首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Buvoli  S A Mayer    J G Patton 《The EMBO journal》1997,16(23):7174-7183
We recently identified enhancer elements that activate the weak 3' splice site of alpha-tropomyosin exon 2 as well as a variety of heterologous weak 3' splice sites. To understand their mechanism of action, we devised an iterative selection strategy to identify functional pyrimidine tracts and branchpoint sequences in the presence or absence of enhancer elements. Surprisingly, we found that strong pyrimidine tracts were selected regardless of the presence of enhancer elements. However, the presence of enhancer elements resulted in the selection of multiple, non-consensus branchpoint sequences. Thus, enhancer elements apparently activate weak 3' splice sites primarily by increasing the efficiency of splicing of introns containing branchpoint sequences with less than optimal U2-branchpoint pairing arrangements. Comparison of consensus sequences from both our selection strategy and compilations of published intron sequences suggests that exon enhancer elements could be widespread and play an important role in the selection of 3' splice sites.  相似文献   

2.
The role of U2AF35 and U2AF65 in enhancer-dependent splicing.   总被引:6,自引:1,他引:5       下载免费PDF全文
Splicing enhancers are RNA sequence elements that promote the splicing of nearby introns. The mechanism by which these elements act is still unclear. Some experiments support a model in which serine-arginine (SR)-rich proteins function as splicing activators by binding to enhancers and recruiting the splicing factor U2AF to an adjacent weak 3' splice site. In this model, recruitment requires interactions between the SR proteins and the 35-kDa subunit of U2AF (U2AF35). However, more recent experiments have not supported the U2AF recruitment model. Here we provide additional evidence for the recruitment model. First, we confirm that base substitutions that convert weak 3' splice sites to a consensus sequence, and therefore increase U2AF binding, relieve the requirement for a splicing activator. Second, we confirm that splicing activators are required for the formation of early spliceosomal complexes on substrates containing weak 3' splice sites. Most importantly, we find that splicing activators promote the binding of both U2AF65 and U2AF35 to weak 3' splice sites under splicing conditions. Finally, we show that U2AF35 is required for maximum levels of activator-dependent splicing. We conclude that a critical function of splicing activators is to recruit U2AF to the weak 3' splice sites of enhancer-dependent introns, and that efficient enhancer-dependent splicing requires U2AF35.  相似文献   

3.
We show that addition of SR proteins to in vitro splicing extracts results in a significant increase in assembly of the earliest prespliceosomal complex E and a corresponding decrease in assembly of the heterogeneous nuclear ribonucleoprotein (hnRNP) complex H. In addition, SR proteins promote formation of the E5' and E3' complexes that assemble on RNAs containing only 5' and 3' splice sites, respectively. We conclude that SR proteins promote the earliest specific recognition of both the 5' and 3' splice sites and are limiting for this function in HeLa nuclear extracts. Using UV cross-linking, we demonstrate specific, splice site-dependent RNA-protein interactions of SR proteins in the E, E5', and E3' complexes. SR proteins do not UV cross-link in the H complex, and conversely, hnRNP cross-linking is largely excluded from the E-type complexes. We also show that a discrete complex resembling the E5' complex assembles on both purine-rich and non-purine-rich exonic splicing enhancers. This complex, which we have designated the Enhancer complex, contains U1 small nuclear RNP (snRNP) and is associated with different SR protein family members, depending on the sequence of the enhancer. We propose that both downstream 5' splice site enhancers and exonic enhancers function by establishing a network of pre-mRNA-protein and protein-protein interactions involving U1 snRNP, SR proteins, and U2AF that is similar to the interactions that bring the 5' and 3' splice sites together in the E complex.  相似文献   

4.
J Ct  M J Simard    B Chabot 《Nucleic acids research》1999,27(12):2529-2537
The neural cell adhesion molecule (NCAM) gene contains an 801 nt exon that is included preferentially in neuronal cells. We have set up an in vitro splicing system that mimics the neuro-specific alternative splicing profile of NCAM exon 18. Splicing regulation is observed using model pre-mRNAs that contain competing 5' or 3' splice sites, suggesting that distinct pathways regulate NCAM 5' and 3' splice site selection. While inclusion of exon 18 is the predom-inant choice in neuronal cells, an element in the 5' common exon 17 improves exon 17/exon 19 splicing in a neuronal cell line. A similar behavior is observed in vitro as the element can stimulate the 5' splice site of exon 17 or a heterologous 5' splice site. The minimal 32 nt sequence of the exon 17 enhancer consists of purine stretches and A/C motifs. Mutations in the purine stretches compromise the binding of SR proteins and decreases splicing stimulation in vitro. Mutations in the A/C motifs do not affect SR protein binding but reduce enhancing activity. Our results suggest that the assembly of an enhancer complex containing SR proteins in a 5' common exon ensures that NCAM mRNAs lacking exon 18 are made in neuronal cells.  相似文献   

5.
B G Yue  G Akusj?rvi 《FEBS letters》1999,451(1):10-14
Splicing enhancers have previously been shown to promote processing of introns containing weak splicing signals. Here, we extend these studies by showing that also 'strong' constitutively active introns are absolutely dependent on a downstream splicing enhancer for activity in vitro. SR protein binding to exonic enhancer elements or U1 snRNP binding to a downstream 5' splice site serve redundant functions as activators of splicing. We further show that a 5' splice site is most effective as an enhancer of splicing. Thus, a 5' splice site is functional in S100 extracts, under conditions where a SR enhancer is nonfunctional. Also, splice site pairing occurs efficiently in the absence of exonic SR enhancers, emphasizing the significance of a downstream 5' splice site as the enhancer element in vertebrate splicing.  相似文献   

6.
SR proteins and related factors play widespread roles in alternative pre-mRNA splicing and are known to promote splice site recognition through their Arg-Ser-rich effector domains. However, binding of SR regulators to some targets results in repression of splice sites through a distinct mechanism. Here, we investigate how activated and repressed targets of the Drosophila SR regulator Transformer2 elicit its differing effects on splicing. We find that, like activation, repression affects early steps in the recognition of splice sites and spliceosome assembly. Repositioning of regulatory elements reveals that Tra2 complexes that normally repress splicing from intronic positions activate splicing when located in an exon. Protein tethering experiments demonstrate that this position dependence is an intrinsic property of Tra2 and further show that repression and activation are mediated by separate effector domains of this protein. When other Drosophila SR factors (SF2 and Rbp1) that activate splicing from exonic positions were tethered intronically they failed to either activate or repress splicing. Interestingly, both activities of Tra2 favor the exonic identity of the RNA sequences that encompass its binding sites. This suggests a model in which these two opposite functions act in concert to define both the position and extent of alternatively spliced exons.  相似文献   

7.
TIA-1 has recently been shown to activate splicing of specific pre-mRNAs transcribed from transiently transfected minigenes, and of some 5' splice sites in vitro, but has not been shown to activate splicing of any endogenous pre-mRNA. We show here that overexpression of TIA-1 or the related protein TIAR has little effect on splicing of several endogenous pre-mRNAs containing alternative exons, but markedly activates splicing of some normally rarely used alternative exons on the TIA-1 and TIAR pre-mRNAs. These exons have weak 5' splice sites followed by U-rich stretches. When the U-rich stretch following the 5' splice site of a TIA-1 alternative exon was deleted, TIAR overexpression induced use of a cryptic 5' splice site also followed by a U-rich stretch in place of the original splice site. Using in vitro splicing assays, we have shown that TIA-1 is directly involved in activating the 5' splice sites of the TIAR alternative exons. Activation requires a downstream U-rich stretch of at least 10 residues. Our results confirm that TIA-1 activates 5' splice sites followed by U-rich sequences and show that TIAR exerts a similar activity. They suggest that both proteins may autoregulate their expression at the level of splicing.  相似文献   

8.
We have devised an in vitro splicing assay in which the mutually exclusive exons 2 and 3 of alpha-tropomyosin act as competing 3' splice sites for joining to exon 1. Splicing in normal HeLa cell nuclear extracts results in almost exclusive joining of exons 1 and 3. Splicing in decreased nuclear extract concentrations and decreased ionic strength results in increased 1-2 splicing. We have used this assay to determine the role of three constitutive pre-mRNA splicing factors on alternative 3' splice site selection. Polypyrimidine tract binding protein (PTB) was found to inhibit the splicing of introns containing a strong binding site for this factor. However, the inhibitory effect of PTB could be partially reversed if pre-mRNAs were preincubated with U2 auxiliary factor (U2AF) prior to splicing in PTB-supplemented extracts. For alpha-tropomyosin, regulation of splicing by PTB and U2AF primarily affected the joining of exons 1-3 with no dramatic increases in 1-2 splicing being detected. Preincubation of pre-mRNAs with SR proteins led to small increases in 1-2 splicing. However, if pre-mRNAs were preincubated with SR proteins followed by splicing in PTB-supplemented extracts, there was a nearly complete reversal of the normal 1-2 to 1-3 splicing ratios. Thus, multiple pairwise, and sometimes antagonizing, interactions between constitutive pre-mRNA splicing factors and the pre-mRNA can regulate 3' splice site selection.  相似文献   

9.
tau mutations that deregulate alternative exon 10 (E10) splicing cause frontotemporal dementia with parkinsonism chromosome 17-type by several mechanisms. Previously we showed that E10 splicing involved exon splicing enhancer sequences at the 5' and 3' ends of E10, an exon splicing silencer, a weak 5' splice site, and an intron splicing silencer (ISS) within intron 10 (I10). Here, we identify additional regulatory sequences in I10 using both non-neuronal and neuronal cells. The ISS sequence extends from I10 nucleotides 11-18, which is sufficient to inhibit use of a weakened 5' splice site of a heterologous exon. Furthermore, ISS function is location-independent but requires proximity to a weak 5' splice site. Thus, the ISS functions as a linear sequence. A new cis-acting element, the intron splicing modulator (ISM), was identified immediately downstream of the ISS at I10 positions 19-26. The ISM and ISS form a bipartite regulatory element, within which the ISM functions when the ISS is present, mitigating E10 repression by the ISS. Additionally, the 3' splice site of E10 is weak and requires exon splicing enhancer elements for efficient E10 inclusion. Thus far, tau FTDP-17 splicing mutations affect six predicted cis-regulatory sequences.  相似文献   

10.
We are using the tissue-specific splicing of myosin phosphatase targeting subunit (MYPT1) as a model to investigate smooth muscle phenotypic diversity. We previously identified a U-rich intronic enhancer flanking the 5' splice site (IE1), and a bipartite exonic enhancer/suppressor, that regulate splicing of the MYPT1 central alternative exon. Here we show that T-cell inhibitor of apoptosis (TIA-1) and T-cell inhibitor of apoptosis-related (TIAR) proteins bind to the IE1. Co-transfection of TIA expression vectors with a MYPT1 mini-gene construct increase splicing of the central alternative exon. TIA proteins do not enhance splicing when the palindromic exonic splicing enhancer (ESE) is mutated, indicating that TIAs are necessary but not sufficient for splicing. The ESE specifically binds SRp55 and SRp20 proteins, supporting a model in which both SR and TIA proteins binding to their cis-elements are required for the recruitment of the splicing complex to a weak 5' splice site. Inactivation of TIA proteins in the DT40 cell line (TIA-1(-/-)TIAR(+/-)) reduced the splicing of the central alternative exon of the endogenous MYPT1 as well as stably transfected MYPT1 minigene constructs. Splicing of the MYPT1 3' alternative exon and the MLC(17) alternative exon were unaffected, suggesting that TIA proteins regulate a subset of smooth muscle/nonmuscle alternative splicing reactions. Finally, reduced RNA binding and reduced expression of the TIA and SR proteins in phasic (gizzard) smooth muscle around hatching coincided with the switch from exon inclusion to exon skipping, suggesting that loss of TIA and SR enhancer activity may play a role in the developmental switch in MYPT1 splicing.  相似文献   

11.
12.
13.
Internal exon size in vertebrates occurs over a narrow size range. Experimentally, exons shorter than 50 nucleotides are poorly included in mRNA unless accompanied by strengthened splice sites or accessory sequences that act as splicing enhancers, suggesting steric interference between snRNPs and other splicing factors binding simultaneously to the 3' and 5' splice sites of microexons. Despite these problems, very small naturally occurring exons exist. Here we studied the factors and mechanism involved in recognizing a constitutively included six-nucleotide exon from the cardiac troponin T gene. Inclusion of this exon is dependent on an enhancer located downstream of the 5' splice site. This enhancer contains six copies of the simple sequence GGGGCUG. The enhancer activates heterologous microexons and will work when located either upstream or downstream of the target exon, suggesting an ability to bind factors that bridge splicing units. A single copy of this sequence is sufficient for in vivo exon inclusion and is the binding site for the known bridging mammalian splicing factor 1 (SF1). The enhancer and its bound SF1 act to increase recognition of the upstream exon during exon definition, such that competition of in vitro reactions with RNAs containing the GGGGCUG repeated sequence depress splicing of the upstream intron, assembly of the spliceosome on the 3' splice site of the exon, and cross-linking of SF1. These results suggest a model in which SF1 bridges the small exon during initial assembly, thereby effectively extending the domain of the exon.  相似文献   

14.
Combinatorial control of a neuron-specific exon.   总被引:4,自引:1,他引:3       下载免费PDF全文
The mouse c-src gene contains a short neuron-specific exon, N1. N1 exon splicing is partly controlled by an intronic splicing enhancer sequence that activates splicing of a heterologous reporter exon in both neural and nonneural cells. Here we attempt to dissect all of the regulatory elements controlling the N1 exon and examine how these multiple elements work in combination. We show that the 3' splice site sequence upstream of exon N1 represses the activation of splicing by the downstream intronic enhancer. This repression is stronger in nonneural cells and these two regulatory sequences combine to make a reporter exon highly cell-type specific. Substitution of the 3' splice site of this test exon with sites from other exons indicates that activation by the enhancer is very dependent on the nature of the upstream 3' splice site. In addition, we identify a previously uncharacterized purine-rich sequence within exon N1 that cooperates with the downstream intronic enhancer to increase exon inclusion. Finally, different regulatory elements were tested in multiple cell lines of both neuronal and nonneuronal origin. The individual splicing regulatory sequences from the src gene vary widely in their activity between different cell lines. These results demonstrate how a simple cassette exon is controlled by a variety of regulatory elements that only in combination will produce the correct tissue specificity of splicing.  相似文献   

15.
16.
Alternative splicing is regulated by splicing factors that modulate splice site selection. In some cases, however, splicing factors show antagonistic activities by either activating or repressing splicing. Here, we show that these opposing outcomes are based on their binding location relative to regulated 5′ splice sites. SR proteins enhance splicing only when they are recruited to the exon. However, they interfere with splicing by simply relocating them to the opposite intronic side of the splice site. hnRNP splicing factors display analogous opposing activities, but in a reversed position dependence. Activation by SR or hnRNP proteins increases splice site recognition at the earliest steps of exon definition, whereas splicing repression promotes the assembly of nonproductive complexes that arrest spliceosome assembly prior to splice site pairing. Thus, SR and hnRNP splicing factors exploit similar mechanisms to positively or negatively influence splice site selection.  相似文献   

17.
18.
The inclusion of exons 2 and 3 of alpha-tropomyosin is governed through tissue-specific alternative splicing. These exons are mutually exclusive, with exon 2 included in smooth muscle cells and exon 3 included in nearly all other cell types. Several cis-acting sequences contribute to this splicing decision: the branchpoints and pyrimidine tracts upstream of both exons, UGC-repeat elements flanking exon 3, and a series of purine-rich enhancers in exon 2. Previous work showed that proteins rich in serine-arginine (SR) dipeptides act through the exon 2 enhancers, but the specific proteins responsible for such activation remained unknown. Here we show that a 35-kDa member of the SR protein family, 9G8, can activate the splicing of alpha-tropomyosin exon 2. Using RNA affinity chromatography and cross-linking competition assays, we also demonstrate that the heterogeneous nuclear ribonucleoproteins (hnRNPs) H and F bind to and compete for the same elements. Overexpression of hnRNPs H and F blocked 9G8-mediated splicing both in vivo and in vitro, and small interfering RNA-directed depletion of H and F led to an increase in exon 2 splicing. These data suggest that the activation of exon 2 is dependent on the antagonistic activities of 9G8 and hnRNPs H and F.  相似文献   

19.
The RNA-binding protein hnRNP A1 is a splicing regulator produced by exclusion of alternative exon 7B from the A1 pre-mRNA. Each intron flanking exon 7B contains a high-affinity A1-binding site. The A1-binding elements promote exon skipping in vivo, activate distal 5' splice site selection in vitro and improve the responsiveness of pre-mRNAs to increases in the concentration of A1. Whereas the glycine-rich C-terminal domain of A1 is not required for binding, it is essential to activate the distal 5' splice site. Because A1 complexes can interact simultaneously with two A1-binding sites, we propose that an interaction between bound A1 proteins facilitates the pairing of distant splice sites. Based on the distribution of putative A1-binding sites in various pre-mRNAs, an A1-mediated change in pre-mRNA conformation may help define the borders of mammalian introns. We also identify an intron element which represses the 3' splice site of exon 7B. The activity of this element is mediated by a factor distinct from A1. Our results suggest that exon 7B skipping results from the concerted action of several intron elements that modulate splice site recognition and pairing.  相似文献   

20.
Trans-splicing requires that 5' and 3' splice sites be independently recognized. Here, we have used mutational analyses and a sensitive nuclease protection assay to determine the mechanism of trans-3' splice site recognition in vitro. Efficient recognition of the 3' splice site is dependent upon both the sequence of the 3' splice site itself and enhancer elements located in the 3' exon. We show that the presence of three distinct classes of enhancers results in increased binding of U2 snRNP to the branchpoint region. Several lines of evidence strongly suggest that the increased binding of U2 snRNP is mediated by U2AF. These results expand the roles of enhancers in constitutive splicing and provide direct support for the recruitment model of enhancer function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号