首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of photochemical activity during the greening of dark-grown barley seedlings (Hordeum vulgare L. cv. Svalöfs Bonus) was studied in relation to the formation of the high potential form of cytochrome b-559 (cytochrome b-559HP). Photosynthetic oxygen evolution from leaves was detected at 30 minutes of illumination. The rate of oxygen evolution per gram fresh weight of leaf was as high at 2 to 2.5 hours of greening as at 24 hours or in fully greened leaves. On a chlorophyll basis, the photosynthetic rate at 90 minutes of greening was 80-fold greater than the rate at 45 hours. It is concluded that the majority of photosynthetic units are functional at an early stage of greening, and that chlorophyll synthesis during greening serves to increase the size of the units.  相似文献   

2.
Shoots of anaerobically germinated Echinochloa crus-galli var oryzicola are nonpigmented whether germinated in light or dark, and chlorophyll synthesis is minimal for the first 12 to 18 hours of greening after exposure to ambient conditions. When chlorophyll development is compared between greening anoxic and etiolated shoots, there is a 100-fold difference in chlorophyll levels at 8 hours, an 8-fold difference at 24 hours, but roughly equal amounts at 60 hours. The chlorophyll a/b ratio approaches 3 earlier in greening anoxic shoots than in greening etiolated shoots, relative to total chlorophyll. The long lag in chlorophyll synthesis can be shortened by giving dark-grown anoxic shoots a 24-hour midtreatment of air before light.

Development of photosynthetic activity in etiolated shoots, determined by CO2 gas exchange, 14CO2 uptake, and activity of carboxylating enzymes closely parallels development of chlorophylls. However, development of photosynthetic capability in greening anoxic shoots does not parallel chlorophyll development; ability to fix carbon lags behind chlorophyll synthesis. A reason for this lag is the very low activity of RuBP carboxylase during the first 36 hours of greening in anoxic shoots. The activity of phosphoenolpyruvate carboxylase is also delayed, but its kinetics more closely match those of chlorophyll development.

  相似文献   

3.
The formation of chlorophyll, cytochrome f, P-700, ribulose bisphosphate carboxylase as well as photosynthesis and Hill reaction activities were tested during the light-dependent greening process of the Chlorella fusca mutant G 10. Neither chlorophyll nor protochlorophyllide was detected in the darkgrown cells. When transferred to light the mutant cells developed chlorophyll and established its photosynthetic capacity after a short lag phase. In the in vivo absorption spectra a spectral shift of the red absorption peak position from 674 to 680 nm was indicated during the first 3 h of greening. Cytochrome f was already present in the dark-grown cells, but during the greening phase a threefold increase in the cytochrome f content could be seen. At the early stages of greening a characteristic primary oscillation in the content of cytochrome f was observed. P-700 was lacking in the dark and during the first 30 min of illumination. From the first to the second h of light a forced synthesis of P-700 took place and the time-course curve for the ratios of P-700/chlorophyll rose to a sharp maximum. The synthesis of P-700 started together with photosystem I activity and showed similar kinetics. We found the simultaneous appearance of photosystem II, photosystem I, and photosynthetic activities 30 min after the beginning of the illumination. Based on chlorophyll content they attained maximum activity after 2 h of light, but at this time photosystem I capacity proved to be remarkably higher than photosynthetic and photosystem II activities. Highest carboxylase activity existed in darkgrown cells. During the greening process the activity of the enzyme decreased continuously. After 2 h of illumination chlorophyll synthesis partially served to increase the size of the photosynthetic unit, which consequently led to a decrease in the light energy needed to saturate photosynthesis and also to a decrease of photosynthetic rate based on chlorophyll content.Abbreviations Chl chlorophyll - Cyt f cytochrome f - DPIP 2,6-dichlorophenolindophenol - EDTA ethylenediaminetetraacetic acid - GSH glutathione - LH light-harvesting - PS photosystem - RuBP ribulose bisphosphate  相似文献   

4.
This paper describes the morphology and photosynthetic activity of a mutant of Chlamydomonas reinhardi (y-1) which is unable to synthesize chlorophyll in the dark. When grown heterotrophically in the light, the mutant is indistinguishable from the wild type Chlamydomonas. When grown in the dark, chlorophyll is diluted through cell division and the photosynthetic activity (oxygen evolution, Hill reaction, and photoreduction of NADP) decays at a rate equal to or faster than that of chlorophyll dilution. However, soluble enzymes associated with the photosynthetic process (alkaline FDPase, NADP-linked G-3-P dehydrogenase, RuDP carboxylase), as well as cytochrome f and ferredoxin, continue to be present in relatively high concentrations. The enzymes involved in the synthesis of the characteristic lipids of the chloroplast (including mono- and digalactoside glycerides, phosphatidyl glycerol, and sulfolipid) are still detectable in dark-grown cells. Such cells accumulate large amounts of starch granules in their plastids. On onset of illumination, dark-grown cells synthesize chlorophyll rapidly, utilizing their starch reserve in the process. At the morphological level, it was observed that during growth in the dark the chloroplast lamellar system is gradually disorganized and drastically decreased in extent, while other subchloroplast components are either unaffected (pyrenoid and its tubular system, matrix) or much less affected (eyespot, ribosomes). It is concluded that the dark-grown mutant possesses a partially differentiated plastid and the enzymic apparatus necessary for the synthesis of the chloroplast membranes (discs). The advantage provided by such a system for the study of the biogenesis of the chloroplast photosynthetic membranes is discussed.  相似文献   

5.
The development of photochemical activities in isolated barley plastids during illumination of dark-grown plants has been studied and compared with the behaviour of plastocyanin, cytochromes f, b-559LP, b-563 and b-559HP and pigments P546 (C550) and P700. Electron-transport activity dependent on Photosystem 1 and cyclic photophosphorylation dependent on N-methylphenazonium methosulphate (phenazine methosulphate) were very active relative to the chlorophyll content after only a few minutes of illumination of etiolated leaves, and then rapidly declined during the first few hours of greening. By contrast, Photosystem 2 activity (measured with ferricyanide as electron acceptor) and non-cyclic photophosphorylation were not detectable during the first 2½h of greening, but then increased in total amount in parallel with chlorophyll. The behaviour of the electron carriers suggested their association with either Photosystem 1 or 2 respectively. In the first group were plastocyanin, cytochrome f and cytochrome b-563, whose concentrations in the leaf did not change during greening, and cytochrome b-559LP whose concentration fell to one-half its original value, and in the second group were cytochrome b-559HP and pigment P546, the concentrations of which closely followed the activities of Photosystem 2. Pigment P700 could not be detected during the first hour, during which time some other form of chlorophyll may take its place in the reaction centre of Photosystem 1. The plastids started to develop grana at about the time that Photosystem 2 activity became detectable.  相似文献   

6.
Hidema J  Makino A  Mae T  Ojima K 《Plant physiology》1991,97(4):1287-1293
Effects of irradiance on photosynthetic characteristics were examined in senescent leaves of rice (Oryza sativa L.). Two irradiance treatments (100 and 20% natural sunlight) were imposed after the full expansion of the 13th leaf through senescence. The photosynthetic rate was measured as a function of intercellular CO2 pressure with a gas-exchange system. The amounts of cytochrome f, coupling factor 1, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), and chlorophyll were determined. The coupling factor 1 and cytochrome f contents decreased rapidly during senescence, and their rates of decrease were much faster from the 20% sunlight treatment than from the full sunlight treatment. These changes were well correlated with those in the photosynthetic rate at CO2 pressure = 600 microbars, but not with those under the ambient air condition (350 microbars CO2) and 200 microbars CO2. This suggested that the amounts of coupling factor 1 and cytochrome f from the full sunlight treatment cannot be limiting factors for the photosynthetic rate at ambient air conditions. The Rubisco content also decreased during senescence, but its decrease from the 20% sunlight treatment was appreciably retarded. However, this difference was not reflected in the photosynthetic rates at the ambient and 200 microbars CO2. This implied that in vivo Rubisco activity may be regulated in the senescent leaves from the 20% sunlight treatment. The chlorophyll content decreased most slowly. In the 20% sunlight treatment, it remained apparently constant with a decline in chlorophyll a/b ratio. These photosynthetic characteristics of the senescent rice leaves under low irradiance were discussed in relation to acclimation of shade plants.  相似文献   

7.
A pulse of red light acting through phytochrome accelerates the formation of chlorophyll upon subsequent transfer of dark-grown seedlings to continuous white light. Specific antibodies were used to follow the accumulation of representative subunits of the major photosynthetic complexes during greening of seedlings of tomato (Lycopersicon esculentum). The time course for accumulation of the various subunits was compared in seedlings that received a red light pulse 4 h prior to transfer to continuous white light and parallel controls that did not receive a red light pulse. The light-harvesting chlorophyll-binding proteins of photosystem II (LHC II), the 33-kD extrinsic polypeptide of the oxygen-evolving complex (OEC1), and subunit II of photosystem I (psaD gene product) all increased in the light, and did so much faster in seedlings that received the inductive red light pulse. The red light pulse had no significant effect on the abundance of the small subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), nor on several plastid-encoded polypeptides: the large subunit of Rubisco, the β subunit of the CF1 complex of plastid ATPase, and the 43- and 47-kD subunits of photosystem II (CP43, CP47). Subunits I (cytochrome b6f) and III (Rieske Fe-S protein) of the cytochrome b6f complex showed a small or no increase as a result of the red pulse. The potentiation of greening by a pulse of red light, therefore, is not expressed uniformly in the abundance of all the photosynthetic complexes and their subunits.  相似文献   

8.
The development of photosynthetic activity and synthesis of chloroplast membrane polypeptides was studied during greening of Euglena gracilis Z in alternate light-dark-light cycles. The results show: (a) The development of both Photosystem II and Photosystem I can be dissociated from chlorophyll synthesis. (b) Most of the polypeptides required for development of Photosystem I are already synthesized during the initial light period (10–12 h); the further rise in Photosystem I activity in the dark is not inhibited by cycloheximide nor by chloramphenicol. (c) The development of Photosystem II requires continuous de novo synthesis of polypeptides and is inhibited by chloramphenicol. The water-splitting activity already present at the end of the first light period decays in the presence of chloramphenicol while that of 1,5-diphenylcarbazide oxidation is only partially retained. The activity can be repaired in the absence of chlorophyll synthesis and is correlated with the de novo synthesis of polypeptides of 50 000–60 000 daltons. The synthesis of these polypeptides and associated repair of Photosystem II activity is not inhibited by cycloheximide. (d) The chloroplast membranes can be resolved into about 40 distinct polypeptides, among them several in the molecular weight range 50 000–60 000, 20 000–35 000 and 10 000–15 000, which are major membrane constitutents. (e) The synthesis of two major polypeptides (Mr = 20 000–30 000) required for the formation of chlorophyll-protein complex(es) containing chlorophyll a and traces of chlorophyll b (CPII?) is light-dependent and cycloheximide-inhibited. It is concluded that the synthesis and addition to the growing membrane of chlorophyll and polypeptides required for the formation of Photosystem II and Photosystem I complexes can be dissociated in time. The H2O-splitting enzyme(s) and possibly other components of Photosystem II complex are of chloroplastic origin and turn over in the dark while at least some of the chlorophyll binding polypeptides are of cytoplastic origin and their synthesis is light-controlled.  相似文献   

9.
We investigated the effect of growth light intensity on the photosynthetic apparatus of pea (Pisum sativum) thylakoid membranes. Plants were grown either in a growth chamber at light intensities that ranged from 8 to 1050 microeinsteins per square meter per second, or outside under natural sunlight. In thylakoid membranes we determined: the amounts of active and inactive photosystem II, photosystem I, cytochrome b/f, and high potential cytochrome b559, the rate of uncoupled electron transport, and the ratio of chlorophyll a to b. In leaves we determined: the amounts of the photosynthetic components per leaf area, the fresh weight per leaf area, the rate of electron transport, and the light compensation point. To minimize factors other than growth light intensity that may alter the photosynthetic apparatus, we focused on peas grown above the light compensation point (20-40 microeinsteins per square meter per second), and harvested only the unshaded leaves at the top of the plant. The maximum difference in the concentrations of the photosynthetic components was about 30% in thylakoids isolated from plants grown over a 10-fold range in light intensity, 100 to 1050 microeinsteins per square meter per second. Plants grown under natural sunlight were virtually indistinguishable from plants grown in growth chambers at the higher light intensities. On a leaf area basis, over the same growth light regime, the maximum difference in the concentration of the photosynthetic components was also about 30%. For peas grown at 1050 microeinsteins per square meter per second we found the concentrations of active photosystem II, photosystem I, and cytochrome b/f were about 2.1 millimoles per mol chlorophyll. There were an additional 20 to 33% of photosystem II complexes that were inactive. Over 90% of the heme-containing cytochrome f detected in the thylakoid membranes was active in linear electron transport. Based on these data, we do not find convincing evidence that the stoichiometries of the electron transport components in the thylakoid membrane, the size of the light-harvesting system serving the reaction centers, or the concentration of the photosynthetic components per leaf area, are regulated in response to different growth light intensities. The concept that emerges from this work is of a relatively fixed photosynthetic apparatus in thylakoid membranes of peas grown above the light compensation point.  相似文献   

10.
Changes in the amount of P700-chlorophyll a protein complex, plastocyanin, and cytochrome b6/f complex during greening of pea (Pisum sativum L.), wheat (Triticum aestivum L.), and barley (Hordeum vulgare L.) leaves were analyzed by an immunochemical quantification method. Neither subunit I nor II of P700-chlorophyll a protein complex could be detected in the etiolated seedlings of all three plants and the accumulation of these subunits was shown to be light dependent. On the other hand, a small amount of plastocyanin was present in the etiolated seedlings of all three plants and its level increased about 30-fold during the subsequent 72-hour greening period. Furthermore, cytochrome f, cytochrome b6, and Rieske Fe-S center protein in cytochrome b6/f complex were also present in the etiolated seedings of all three plants. The level of each subunit component increased differently during greening and their induction pattern differed from species to species. The accumulation of cytochrome b6/f complex was most profoundly affected by light in pea leaves, and the levels of cytochrome f, cytochrome b6, and Rieske Fe-S center protein increased during greening about 10-, 20-, and more than 30-fold, respectively. In comparison to the case of pea seedlings, in wheat and barley leaves the level of each subunit component increased much less markedly. The results suggest that light regulates the accumulation of not only the chlorophyll protein complex but also the components of the electron transport systems.  相似文献   

11.
Xian-De Liu 《BBA》2005,1706(3):215-219
This study investigated the regulation of the major light harvesting chlorophyll a/b protein (LHCII) phosphorylation in Dunaliella salina thylakoid membranes. We found that both light and NaCl could induce LHCII phosphorylation in D. salina thylakoid membranes. Treatments with oxidants (ferredoxin and NADP) or photosynthetic electron flow inhibitors (DCMU, DBMIB, and stigmatellin) inhibited LHCII phosphorylation induced by light but not that induced by NaCl. Furthermore, neither addition of CuCl2, an inhibitor of cytochrome b6f complex reduction, nor oxidizing treatment with ferricyanide inhibited light- or NaCl-induced LHCII phosphorylation, and both salts even induced LHCII phosphorylation in dark-adapted D. salina thylakoid membranes as other salts did. Together, these results indicate that the redox state of the cytochrome b6f complex is likely involved in light- but not salt-induced LHCII phosphorylation in D. salina thylakoid membranes.  相似文献   

12.
Changes in the photochemical activities, influenced by variation in the growth light intensity, were followed in typical C3 (Phaseolus, Ipomoea) and C4 (Amaranthus, Sorghum) plants. Progressive decrease in the growth light intensity accelerated the O-P fluorescence induction in whole leaves. Such acceleration of the fluorescence kinetics was found to be not due to enhanced photosystem II activity but possibly a result of reduced rate of electron flow between the two photosystems. This is supported by 4 lines of evidence: (1) by the Hill activity determined in the presence of electron acceptors functioning before and after plastoquinone; (2) the photosynthetic unit size determined after flash excitation showing variations that were apparently too small to account for the changes observed fluorescence induction; (3) modification of the kinetics of secondrange light-induced absorbance changes at 520 nm; and (4) absence of significant changes in the ratio of P700/total chlorophyll ratio. The P700/cytochrome f ratio, however, increased from the usual 1–1.5 to 3–4 in plants grown under 9% sunlight. Increase in the P700/cytochrome f ratio was found to be due to a decrease in the cytochrome f/chlorophyll ratio, and this was due to perhaps to a simultaneous increase in chlorophyll and decrease in cytochrome content.  相似文献   

13.
Changes in the photochemical activities, influenced by variation in the growth light intensity, were followed in typical C3 (Phaseolus, Ipomoea) and C4 (Amaranthus, Sorghum) plants. Progressive decrease in the growth light intensity accelerated the O-P fluorescence induction in whole leaves. Such acceleration of the fluorescence kinetics was found to be not due to enhanced photosystem II activity but possibly a result of reduced rate of electron flow between the two photosystems. This is supported by 4 lines of evidence: (1) by the Hill activity determined in the presence of electron acceptors functioning before and after plastoquinone; (2) the photosynthetic unit size determined after flash excitation showing variations that were apparently too small to account for the changes observed fluorescence induction; (3) modification of the kinetics of second-range light-induced absorbance changes at 520 nm; and (4) absence of significant changes in the ratio of P700/total chlorophyll ratio. The P700/cytochrome f ratio, however, increased from the usual 1–1.5 to 3–4 in plants grown under 9% sunlight. Increase in the P700/cytochrome f ratio was found to be due to a decrease in the cytochrome f/chlorophyll ratio, and this was due to perhaps to a simultaneous increase in chlorophyll and decrease in cytochrome content.  相似文献   

14.
Coffea arabica L. is considered to be sensitive to low temperatures throughout its life cycle. In some Brazilian regions, seedling production occurs under shade conditions and during the winter, with average temperatures of around 10 °C. The formation and functioning of the photosynthetic apparatus are strongly controlled by temperature. This study aimed to assess the changes that occurred in pigment contents, lipid peroxidation and variables of chlorophyll a fluorescence during the greening process of coffee seedlings submitted to chilling. Results indicate that saturation of the photosynthetic activity of coffee seedlings occurred before saturation of the accumulation of chloroplastid pigments. Pigment accumulation during the greening process is far beyond the metabolic needs for the maintenance of photosynthetic activity, more specifically of photosystem II. Coffee seedlings attained a quantum yield equivalent to that of the control with approximately half the chlorophyll a and b contents and around 40% of the carotenoid. Low temperature decreases the metabolism of seedlings, consequently reducing free radical production and lipid peroxidation. The chilling temperature (10 °C) used inhibited the accumulation of chloroplast pigments, in turn altering the capacity of the photosynthetic tissue of etiolated coffee seedlings to capture and transfer photon energy to the photosystem II reaction centre. These alterations were better demonstrated by O-J-I-P chlorophyll a fluorescence transients, rather than Fv/Fm and Fv/F0 ratios.  相似文献   

15.
Biogenesis of the photosynthetic apparatus in greening etiolated leaves of barley (Hordeum vulgare L) was investigated by an approach permitting investigation of this process under conditions that minimize differences in plastid development. Distributions of barley leaves greening for 24 h as to chlorophyll content and of chloroplast grana as to number of thylakoids were shown to be of a multimodal character. The shape of time-course curves of chlorophyll accumulation in local sites of greening etiolated leaves was of a stepped or (at the end of greening) undulated character. The stepwise accumulation of chlorophyll was accompanied by wave-like changes in chlorophyll b/a ratio, intensity of low-temperature chlorophyll fluorescence and photosynthetic activity with minima at the time points of transition to accelerated chlorophyll accumulation. It is assumed that (1) development of the photosynthetic apparatus in local sites of greening etiolated leaves occurs stepwise, from one steady level to another, but not as gradually as is generally accepted, and (2) every separate step in development of the photosynthetic apparatus seems to begin with formation of photosystem cores and to end with the synthesis of light-harvesting complexes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Wang WY 《Plant physiology》1980,65(3):451-454
When seeds of Echinochloa crusgalli var. oryzicola are germinated in dark anaerobic conditions (99.995% N2), the seedlings do not have detectable protochlorophyll(ide). Two hours after exposure to light aerobic conditions, they begin to synthesize chlorophyll. The lag in greening is shorter in seedlings exposed to light for 24 hours before exposure to air. Seedlings maintained in light anaerobic conditions exhibit no lag in greening upon transfer to an aerobic environment. Preillumination of anaerobically grown seedlings does not result in any chlorophyll accumulation. Phytochrome is probably the receptor for photoactivation of chlorophyll synthesis, since activation is achieved by red light alone, but not by far red light or red plus far red light. The cytochrome oxidase activity in anaerobically germinated seedlings is 30% of the normal level found in aerobically grown seedlings. Preillumination was also found to activate the ability of anaerobically germinated seedlings to increase their cytochrome oxidase activity upon exposure to air.  相似文献   

17.
The cytochrome b 6 f complex occupies a central position in photosynthetic electron transport and proton translocation by linking PS II to PS I in linear electron flow from water to NADP+, and around PS I for cyclic electron flow. Cytochrome b 6 f complexes are uniquely located in three membrane domains: the appressed granal membranes, the non-appressed stroma thylakoids and end grana membranes, and also the non-appressed grana margins, in contrast to the marked lateral heterogeneity of the localization of all other thylakoid multiprotein complexes. In addition to its vital role in vectorial electron transfer and proton translocation across the membrane, cytochrome b 6 f complex is also involved in the regulation of balanced light excitation energy distribution between the photosystems, since its redox state governs the activation of LHC II kinase (the kinase that phosphorylates the mobile peripheral fraction of the chlorophyll a/b-proteins of LHC II of PS II). Hence, cytochrome b 6 f complex is the molecular link in the interactive co-regulation of light-harvesting and electron transfer.The importance of a highly dynamic, yet flexible organization of the thylakoid membranes of plants and green algae has been highlighted by the exciting discovery that a lateral reorganization of some cytochrome b 6 f complexes occurs in the state transition mechanism both in vivo and in vitro (Vallon et al. 1991). The lateral redistribution of phosphorylated LHC II from stacked granal membrane regions is accompanied by a concomitant movement of some cytochrome b 6 f complexes from the granal membranes out to the PS I-containing stroma thylakoids. Thus, the dynamic movement of cytochrome b 6 f complex as a multiprotein complex is a molecular mechanism for short-term adaptation to changing light conditions. With the concept of different membrane domains for linear and cyclic electron flow gaining credence, it is thought that linear electron flow occurs in the granal compartments and cyclic electron flow is localised in the stroma thylakoids at non-limiting irradiances. It is postulated that dynamic lateral reversible redistribution of some cytochrome b 6 f complexes are part of the molecular mechanism involved in the regulation of linear electron transfer (ATP and NADPH) and cyclic electron flow (ATP only). Finally, the molecular significance of the marked regulation of cytochrome b 6 f complexes for long-term regulation and optimization of photosynthetic function under varying environmental conditions, particularly light acclimation, is discussed.Abbreviations Chl chlorophyll - cyt cytochrome - PS Photosystem  相似文献   

18.
The rapid transfer of electrons in the photosynthetic redox chain is achieved by the formation of short-lived complexes of cytochrome b6f with the electron transfer proteins plastocyanin and cytochrome c6. A balance must exist between fast intermolecular electron transfer and rapid dissociation, which requires the formation of a complex that has limited specificity. The interaction of the soluble fragment of cytochrome f and cytochrome c6 from the cyanobacterium Nostoc sp. PCC 7119 was studied using NMR spectroscopy and X-ray diffraction. The crystal structures of wild type, M58H and M58C cytochrome c6 were determined. The M58C variant is an excellent low potential mimic of the wild type protein and was used in chemical shift perturbation and paramagnetic relaxation NMR experiments to characterize the complex with cytochrome f. The interaction is highly dynamic and can be described as a pure encounter complex, with no dominant stereospecific complex. Ensemble docking calculations and Monte-Carlo simulations suggest a model in which charge–charge interactions pre-orient cytochrome c6 with its haem edge toward cytochrome f to form an ensemble of orientations with extensive contacts between the hydrophobic patches on both cytochromes, bringing the two haem groups sufficiently close to allow for rapid electron transfer. This model of complex formation allows for a gradual increase and decrease of the hydrophobic interactions during association and dissociation, thus avoiding a high transition state barrier that would slow down the dissociation process.  相似文献   

19.
Iron nutrition-mediated chloroplast development   总被引:4,自引:2,他引:2       下载免费PDF全文
Membrane development in chloroplasts was explored by resupplying iron to iron-deficient sugar beet (Beta vulgaris L. cv F58-554H1) and monitoring changes in lamellar components during regreening. The synthesis of chlorophyll a, chlorophyll b, and Q, the first stable electron acceptor of photosystem II, exhibited a lag phase during the first 24 to 48 hours of resupply. In contrast, the per area amounts of P700 and cytochrome f increased linearly over the first 48 hours. During the early regreening period, the Q to P700 ratio was 2.6 and decreased to 0.7 after 96 hours of regreening. The rate of photosynthesis (net CO2 uptake) per chlorophyll increased during the first 48 hours of resupply, then by 96 hours decreased to values typical of control plants. The results suggest that there was preferential synthesis of the measured photosystem I components during the first 24 to 48 hours, while from 48 to 96 hours there was rapid synthesis of all components. The iron nutrition-mediated chloroplast development system provides a useful experimental approach for studying biomembrane synthesis and structural-functional relations of the photosynthetic apparatus.  相似文献   

20.
The cytochrome b6f complex is an integral part of the photosynthetic and respiratory electron transfer chain of oxygenic photosynthetic bacteria. The core of this complex is composed of four subunits, cytochrome b, cytochrome f, subunit IV and the Rieske protein (PetC). In this study deletion mutants of all three petC genes of Synechocystis sp. PCC 6803 were constructed to investigate their localization, involvement in electron transfer, respiration and photohydrogen evolution. Immunoblots revealed that PetC1, PetC2, and all other core subunits were exclusively localized in the thylakoids, while the third Rieske protein (PetC3) was the only subunit found in the cytoplasmic membrane. Deletion of petC3 and both of the quinol oxidases failed to elicit a change in respiration rate, when compared to the respective oxidase mutant. This supports a different function of PetC3 other than respiratory electron transfer. We conclude that the cytoplasmic membrane of Synechocystis lacks both a cytochrome c oxidase and the cytochrome b6f complex and present a model for the major electron transfer pathways in the two membranes of Synechocystis. In this model there is no proton pumping electron transfer complex in the cytoplasmic membrane.Cyclic electron transfer was impaired in all petC1 mutants. Nonetheless, hydrogenase activity and photohydrogen evolution of all mutants were similar to wild type cells. A reduced linear electron transfer and an increased quinol oxidase activity seem to counteract an increased hydrogen evolution in this case. This adds further support to the close interplay between the cytochrome bd oxidase and the bidirectional hydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号