首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly potent bradykinin antagonists were found to inhibit bradykinin-induced release of cytokines but to stimulate histamine release. Both actions show structural requirements completely different from those for bradykinin B1 and B2 receptors, indicating that the release of some cytokines from spleen mononuclear cells and of histamine from rat mast cells is not mediated by these receptors. Most potent bradykinin antagonists release histamine at lower concentrations than does bradykinin itself. Dimers of bradykinin antagonists are the most potent compounds for histamine release. In contrast to enhanced histamine release, potent inhibition of cytokine release enhances the applicability of these compounds as anti-inflammatory drugs. Many of the peptides designed for high B2-receptor antagonism were found to be compared by their concentrations far more potent for inhibition of cytokine release than for smooth muscle contraction. Thus, for some antagonists inhibition of cytokine release was detected at concentrations as low as 10(-15) M. The rational design of peptide and nonpeptide bradykinin antagonists for therapeutic use requires not only knowledge about the potency but also knowledge about the structure-activity relationships of such important side effects as cytokine and histamine release.  相似文献   

2.
Four putative central nervous system 5-hydroxytryptamine antagonists, methysergide, cyproheptadine, metergoline, and ketanserin and also lysergic acid diethylamide were applied by iontophoresis to firing CA1 hippocampal pyramidal cells to test their action on the inhibition produced by 5-hydroxytryptamine. In contrast to a previous report, none of these peripherally active 5-hydroxytryptamine antagonists altered the inhibitory response to submaximal doses of 5-hydroxytryptamine, but they did block after-excitations that followed the inhibitions. All the antagonists and lysergic acid diethylamide produced a depression of firing. When picrotoxin was used to drive the cells, 5-hydroxytryptamine was still able to produce a normal inhibition. The results of this study suggest that CA1 hippocampus is another structure, innervated by serotonergic neurones, where all (peripherally active) serotonin antagonists tested to date are ineffective against 5-hydroxytryptamine induced inhibition.  相似文献   

3.
寡聚核苷酸适配子(Aptamer)是用指数富集式配基系统进化方法(SELEX)筛选出的寡聚核苷酸,它能与靶分子特异性结合,具有识别和抑制靶物质生物学活性的作用。将体外筛选到的寡聚核苷酸适配子作为在动物或人体内应用的药剂,还需要进行化学修饰来提高它的生物利用度和在血浆中的稳定性。2氟、2′烷氧基或2′氨基修饰可以提高适配子的稳定性,使适配子的体外半衰期延长;5′端交联一个高分子量的PEG分子或脂质体分子,可以使它的血浆清除率由1小时提高到几小时至1天。修饰后仍保持生物学活性的适配子可用于治疗相应靶细胞因子引起的疾病。目前,国内外已经筛选到了十几种细胞因子的适配子,其中血管内皮生长因子已经用于临床疾病的治疗。除了用于临床治疗外,适配子还可以用于细胞因子的诊断,凡是涉及抗体的诊断领域,几乎都可以用寡聚核苷酸适配子代替。应用大规模机械化筛选技术,可以在短期内筛选到大量的高特异性、高亲和力适配子,这将有力推动临床诊断和治疗的发展。  相似文献   

4.
Low amounts of high-affinity autoantibodies to various cytokines have been detected in sera from healthy donors. Their levels, although highly variable, are increased in the circulation of patients subjected to cytokine therapy or suffering from a variety of immunoinflammatory diseases. It has been suggested that these autoantibodies play a regulatory role in the intensity and duration of an immune response. The antibodies may prevent the binding of a cytokine to its specific cell surface receptor thereby neutralizing its biological activityin vivo. They may also act as carrier proteins preventing the rapid elimination of a cytokine from the circulation and thus increase its bioactivity. Additionally or alternatively, autoantibodies may modulate cytokine-induced intracellular signal transduction pathways or trigger complement-mediated cytotoxicity towards cells carrying membrane-bound cytokines. The autoantibodies may exert their regulatory role in compliance with other factors that control cytokine activity, including soluble cytokine receptors, cell surface decoy receptors, and receptor antagonists. Although not favored by many investigators, a less sophisticated role for naturally occurring anti-cytokine autoantibodies should be considered as well. Recent evidence has shown that autoantibodies are generated at a high frequency as part of a response to foreign antigens. These antibodies are produced by B cells arising from the process of somatic mutation. Thus anti-cytokine autoantibodies may be the result of a “leaky” B cell response triggered by immunoinflammatory processes. High-titered autoantibodies induced by cytokine therapy are of clinical concern since their occurrence is often associated with the loss of response to treatment. Moreover, they may also neutralize endogenously produced cytokines with possible pathological consequences. In this paper we have reviewed the available information on the biological and clinical significance of both naturally occurring and therapeutically induced anti-cytokine autoantibodies in animals and man with the emphasis on antibodies directed to interferons.  相似文献   

5.
Cytokines control the immune system by regulating the proliferation, differentiation and function of immune cells. They activate their target cells through binding to specific receptors, which either are transmembrane proteins or attached to the cell-surface via a GPI-anchor. Different tissues and individual cell types have unique expression profiles of cytokine receptors, and consequently this expression pattern dictates to which cytokines a given cell can respond. Furthermore, soluble variants of several cytokine receptors exist, which are generated by different molecular mechanisms, namely differential mRNA splicing, proteolytic cleavage of the membrane-tethered precursors, and release on extracellular vesicles. These soluble receptors shape the function of cytokines in different ways: they can serve as antagonistic decoy receptors which compete with their membrane-bound counterparts for the ligand, or they can form functional receptor/cytokine complexes which act as agonists and can even activate cells that would usually not respond to the ligand alone. In this review, we focus on the IL-2 and IL-6 families of cytokines and the so-called Th2 cytokines. We summarize for each cytokine which soluble receptors exist, were they originate from, how they are generated, and what their biological functions are. Furthermore, we give an outlook on how these soluble receptors can be exploited for therapeutic purposes.  相似文献   

6.
7.
Cytokine receptors exist in membrane bound and soluble form. Both forms bind their ligands with comparable affinity. While most soluble receptors are antagonists in that they compete for the ligands with their membrane counterparts, some soluble receptors are agonists. In this case, the complex of ligand and soluble receptor binds on target cells to a second receptor subunit and initiates signal transduction. Soluble receptors of the IL-6 family of cytokines are agonists. In vivo, the IL-6/soluble IL-6R complex stimulates several types of target cells not stimulated by IL-6 alone, since they do not express the membrane bound IL-6R. This process has been named transsignaling. We have shown that in several chronic inflammatory diseases like chronic inflammatory bowl disease, peritonitis and rheumatoid arthritis, transsignaling via the soluble IL-6R complexed to IL-6 is a crucial point in the transition from the acute to the chronic state of the disease. The mechanism by which the IL-6/ soluble IL-6R complex regulates the inflammatory state is discussed.  相似文献   

8.
At the implantation site, the uterine mucosa (decidua) is infiltrated by large numbers of natural killer (NK) cells. These NK cells are in close contact with the invading fetal trophoblast and we have proposed that they might be the effector cells that control the implantation of the allogeneic placenta. Recent characterization of NK cell receptors and their HLA class I ligands has suggested potential mechanisms by which NK cells might interact with trophoblast. However, what happens as a result of this interaction is not clear. The traditional method for investigating NK cell function in vitro is the protection from lysis of target cells by expression of HLA class I antigens. This might not be an accurate reflection of what happens in vivo. Another function of NK cells is the production of cytokines on contact with target cells. This could be an important outcome of the interaction between decidual NK cells and trophoblast. Decidual NK cells are known to produce a variety of cytokines; trophoblast cells express receptors for many of these cytokines, indicating that they can potentially respond. In this way, decidual NK cells have a significant influence on trophoblast behaviour during implantation.  相似文献   

9.
Interleukin-4 (IL-4) and IL-13 are the only cytokines known to bind to the receptor chain IL-4Ralpha. Receptor sharing by these two cytokines is the molecular basis for their overlapping biological functions. Both are key factors in the development of allergic hypersensitivity, and they also play a major role in exacerbating allergic and asthmatic symptoms. Knowledge of structure and function of this system has allowed the development of inhibitors that block the interaction between the cytokines and their shared receptor. Mutational analysis of IL-4 has revealed variants with high-affinity binding to IL-4Ralpha but no detectable affinity for the second receptor subunit, which is either (gamma)c or IL-13Ralpha1. These IL-4 antagonists fail to induce signal transduction and block IL-4 and IL-13 effects in vitro. IL-4 antagonists prevent the development of allergic disease in vivo and an antagonistic variant of human IL-4 is now in clinical trials for asthma. Detailed knowledge of the site of interaction of IL-4 and IL-4Ralpha has been gained by structure analysis of the complex of these two proteins and through functional studies employing mutants of IL-4 and its receptor subunits. Based on these new data, the hitherto elusive goal of designing small molecular mimetics may be feasible.  相似文献   

10.
The binding of neutrophils (polymorphonuclear leukocytes [PMNs]) to endothelial cells (ECs) presents special requirements in the regulation of intercellular adhesion. ECs that are stimulated by certain agonists, including thrombin and cytokines (tumor necrosis factor alpha, interleukin-1), generate molecular signals that induce the adhesion of PMNs (endothelial cell-dependent neutrophil adhesion). Our experiments demonstrate that the mechanism of binding induced by thrombin is distinct from that induced by the cytokines based on the time courses, the requirement for protein synthesis, and differential binding of HL60 promyelocytic leukemia cells to ECs activated by the two classes of agonists. The rapid EC-dependent PMN adhesion (initiated in minutes) that occurs when the ECs are stimulated by thrombin is temporally coupled with the accumulation of platelet-activating factor, a biologically active phosphoglyceride that remains associated with ECs and that activates PMNs by binding to a cell surface receptor. A portion of the newly synthesized platelet-activating factor (PAF) is on the EC surface, as demonstrated by experiments in which the rate of hydrolysis of PAF synthesized by activated ECs was accelerated by extracellular PAF acetylhydrolase. When ECs were treated with exogenous PAF they became adhesive for PMNs; the PMN binding was prevented by incubating the ECs with PAF acetylhydrolase or by treating the PMNs with competitive PAF receptor antagonists. Thus PAF associated with the EC plasma membrane induces PMN binding, an observation supported by experiments in which PAF in model membranes (liposomes) stimulated rapid PMN adhesion to ECs and to cell-free surfaces. In addition, competitive antagonists of the PAF receptor inhibited the binding of PMNs to ECs activated by thrombin and other rapidly acting agonists, but not to ECs activated by tumor necrosis factor alpha, indicating that PAF that is endogenously synthesized by ECs can mediate neutrophil adhesion. These experiments demonstrate a novel mechanism by which a cell-associated phospholipid, PAF, can serve as a signal for an intercellular adhesive event.  相似文献   

11.
12.
The directed migration of cells in response to chemical cues is known as chemoattraction, and plays a key role in the temporal and spatial positioning of cells in lower- and higher-order life forms. Key molecules in this process are the chemotactic cytokines, or chemokines, which, in humans, constitute a family of approx. 40 molecules. Chemokines exert their effects by binding to specific GPCRs (G-protein-coupled receptors) which are present on a wide variety of mature cells and their progenitors, notably leucocytes. The inappropriate or excessive generation of chemokines is a key component of the inflammatory response observed in several clinically important diseases, notably allergic diseases such as asthma. Consequently, much time and effort has been directed towards understanding which chemokine receptors and ligands are important in the allergic response with a view to therapeutic intervention. Such strategies can take several forms, although, as the superfamily of GPCRs has historically proved amenable to blockade by small molecules, the development of specific antagonists has been has been a major focus of several groups. In the present review, I detail the roles of chemokines and their receptors in allergic disease and also highlight current progress in the development of relevant chemokine receptor antagonists.  相似文献   

13.
Proinflammatory cytokines TNF, IFNG, and IL17 play an important role in eruption of psoriasis. The activation of epidermal keratinocytes with the named cytokines alters their terminal differentiation program and causes their hyperproliferation in the diseased skin. HaCaT cells, which are immortalized human keratinocytes, are often used as a cellular model of psoriasis. The aim of this study was to evaluate changes in gene expression and the proliferation rates in cultured HaCaT cells treated with TNF, IFNG, and IL17. We found that HaCaT cells decrease their proliferation rate in response to either IL17 or a combination TNF and IFNG. The analysis of microarray data discovered a group of 12 genes, which were downregulated in HaCaT after treatments with the named cytokines and upregulated in psoriatic lesional skin. Eight genes were important for DNA replication and they also contributed to two larger networks that regulated cell progression through the cell cycle. We conclude that HaCaT cells have a sufficient limitation as a cellular model of psoriasis due to their treatment with proinflammatory cytokines, namely TNF, IFNG, and IL17 does not increase their proliferation rate. Thus, the studies of psoriasis based on HaCaT cells as an experimental model shall take in account this important phenomenon.  相似文献   

14.
Macrophages have been described as 'factories' of pro-inflammatory cytokines. Several years ago the present investigators reported that binding of inactive myeloperoxidase (iMPO) to the macrophage-mannose receptor resulted in the induction of TNF and other cytokines. Also, if endothelial cells were incubated with iMPO, but not enzymatically active myeloperoxidase (MPO), upregulation of cytokine mRNA and cytokines was observed. Taken in their entirety, the data suggest a dichotomy of function for myeloperoxidase; that is, enzymatically active MPO functions primarily in cell killing through the 'cytotoxic triad' and iMPO functions as an immunoregulatory molecule through the induction of numerous cytokines. These studies underscore a previously unrecognized interaction among neutrophils, endothelial cells and macrophages, resulting in the induction of TNF and perpetuation of inflammation. The inflammation induced could be relevant in a number of diseases in which neutrophils play a prominent role. The importance of this interaction in the pathogenesis of rheumatoid arthritis is currently under investigation.  相似文献   

15.
Cytokines and trophic factors (TF) are known to be involved not only into the immune processes but in majority cells, organs and physiological systems functional activity regulation as well as in pathological conditions. Cytokines and TF are shown to exert antagonistic effects on the brain, involved into local and systemic reactions modulation in response to CNS inflammation, infections and other types of injuries. Authors observed new data about cytokines and TF (particularly, the very biologically active among them - tumor necrosis factor-alpha and interleukin-1-beta) physico-chemical properties as the background for their neurotropic affects investigation. The contemporary data about cytokines and TF receptors, their interaction with neurotransmitters, penetration into the brain and their bioactivity regulation are reviewed.  相似文献   

16.
Herpetic stromal keratitis (HSK) appears to represent an immunopathologic response in the cornea of the eye to HSV-1. T cells of the CD4+ subset were shown to be involved in the mediation of HSK, but how they subserve an immunopathologic role is uncertain. In the present report, we have isolated cells from eyes in the active phase of HSK and studied their cytokine profile after culture in vitro or stimulation with Ag or nonspecific mitogens. Inflammatory cells recovered from eyes consist of polymorphonuclear leukocytes, macrophages, and lymphocytes. As reported before, all the lymphocyte recovered were of the CD4+ phenotype. After stimulation in vitro with Ag or mitogen the cytokines IL-2, IFN-gamma, and TNF-alpha/beta were produced, but not the cytokines IL-4 and IL-10. Thus, on the basis of cytokine profile, ocular lymphocytes were identified as Th1 cells. Ocular cells were also stimulated with PMA and shown to produce IL-1. The results were discussed in terms of the possible means by which the Th1 cells induce tissue damage in HSK as well as in terms of the possible means by which a preferential accumulation of Th1 cell occurs in the eye.  相似文献   

17.
Langerhans cell histiocytosis (LCH) is a rare disorder characterized by an abnormal accumulation and/or proliferation of cells with a Langerhans cell phenotype. Although no clear cause of LCH has been identified, it has been postulated that LCH might be the consequence of an immune dysregulation, causing Langerhans cells to migrate to and accumulate at various sites. Production of cytokines and chemokines is a central feature of immune regulation. Cytokines are abundantly present within LCH lesions. We review here the potential role of cytokines and chemokines in the pathogenesis of LCH. The type, distribution, and number of different cytokines released within lesions can provide clues to the possible aetiology of LCH and, ultimately, might offer therapeutic possibilities using recombinant cytokines or antagonists for this disorder.  相似文献   

18.
The data on the modulating function of cytokines on the oxygen-producing function of peritoneal exudate cells of rats are presented. As priming agents, recombinant cytokines IL1 beta and TFR beta 1, as well as the natural complex of cytokines, were used. The priming action of cytokines was studied by changing in the production of active forms of oxygen by peritoneal exudate cells of rats, stimulated with opsonized zymosan, by the method of luminol-dependent chemiluminescence. The study revealed that IL1 beta and the natural complex of cytokines primed peritoneal exudate cells for the production of active forms of oxygen. The maximum value of the prestimulation index was 1.9 +/- 0.1 and 2.95 +/- 0.27 respectively. The preincubation of peritoneal exudate cells of rats with TFR beta 1 led to the pronounced inhibition of the intensity of the chemiluminescent response of cells. The prestimulation index did not exceed 1.06 +/- 0.1. Moreover, as revealed with the use of the probe Fura-2/AM, in the process the prestimulation of phagocytes with the natural complex of cytokines the intracellular concentration of calcium increased from 0.86 +/- 0.15 to 1.86 +/- 0.2 microM/ml. The mechanism of the prestimulation of peritoneal exudate cells of rats cytokines seems to be calcium-dependent.  相似文献   

19.
20.
The cytokines IL-6, LIF, CNTF, OSM, IL-11, and CT-1 have been grouped into the family of IL-6-type cytokines, since they all require gp130 for signal transduction. Interestingly, gp130 binds directly to OSM, whereas complex formation with the other cytokines depends on additional receptor subunits. Only limited structural information on these cytokines and their receptors is available. X-ray structures have been solved for the cytokines LIF and CNTF, whose up-up-down-down four-helix bundle is common to all of these cytokines, and for the receptors of hGH and prolactin, which contain two domains with a fibronectin III-like fold. Since cocrystallization and x-ray analysis of the up to four different proteins forming the receptor complexes of the IL-6-type cytokines is unlikely to be achieved in the near future, model building based on the existing structural information is the only approach for the time being. Here we present model structures of the complexes of human and murine IL-6 with their receptors. Their validity can be deduced from the fact that published mutagenesis data and the different receptor specificity of human and murine IL-6 can be understood. It is now possible to predict the relative positions and contacts for all molecules in their respective complexes. Such information can be used for the rational design of cytokine and receptor antagonists, which may have a valuable therapeutic perspective. Proteins 27:96–109 © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号