首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of photosynthetic lamellae during greening of dark-grown Chlamydomonas y-1 cells was investigated by radioautography. Acetate-3H was used as a marker for membrane lipids. In short pulse-labeling experiments, about 50–60% of the radioactivity incorporated was found in the lipid fraction and about 25–50% in starch granules present in the chloroplast of these algae. The relative specificity of acetate-3H used as a marker for membranes was artificially increased through quantitative removal of the starch granules from fixed cells by amylase treatment. Analysis of turnover coefficients of different membrane constituents and of the contribution of turnover and net synthesis to the total label incorporated in pulse experiments indicated that the incorporation of acetate into specific lipids was mainly due to net synthesis. The distribution of radioactivity in the different lipid constituents at the end of a short pulse and after 30- and 60-min chases indicated that transacylation is minimal and may be disregarded as a possible cause of randomization of the label. Statistical analysis of radioautographic grain distribution and measurements of different structural parameters indicate that (a) the chloroplast volume and surface remain constant during the process, whereas the growth of the photosynthetic lamellae parallels the increase in chlorophyll; (b) the lamellae do not develop from the chloroplast envelope or from the tubular system of the pyrenoid; (c) all the lamellae grow by incorporation of new material within preexisting structures; (d) different types of lamellae grow at different rates. The pyrenoid tubular system develops faster than the thylakoids, and single thylakoids develop about twice as fast as those which are paired or fused to grana. It is concluded that growth of the membranes occurs by a mechanism of random intussusception of molecular complexes within different types of preexisting membranes.  相似文献   

2.
The glycolipid, phospholipid, pigment, and fatty acid content in whole y-1 cells during the greening process have been investigated. The time course of their changes indicates that phosphatidyl glycerol and glycolipids are the main lipids synthesized specifically during illumination of dark-grown cells, concomitant with an increase in the polyunsaturated C18:2 and C18:3 fatty acids. The pigment complex of light-grown cells consists mainly of chlorophylls a and b, lutein, β-carotene, violaxanthin, and neoxanthin. During the greening process, chlorophylls a and b are synthesized in constant proportions (ratio a/b equals 2.6), β-carotene and violaxanthin do not change significantly, and lutein and neoxanthin increase. The molar ratios of the different lipids and pigment to total chlorophyll during greening has been calculated. It was found that during the initial phase of greening when chlorophyll is synthesized at increasing rates, the molar ratios of various lipids and pigments to chlorophyll decrease and tend to become constant when chlorophyll and membrane synthesis proceed at constant rates. The implication of these findings with respect to the concept of membrane assembly through a spontaneous single step process is discussed  相似文献   

3.
Cahen D  Malkin S 《Plant physiology》1976,58(3):257-267
The relative content of organized pigment, active centers, and acceptor pools of photosystem II and their interconnection during the development of the photosynthetic membranes of Chlamydomonas reinhardi y-1 have been measured using the fluorescence induction technique. The degree of connectivity and efficiency of the developing system has been assessed also from measurements of maximal rates, quantum yield, and flash yield of 2,6-dichlorophenolindophenol photoreduction using H2O as the electron donor. The results obtained indicate that the process of membrane development in this organism consists of two phases: an initial phase of reorganization and connection between pre-existing components, and a second phase of actual accumulation of newly formed, complete, and active units. The ratio of active centers to Chl remains practically constant throughout the process while the degree of connectivity between the active center and the plastoquinone pool was doubled during the early phase of the greening. In addition the degree of connectivity between the plastoquinone pool and the rest of the electron transport chain increases as demonstrated by a 10- to 20-fold rise in the quantum yield and a 10-fold rise in the maximal rate and the flash yield. The ratio of light harvesting Chl to active centers remains apparently constant during the second phase of the greening as indicated by light saturation experiments and by the constancy of the apparent photosynthetic unit size. Electron donation from H2O seems to develop slower than the activity of the rest of the complex as demonstrated by measurements of 2,6-dichlorophenolindophenol photoreduction using 1,5-diphenylcarbazide as the electron donor. The value of all the above parameters which remain constant during the second phase of the greening are comparable to those obtained with membranes of light-grown cells.  相似文献   

4.
Wild-type chloroplast membranes from Chlamydomonas reinhardi exhibit four faces in freeze-etchreplicas: the complementary Bs and Cs faces are found where the membranes are stacked together; the complementary Bu and Cu faces are found in unstacked membranes. The Bs face carries a dense population of regularly spaced particles containing the large, 160 ± 10 A particles that appear to be unique to chloroplast membranes. Under certain growth conditions, membrane stacking does not occur in the ac-5 strain. When isolated, these membranes remain unstacked, exhibit only Bu and Cu faces, and retain the ability to carry out normal photosynthesis. Membrane stacking is also absent in the ac-31 strain, and, when isolated in a low-salt medium, these membranes remain unstacked and exhibit only Bu and Cu faces. When isolated in a high-salt medium, however, they stack normally, and Bs and Cs faces are produced by this in vitro stacking process. We conclude that certain particle distributions in the chloroplast membrane are created as a consequence of the stacking process, and that the ability of membranes to stack can be modified both by gene mutation and by the ionic environment in which the membranes are found.  相似文献   

5.
This paper describes the morphology and photosynthetic activity of a mutant of Chlamydomonas reinhardi (y-1) which is unable to synthesize chlorophyll in the dark. When grown heterotrophically in the light, the mutant is indistinguishable from the wild type Chlamydomonas. When grown in the dark, chlorophyll is diluted through cell division and the photosynthetic activity (oxygen evolution, Hill reaction, and photoreduction of NADP) decays at a rate equal to or faster than that of chlorophyll dilution. However, soluble enzymes associated with the photosynthetic process (alkaline FDPase, NADP-linked G-3-P dehydrogenase, RuDP carboxylase), as well as cytochrome f and ferredoxin, continue to be present in relatively high concentrations. The enzymes involved in the synthesis of the characteristic lipids of the chloroplast (including mono- and digalactoside glycerides, phosphatidyl glycerol, and sulfolipid) are still detectable in dark-grown cells. Such cells accumulate large amounts of starch granules in their plastids. On onset of illumination, dark-grown cells synthesize chlorophyll rapidly, utilizing their starch reserve in the process. At the morphological level, it was observed that during growth in the dark the chloroplast lamellar system is gradually disorganized and drastically decreased in extent, while other subchloroplast components are either unaffected (pyrenoid and its tubular system, matrix) or much less affected (eyespot, ribosomes). It is concluded that the dark-grown mutant possesses a partially differentiated plastid and the enzymic apparatus necessary for the synthesis of the chloroplast membranes (discs). The advantage provided by such a system for the study of the biogenesis of the chloroplast photosynthetic membranes is discussed.  相似文献   

6.
Electron transport activity and absorbance changes associated with P700 were investigated in a mutant strain of Chlamydomonas reinhardi with impaired photosynthesis. This mutant strain, ac-8oa, cannot reduce NADP with electrons from either water or dye and ascorbate, but it has considerable Hill activity. The mutant strain shows none of the absorbance changes characteristic of P700. Although unable to carry out cyclic photosynthetic phosphorylation, ac-8oa is able to synthesize ATP when ferricyanide is provided as an electron acceptor.

These observations lead to the conclusion that a site for the coupling of photosynthetic phosphorylation with electron transport must exist between the 2 photochemical systems.

  相似文献   

7.
The constitutive enzymes of microsomal membranes were investigated during a period of rapid ER development (from 3 days before to 8 days after birth) in rat hepatocytes. The activities studied (electron transport enzymes and phosphatases) appear at different times and increase at different rates. The increase in the enzyme activities tested was inhibited by Actinomycin D and puromycin. G-6-Pase and NADPH-cytochrome c reductase activities appeared first in the rough microsomes, and subsequently in smooth microsomes, eventually reaching a uniform concentration as in adult liver. The evidence suggests that the enzymes are synthesized in the rough part, then transferred to the smooth part, of the ER. Changes in the fat supplement of the maternal diet brought about changes in the fatty acid composition of microsomal phospholipids but did not influence the enzymic pattern of the suckling. Microsomes from 8-day-old and adult rats lose 95% of PLP and 80% of NADH-cytochrome c reductase activity after acetone-H2O (10:1) extraction. However, one-half the original activity could be regained by adding back phospholipid micelles prepared from purified phospholipid, or from lipid extracts of heart mitochondria, or of liver microsomes of 8-day or adult rats, thus demonstrating an activation of the enzyme by nonspecific phospholipid. The results suggest that during development the enzymic pattern is not influenced by the fatty acid or phospholipid composition of ER membranes.  相似文献   

8.
Light- and oxygen-induced changes of cytochromes f, b563, and b559 and ferredoxin-flavoprotein were studied by a double beam spectrophotometer with combinations of inhibitors and lowered temperatures in the whole cells of the pale green mutant of Chlamydomonas reinhardi (ATCC 18302). At room temperature, the steady state changes of cytochrome f and ferredoxin-flavoprotein are small, but at low temperature slightly above 0 C, they are clearly defined. Phenylmercuric acetate inhibits photoreduction of ferredoxin-flavoprotein and cytochrome f simultaneously but not that of cytochrome b563. 2-Heptyl-4-hydroxyquinoline-N-oxide shows a crossover point between cytochromes f and b563 and partially inhibits photoreduction of cytochrome f. Two cyclic pathways operating in C. remhardi are postulated: (a) photosystem I → xb563f → photosystem I; and (b) photosystem I → x → ferredoxin-flavoprotein → f → photosystem I.  相似文献   

9.
H S Shepherd  G Ledoigt  S H Howell 《Cell》1983,32(1):99-107
Light-harvesting chlorophyll a/b protein (LHCP) synthesis is highly regulated during the cell cycle in light-dark synchronized C. reinhardi cells. LHCPs are a family of cytoplasmically synthesized proteins which are imported into the chloroplast. LHCPs are derived from at least two precursor proteins (32 kd and 30 kd) that are synthesized in vitro and immunoprecipitated by antiserum against chlorophyll-protein complex II proteins. A DNA copy of the mRNA encoding a 32 kd LHCP precursor was cloned from cDNA synthesized from poly(A) RNA obtained from mid-light-phase synchronous cells. Using cloned cDNA (pHS16) as a hybridization probe, we found that a single 1.2 kb RNA complementary to pHS16 accumulates in a wave-like manner during the mid-light phase of the 12 hr light-12 hr dark cycle and correlates with the pattern of chlorophyll synthesis. Light, during the light phase in the light-dark cycle, is required for accumulation of this RNA.  相似文献   

10.
The stepwise synthesis and assembly of photosynthetic membrane components in the y-1 mutant of Chlamydomonas reinhardi have been previously demonstrated (Ohad 1975 In Membrane Biogenesis, Mitochondria, Chloroplasts and Bacteria, Plenum, pp 279-350). This experimental system was used here in order to investigate the process of formation and interconnection of the energy collecting chlorophylls with the reaction centers of both photosystems I and II. The following measurements were carried out: photosynthetic electron flow at various light intensities, including parts or the entire electron transfer chain; analysis of the kinetics of fluorescence emission at room temperature and fluorescence emission spectra at 77 K, and electrophoretic separation of membrane polypeptides and chlorophyll protein complexes. Based on the data obtained it is concluded that: (a) each photosystem (PSI and PSII) contains, in addition to the reaction center, an interconnecting antenna and a main or light harvesting antenna complex; (b) the formation of the light harvesting complex, interconnecting antenna, and reaction centers for each photosystem can occur independently. (c) the interconnecting antennae link the light harvesting complexes with the respective reaction centers. In their absence, energy transfer between the light harvesting chlorophylls and the reaction centers is inefficient. The formation of the interconnecting antennae and efficient assembly of photosystem components occur simultaneously with the de novo synthesis of chlorophyll and at least three polypeptides, one translated in the cytoplasm and two translated in the chloroplast. The synthesis of these polypeptides was found to be light dependent.  相似文献   

11.
Changes in plastid polypeptide composition during greening of etiolated peas were investigated by two-dimensional gel electrophoresis. One hundred of the more than 250 polypeptides which could be detected upon silver staining were followed during plastid development. Thirty-nine polypeptides decreased in abundance on a per organelle basis. Twentythree of the 46 polypeptides which increased in abundance upon greening could be identified as proteins of the thylakoid membrane. The changes in proteins observed during greening of etiolated leaves corresponded largely to those observed during normal leaf expansion. The origin of some of the polypeptides was traced back by comparing the two-dimensional gels of plastid proteins with in organello translation products and with polypeptides which had been synthesized in vitro from poly(A+) mRNA preparations and posttranslationally imported by chloroplasts. Some polypeptides were specifically identified in two-dimensional gels by Western blot analysis.  相似文献   

12.
When isolated pea plastids are incubated with translation products of poly(A+) mRNA they specifically import precursor molecules of plastid polypeptides. Etioplasts and chloroplasts import the same polypeptides from identical translation products, and, the imported polypeptides can be well resolved by two-dimensional gel electrophoresis. Therefore, the posttranslational uptake system using isolated chloroplasts can monitor changes in the abundance of translatable plastid-targeted messages. Poly(A+) mRNA was isolated from peas at various times during greening and analyzed by this technique. (a) After 48 hours of illumination of dark-grown plants, the relative portion of nuclear encoded messages for plastid targeted proteins had increased by a factor of 2. The percentage of polypeptides recovered in the stroma fraction increased from about 50 to 65%. (b) More than 140 imported polypeptide species could be detected in fluorograms of two-dimensional gels, most of which could be identified throughout the time course of greening. At least 37 imported polypeptides decreased and 36 increased in relative abundance during greening of darkgreen plants. (c) In most cases, where differences in translatable messages were seen between dark- and light-grown plants, they were accompanied by parallel changes in polypeptide abundance.  相似文献   

13.
The specific activity of the acyltransferases of smooth microsomes of rat liver rose threefold by 12 h after injection of phenobarbital, while the activity of the acyltransferases of the rough microsomes rose slightly to peak at 3–4 h, and subsequently fell. The latter rise was abolished by treatment of the animal with actinomycin D or puromycin, while that of the smooth microsomes was unaffected. Incorporation of [14C]glycerol into phospholipid of smooth microsomes was elevated 100% by phenobarbital, while that of the rough microsomes was elevated 15%, and this could be accounted for by exchange between the microsomal phospholipids. The phospholipid/protein ratio of the smooth microsomes rose 1.5 times 3–4 h after injection of phenobarbital, while that of the rough microsomes fell slightly. The specific activity of NADPH cytochrome c reductase and NADPH diaphorase rose first in the rough microsomes, and subsequently in the smooth microsomes at a time coinciding with the return of the phospholipid/protein ratio to the control level. The rise in phospholipid/protein ratio was unaffected by actinomycin D or puromycin. These results indicate that the proliferating smooth membranes are the site of phospholipid synthesis, and that the phospholipid/protein ratio of these membranes may change independently.  相似文献   

14.
The 520 nm light-induced absorbance change in wild-type and 4 mutant strains of Chlamydomonas reinhardi was investigated. In the wild-type strain the absorbance change is composed of at least 2 components, P520 I and P520 II, sensitized by Systems I and II respectively. Some of the properties of these components can be studied by using the appropriate photosynthetic mutant strain. A group of mutant strains modified in the photochemical complex of System II shows only the P520 I absorbance change, whereas a mutant strain deficient in active P700 exhibits only the P520 II absorbance change. The possible relationship between these absorbance changes and the photosynthetic electron transport pathway is discussed.  相似文献   

15.
16.
Weaver EC 《Plant physiology》1969,44(11):1538-1541
The electron paramagnetic resonance (EPR) characteristics of wild type Chlamydomonas reinhardtii are compared with those of a mutant strain (ac-206) which lacks cytochrome 553. The steady-state signals I and II are similar but differ in their responses to light of long and short wavelengths, reflecting the fact that the electron transport chain linking photosystems I and II is interrupted. The kinetic behavior of signal I is simpler in the mutant, which lacks induction effects prominent in the wild type. The decay of the signal when light ceases is not dependent on the length or intensity of illumination in the mutant, whereas it is in the wild type. These data can be interpreted in terms of signal I being a reflection of cyclic flow in a pathway which does not involve cytochrome 553 in the mutant, whereas in the wild type there is also a contribution of electrons from photosystem II.  相似文献   

17.
A mendelian mutant of the unicellular green alga Chlamydomonas reinhardii has been isolated that is deficient in inorganic carbon transport. This mutant strain, designated pmp-1-16-5K (gene locus pmp-1), was selected on the basis of a requirement of elevated CO2 concentration for photoautrophic growth. Inorganic carbon accumulation in the mutant was considerably reduced in comparison to wild type, and the CO2 response of photosynthesis indicated a reduced affinity for CO2 in the mutant. At air levels of CO2 (0.03-0.04%), O2 inhibited photosynthesis and stimulated the synthesis of photorespiratory intermediates in the mutant but not in wild type. Neither strain was significantly affected by O2 at saturating CO2 concentration. Thus, the primary consequence of inorganic carbon transport deficiency in the mutant was a much lower internal CO2 concentration compared to wild type. From these observations, we conclude that enzyme-mediated transport of inorganic carbon is an essential component of the CO2 concentrating system in C. reinhardii photosynthesis.  相似文献   

18.
Dark-grown cells of the mutant C-2A' of Scenedesmus obliquus,which lack chlorophyll and photosynthetic activities, developa fully functional photosynthetic apparatus after transfer tolight (Bishop and Senger. 1972, Senger and Bishop 1972). Afteronset of illumination PS II-activity increases rapidly. Simultaneouslythe apoproteins of the two PS II chlorophyll -protein complexesCP-a11–1 and CP-a11–2 (48 and 44 kDa) are formedat high rates, as shown by fluorography after 35S-label duringdifferent periods of development. Polypeptides with apparentmolecular weights of 32.5 (probably the manganese-binding polypeptideof the oxygen-evolving system), 19.5, 18, 17and 16.5 kDa aresynthesized with kinetics comparable to those of the 48 and44 kDa polypeptides. Whereas the apoproteins of CP-a11–1and CP-11–2 are already present in etioplasts and areheavily formed immediately after onset of illumination, thepolypeptides related to the light-harvesting complex CP-a/bcannot be detected in dark-grown cells and show high rates ofbiosynthesis only after a delay of about 1 hour. An asynchronousfashion of formation is also reported for the correspondingchlorophyll-protein complexes of PS II. Our findings prove astep-wise assembly of PS II during chloroplast development inC-2A', starting with small PS II-units composed of the core-complexes,which increase their amount of light-harvesting complexes duringfurther illumination. High values for PS II-activity/chlorophylland for the half-rise time of fluorescence-induction in earlystages of greening, which decrease rapidly during prolongedillumination, also indicate the change from a small to a largePS Il-unit. Furthermore, investigation of the formation of thylakoidmembrane polypeptides under the influence of different protein-biosynthesisinhibitors of 70 S- or 80 S-ribosomes by means of 35S-labeland subsequent fluorography revealed that most of these polypeptidesare coded by nuclear genes. Only bands at 68, 65.5, 53, 52,48, 44, 32.5, 16.5, 15 and 14.5 kDa were labelled in the presenceof 80 S-inhibitors indicating their chloroplast origin. 1Present address: Fachbereich Biologie-Botanik, Philipps-Universit?t,I.ahnberge, 3550 Marburg, Federal Republic of Germany. (Received April 14, 1986; Accepted August 13, 1986)  相似文献   

19.
A pulse of red light acting through phytochrome accelerates the formation of chlorophyll upon subsequent transfer of dark-grown seedlings to continuous white light. Specific antibodies were used to follow the accumulation of representative subunits of the major photosynthetic complexes during greening of seedlings of tomato (Lycopersicon esculentum). The time course for accumulation of the various subunits was compared in seedlings that received a red light pulse 4 h prior to transfer to continuous white light and parallel controls that did not receive a red light pulse. The light-harvesting chlorophyll-binding proteins of photosystem II (LHC II), the 33-kD extrinsic polypeptide of the oxygen-evolving complex (OEC1), and subunit II of photosystem I (psaD gene product) all increased in the light, and did so much faster in seedlings that received the inductive red light pulse. The red light pulse had no significant effect on the abundance of the small subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), nor on several plastid-encoded polypeptides: the large subunit of Rubisco, the β subunit of the CF1 complex of plastid ATPase, and the 43- and 47-kD subunits of photosystem II (CP43, CP47). Subunits I (cytochrome b6f) and III (Rieske Fe-S protein) of the cytochrome b6f complex showed a small or no increase as a result of the red pulse. The potentiation of greening by a pulse of red light, therefore, is not expressed uniformly in the abundance of all the photosynthetic complexes and their subunits.  相似文献   

20.
Compositions of pigments and polypeptides of pale green membranesthat had been isolated from dark-grown cells of a chlorophyll-deficientmutant of Chlorella kessleri were investigated. They containedChl a in a level corresponding to about 1% of that present inthe thylakoid membranes isolated from autotrophically grownwild-type cells and a trace amount of chlorophyllide a, butneither Chl b nor carotenoids. The polypeptide profile of themutant membranes was similar to that of membranes isolated fromwild-type cells that were grown in the dark. Neither the chlorophyll-bindingsubunits of PSI nor the apoproteins of LHCP were detected bySDS-PAGE and immunoblot analysis. However, the light-minus-darkdifference spectrum of the mutant membranes revealed the presenceof the reaction-center chlorophyll of PSI (P700) at a molarratio of 190 chlorophyll (Chl a plus Chlide a) per P700. P700was more stable than Chl a and Chlide a in the light so thatprolonged illumination led to a decline in the Chl/P700 ratioto 24. The initial rate of P700 photooxidation in the mutantmembranes was comparable to that in CP1 isolated from the dark-grownwild-type cells. Under illumination with strong light, the initialrate was decreased in parallel to the decrease in Chl/P700 ratio.The results suggest that most of Chi present in the mutant membranescan transfer excitation energy to P700. (Received March 13, 1998; Accepted August 7, 1998)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号