canals. The purposes of this study were (a) to document the re-population and colonization of the new Agmon wetland by birds after its flooding, (b) to evaluate bird species richness in this new wetland in comparison to that in a nearby mature Hula Nature Reserve, and, (c) to investigate if the species originally present in the Hula Valley before the drainage had been re-established. The new lake has succeeded in attracting a large variety of water birds to the newly formed habitats, especially ducks, egrets and herons, plovers, waders and snipes. The distribution of bird species among the different habitats was not random. The northern section of the lake, which is shallow and has an open shore, had the largest number of species during 1995 and 1996 and was preferred by plovers, waders and snipes. A large roosting and breeding colony of thousands of egrets and herons was formed in the dense cattails ( Typha domingensis) in the southern section of the lake. Unlike the nearby Hula Nature Reserve, the new wetland lacks a large seasonally flooded area and is less attractive for feeding and breeding plovers, waders and stilts. The new wetland also has very little muddy area without vegetation and attracts few of the species that regularly feed in this habitat in the reserve. The new wetland enlarges the area of only a few of the habitats found in the nearby reserve and therefore attracts fewer species than it might otherwise. Recommendations for management of the new wetland include increased diversity of habitats, restriction of human activities and optimization of conflicts that have arisen between the needs of the wetland and those of nearby agriculture.  相似文献   

11.
The capacity of a lake to remove reactive nitrogen (N) through denitrification has important implications both for the lake and for downstream ecosystems. In large oligotropic lakes such as Lake Superior, where nitrate (NO3 ?) concentrations have increased steadily over the past century, deep oxygen penetration into sediments may limit the denitrification rates. We tested the hypothesis that the position of the redox gradient in lake sediments affects denitrification by measuring net N-fluxes across the sediment–water interface for intact sediment cores collected across a range of sediment oxycline values from nearshore and offshore sites in Lake Superior, as well as sites in Lake Huron and Lake Erie. Across this redox gradient, as the thickness of the oxygenated sediment layer increased from Lake Erie to Lake Superior, fluxes of NH4 + and N2 out of the sediment decreased, and sediments shifted from a net sink to a net source of NO3 ?. Denitrification of NO3 ? from overlying water decreased with thickness of the oxygenated sediment layer. Our results indicate that, unlike sediments from Lake Erie and Lake Huron, Lake Superior sediments do not remove significant amounts of water column NO3 ? through denitrification, likely as a result of the thick oxygenated sediment layer.  相似文献   

12.
Lake Logipi is a saline soda and alkaline lake which marks the northern termination of the Suguta River drainage system. It also receives waters from streams, possible seepage from Lake Turkana, and hot springs. Present hydrochemistry and sedimentology is controlled by numerous factors including seasonal variations, composition of incoming waters, water depth and, above all, bacterial activity. Given the scarcity of Ca2+ and Mg2+ in the lake waters, bacterial activity seems to intensify the alkalinization of the waters which inhibits the deposition of organic matter and leads to the genesis of a poorly organic, zeolitic mud that reaches 1.5 m in tickness in the deepest part of the lake. This black layer may be overlaid with thin crusts of trona and halite which prograde over the basin from its southern bank when the lake is drying out and which are dissolved in the lake waters during the rainy season.  相似文献   

13.
Phosphine (PH3) was monitored in the Taihu Lake in China by a GC/NPD method, coupled with cryo-trapping enrichment technology. Results showed that PH3 was universally detected in sediments, lake water and atmosphere of the Taihu Lake area. Total phosphorus (TPs) and fractions of different phosphorus species in lake sediments were separately measured as dissolved phosphate (DP), phosphorus bound to aluminum (Al-P), iron (Fe-P) and calcium (Ca-P), occluded phosphorus (OP), and organic phosphorus (Org-P) by sequential chemical extraction. High PH3 levels were correlated with high TPs values in sediments and with eutrophication at different sites. In addition, a positive linear correlation equation was obtained between the concentrations of PH3 in lake sediments and of the phosphorus fractions. The resulting multiple linear regression equation is PH3 = −165 + 63.3 DP + 0.736 Al-P + 2.33 Ca-P + 2.29 Org-P. The flux of PH3 across the sediment–water interface was estimated from sediment core incubation in May and October 2002. The annual average sediment–water flux of PH3 was estimated at ca. 0.0138±0.005 pg dm−2 h−1, the average yearly emission value of PH3 from Taihu Lake sediments to water was calculated to be 28.3±10.2 g year−1, which causes a water PH3 concentration of up to 0.178±0.064 pmol dm−3. The real importance of PH3 could be higher, because PH3 could be consumed in the oxic sediment–water boundary layer and in the water column. Spatial and temporal distributions of total phosphorus (TPw) and chlorophyll a (Chl-a) in the water column of Taihu Lake were measured over the study period. Higher water PH3 has also been found where the TPw content was high. Similarly, high Chl-a was consistent with higher water PH3. Positive relationships between PH3 and TPw (average R2 = 0.47±0.26) and Chl-a (average R2 = 0.23±0.31) were observed in Taihu Lake water.  相似文献   

14.
Inle Lake is the second largest lake in Myanmar and one of the nine key sites for sightseeing there. An analysis of its water quality has not been published before. The objective of this study is to reveal the current situation and find any major problems with the lake. For this purpose, the natural and cultural environments were examined. Some physical and chemical aspects of the surface water were assayed in situ for 2 days in November 2004. The principal ions were analyzed in our laboratory. The main cation and anion species in the lake surface water are Ca2+ and HCO3 . Its high calcium content can be attributed to the limestone of Shan Plateau around the lake. The alkalinity of the lake water was 3829–4114 acid-neutralizing capacity (ANC) (pH 7.8–8.0); it can be attenuated by Ca2+. The concentrations of PO4-P, NO2-N, and NO3-N were relatively high; these could originate from domestic and agriculture uses. The trophic state is eutropic. The concentrations of coliform bacteria indicated that the lake water was unfit to drink, but some people use it for drinking anyway. The bacteria could enter the lake through the direct latrine system used there. The thermal type of the lake is presumed to be warm polymictic. More extensive studies are needed because the lake is thought to be the most changing site in Myanmar as a result of both the tourism boom and increasing agricultural activity.  相似文献   

15.
Microbial sulfate reduction in a brackish meromictic steppe lake   总被引:1,自引:0,他引:1  
Patterns of sulfate reduction were studied in water and sediments of Lake Shira, South Siberia, Russia. The lake was characterized by a high level of sulfate (91-116 mM). The concentration of hydrogen sulfide in the anoxic waters of the lake reached 0.6 mM. In summer the sulfate reduction rate in the water column, measured by radiometric technique, varied from 0.25 to 9.81 mol sulfate l-1 d-1. There were two peaks of sulfate reduction activity: just below the chemocline and near the sediment surface. Sulfate reduction rate in the profundal silts ranged from 4.1 to 90.6 mol l-1 d-1. The zone of the most active sulfate reduction was restricted to the surface sediment layers. The acceleration of sulfate reduction rate (up to 236 mol l-1 d-1) and the increase of density of viable sulfate reducers (up to 2 x 105 cells ml-1) were recorded in the littoral sediments adjacent to the mouth of the Son River and sewage discharge. It was apparently caused by the input of allochthonous organic substrates and also by a high environmental temperature. On an areal basis, sulfate reduction rate in the water was approximately 8 times higher than that in the profundal sediments. Sulfate reduction was the most important process of anaerobic oxidation of organic carbon in Lake Shira. In summer in the profundal zone of the lake, sulfate reducers were able to mineralize about 67% of the daily integrated primary production of phototrophic and chemotrophic organisms.  相似文献   

16.
John Dodson 《Hydrobiologia》1974,44(2-3):247-255
On the black basaltic rock surfaces in shallow water around the margin of Lake Gnotuk, and for several meters above the present lake, there is a thick white coating of aragonite marl. The water in the lake is supersaturated with CaCO3.From close observation and experimental work, it is evident that the marl is produced by the alga Entermorpha nana which lives in the shallow lake water and grows attached to the basalt. The general mechanism of CaCO3 precipitation by aquatic plants is outlined, and in Enteromorpha nana it can be demonstrated that the closed tubular thallus absorbs HCO-3 from the outside water and secretes CO2-3 inside the tube. This secretion of CO2-3 greatly increases the ionic product of [Ca2+] [CO2-3] in the water inside the thallus and leads to the precipitation of aragonite and its accumulation at the base of the tube.  相似文献   

17.
Degani  G.  Yehuda  Y.  Jackson  J.  Gophen  M. 《Wetlands Ecology and Management》1998,6(2-3):151-157
Lake Agmon was constructed in summer 1994 in the northern part of the drained Lake Hula swamp, as part of the Hula Reclamation Project. One of the main goals of the project was to attract aquatic and semi- aquatic birds to the area as a basis for planned eco-tourism and one of the main concerns of the project was the potential for increased proliferation of mosquitoes (including vector species of malarial parasites). There was a perceived need, therefore, to establish and maintain a suitable fish community. This present study documents the developments in the fish community in Lake Agmon between May 1995 and December 1996. The lake was initially stocked with two fish species, Tilapia zillii and Gambusia affinis, to control mosquitoes and to provide suitable small- bodied forage species for piscivorous birds. Subsequent stocking also included Oreochromis aureus, and Cyprinus carpio. Additional species were established by immigration from the Jordan River. Relatively large species ( e.g., Clarias gariepinus and C. carpio) flowed into the lake as eggs or juveniles, whereas the smaller species ( e.g., Hemigrammocapoeta nana, Pseudophoxinus kervillei and Aphanius mento) entered the lake as adults. In the first year, eight fish species were found in Lake Agmon: T. zillii, G. affinis, C. gariepinus, C. carpio, Capoeta damascina, P. kervillei, Acanthobrama lissneri and H. nana. Of these, T. zillii, G. affinis and H. nana were dominant, though the relative abundance of H. nana was very low in spring, and increased during summer. In the second year, O. aureus, A. mento and Anguilla anguilla also occurred in the lake. The density of P. kervillei increased, in comparison with the previous year. The relative proportions of juvenile and adult fish also changed in the second year. A high percentage of young T. zillii was found during the first spring, decreasing in the summer and autumn. The proportion of juveniles of both G. affinnis and H. nana was very low during the first year, but increased during the second. These results indicate that the fish community of Lake Agmon had not stabilized by the end of 1996 and that further changes in relative abundances, and species, age and sex compositions should be expected.  相似文献   

18.
Kaplan  D.  Oron  T.  Gutman  M. 《Wetlands Ecology and Management》1998,6(2-3):143-150
The draining of the Lake Hula and swamps, northern Israel, during the late 1950s resulted in the loss of a very diverse and rare ecosystem. Oxidation of the peat soil resulted in ground surface subsidence, while heavy autumn winds have eroded the dry peat. Moreover, agriculture on the peat soils is restricted, because of a nitrate surplus. Predictions that the sinking would continue and that more areas would go out of agricultural production led authorities to re-flood a portion of the Hula Valley in 1994. The aim of the present study was to monitor the spontaneous establishment of vegetation in the re-flooded area, the Agmon wetlands, and to reestablish some of the major plant species lost from the valley when Lake Hula was drained. Within the first two years, 74 plant species colonized the wetland spontaneously. Five out of 11 species designated for reintroduction were successfully established. Cyperus papyrus and Cynodon dactylon demonstrated sustainable potential for lake-shore stabilization. Cyperus papyrus was reintroduced from seedlings and rapidly became the dominant riparian species, while Cynodon dactylon established spontaneously. Re-introduced Nymphaea alba clones were established only in enclosures protected from grazing by the semi-aquatic mammal Myocastor coypu. Nuphar lutea and Iris pseudacorus showed better resistance to grazing. These results demonstrate a high potential for successful re-establishment of much of the original Hula swamp macrophytic vegetation by either spontaneous colonization by extant species from the surrounding areas or by introduction of locally extinct species. As such, there is a good chance that the associated faunal components of the former Lake Hula and swamps that have returned to the region since the Hula rehabilitation project commenced will continue to flourish.  相似文献   

19.
Lake sturgeon, Acipenser fulvescens, are one of a few species of cartilaginous fishes that complete their life cycle entirely in freshwater. Sturgeons maintain very low concentrations of circulating calcium (Ca2+) compared with other vertebrates, and therefore, face unique challenges in regard to Ca2+ regulation, which are likely to be magnified during vitellogenic stages of the reproductive cycle. In the present study, Ca2+ concentrations and associated hormones of female and male lake sturgeon were examined in two wild populations, and were related to reproductive stage. In both populations, free, bound and total Ca2+ were low, peaking in mid-late vitellogenic females. Internal Ca2+ and phosphate (PO43−) concentrations were inversely related to environmental concentrations, suggesting that these ions are preferentially retained and that mechanisms for mobilization are up-regulated under diminished environmental concentrations. Plasma 17β-estradiol, 11-ketotestosterone and testosterone, peaked in mid-late vitellogenic females, while the androgens peaked in spawning males. Urine Ca2+ was more tightly regulated than other divalent ions and decreased in spawning fish. Therefore, the increases in free plasma Ca2+, the very low circulating concentrations of free and total Ca2+, and the increase in PO43− and bound Ca2+ in low Ca2+ environments indicate unique adaptations to Ca2+ regulation in the lake sturgeon.  相似文献   

20.
Microbiological studies were performed in three small gypsum karst lakes in northern Lithuania, most typical of the region. Samples were taken in different seasons of 2001. The conditions for microbial growth in the lakes are determined by elevated content of salts (from 0.5 to 2.0 g/l), dominated by SO 4 2? and Ca2+ ions (up to 1.4 and 0.6 g/l, respectively). The elevated sulfate concentration is favorable for sulfate-reducing bacteria (SRBs). Summer and winter stratification gives rise to anaerobic water layers enriched in products of anaerobic degradation: H2S and CH4. The lakes under study contain abundant SRBs not only in bottom sediments (from 103 to 107 cells/dm3) but also in the water column (from 102 to 106 cells/ml). The characteristic spatial and temporal variations in the rate of sulfate reduction were noted. The highest rates of this process were recorded in summer: 0.95–2.60 mg S2?/dm3 per day in bottom sediments and up to 0.49 mg S2?/l per day in the water column. The maximum values (up to 11.36 mg S2?/dm3) were noted in areas where bottom sediments were enriched in plankton debris. Molecular analysis of conservative sequences of the gene for 16S rRNA in sulfate-reducing microorganisms grown on lactate allowed them to be identified as Desulfovibrio desulfuricans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号