首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Previous mathematical models of the genetic control by one locus of the segregation at another have all concluded that alleles causing departures from Mendelian segregation should succeed. In this study the segregation ratios induced at the major locus by the modifier locus fluctuate cyclically. It is shown that if initially there is Mendelian segregation and if the rare modifying allele induces symmetric fluctuation about the Mendelian ratios it cannot succeed. It is further proven that if initially there are symmetric fluctuations about Mendelian segregation then an allele reducing the amplitude of the fluctuation will succeed.  相似文献   

2.
Ubeda F  Haig D 《Genetics》2004,167(4):2083-2095
We present a one-locus model that breaks two symmetries of Mendelian genetics. Whereas symmetry of transmission is breached by allowing sex-specific segregation distortion, symmetry of expression is breached by allowing genomic imprinting. Simple conditions for the existence of at least one polymorphic stable equilibrium are provided. In general, population mean fitness is not maximized at polymorphic equilibria. However, mean fitness at a polymorphic equilibrium with segregation distortion may be higher than mean fitness at the corresponding equilibrium with Mendelian segregation if one (or both) of the heterozygote classes has higher fitness than both homozygote classes. In this case, mean fitness is maximized by complete, but opposite, drive in the two sexes. We undertook an extensive numerical analysis of the parameter space, finding, for the first time in this class of models, parameter sets yielding two stable polymorphic equilibria. Multiple equilibria exist both with and without genomic imprinting, although they occurred in a greater proportion of parameter sets with genomic imprinting.  相似文献   

3.
Equal transmission of the two alleles at a locus from a heterozygote parent to the offspring is rarely violated. Beside the differential embryonic mortality, nondisjunction and gene conversion that are rather irregular forms of transmission-ratio distortion (TRD), there are two major forms of departure from Mendelian segregation. The first, found in females, based on the asymmetric nature of female meiosis, is usually referred to as meiotic drive, and has been well documented in a few cases. The second is segregation distortion found in males. There are several known male-related segregation distortion systems that are caused by different fertilizing capacity of sperm cells carrying alternative alleles at a particular locus. Observation of TRD effects requires a sufficient number of offspring produced by a parental pair. As individuals in a population most likely have different genotypes in TRD affecting loci, the total transmission ratio is close to the expected Mendelian ratio and masks potential TRD effects. Highly inbred strains of laboratory mice provide a very good model for studying this phenomenon, because comparing two mice strains is effectively similar as comparison of two individuals in a population. This study tests both forms of TRD in progeny of F1 hybrids from reciprocal crosses of inbred mice. Three previously unknown instances of TRD in females were observed. Therefore, this study concludes that some genes in females may carry alleles that can cause segregation distortion.  相似文献   

4.
We investigate the competition between alleles at a segregation distorter locus. The focus is on the invasion prospects of rare mutant distorter alleles in a population in which a wildtype and a resident distorter allele are present. The parameters are chosen to reflect the situation at the t complex of the house mouse, one of the best-studied examples of segregation distortion. By analyzing the invasion chances of rare alleles, we provide an analytical justification of earlier simulation results. We show that a new distorter allele can successfully invade even if it is inferior both at the gamete and at the individual level. In fact, newly arising distorter alleles have an inherent rareness advantage if their negative fitness consequences are restricted to homozygous condition. Likewise, rare mutant wildtype alleles may often invade even if their viability or fertility is reduced. As a consequence, the competition between alleles at a segregation distorter locus should lead to a high degree of polymorphism. We discuss the implications of this conclusion for the t complex of the house mouse and for the evolutionary stability of "honest" Mendelian segregation.  相似文献   

5.
We investigate the competition between alleles at a segregation distorter locus. The focus is on the invasion prospects of rare mutant distorter alleles in a population in which a wildtype and a resident distorter allele are present. The parameters are chosen to reflect the situation at the t complex of the house mouse, one of the best-studied examples of segregation distortion. By analyzing the invasion chances of rare alleles, we provide an analytical justification of earlier simulation results. We show that a new distorter allele can successfully invade even if it is inferior both at the gamete and at the individual level. In fact, newly arising distorter alleles have an inherent rareness advantage if their negative fitness consequences are restricted to homozygous condition. Likewise, rare mutant wildtype alleles may often invade even if their viability or fertility is reduced. As a consequence, the competition between alleles at a segregation distorter locus should lead to a high degree of polymorphism. We discuss the implications of this conclusion for the t complex of the house mouse and for the evolutionary stability of “honest” Mendelian segregation.  相似文献   

6.
Because of their extensive functional interaction, mitochondrial DNA (mtDNA) and nuclear genes may evolve to form coadapted complexes within reproductively isolated populations. As a consequence of coadaptation, the fitness of particular nuclear alleles may depend on mtDNA genotype. Among populations of the copepod Tigriopus californicus, there are high levels of amino acid substitutions in both the mtDNA genes encoding subunits of cytochrome c oxidase (COX) and the nuclear gene encoding cytochrome c (CYC), the substrate for COX. Because of the functional interaction between enzyme and substrate proteins, we hypothesized that the fitness of CYC genotypes would depend on mtDNA genotype. To test this hypothesis, segregation ratios for CYC and a second nuclear marker (histone H1) unrelated to mitochondrial function were scored in F2 progeny of several reciprocal interpopulation crosses. Genotypic ratios at the CYC locus (but not the H1 locus) differed between reciprocal crosses and differed from expected Mendelian ratios, suggesting that CYC genotypic fitnesses were strongly influenced by cytoplasmic (including mtDNA) background. However, in most cases the nature of the deviations from Mendelian ratios and differences between reciprocal crosses are not consistent with simple coevolution between CYC and mtDNA background. In a cross in which both newly hatched larvae and adults were sampled, only the adult sample showed deviations from Mendelian ratios, indicating that genotypic viabilities differed. In two of six crosses, large genotypic ratio differences for CYC were observed between the sexes. These results suggest that significant variation in nuclear-mtDNA coadaptation may exist between T. californicus populations and that the relative viability of specific cytonuclear allelic combinations is somehow affected by sex.  相似文献   

7.
This is a study of the formal population genetics of a two locus model where the alleles at one locus are subject to meiotic drive and zygotic selection and the only effect of the other locus is the modification of drive intensity. A complete analytic solution is obtained for a biologically reasonable special case. It is then argued, partially with the aid of computer analysis, that with moderate relaxation of assumptions of the special case, the conclusions derived from that case still hold. These conclusions are that if there is linkage a stable two locus polymorphism can result. There is permanent linkage disequilibrium with the loosing allele at the drive locus in coupling with the suppressor allele at the modifier locus, and the driven allele coupled with the modifier allele which enhances drive. It is suggested that this result explains how the SD system in Drosophila maintains its integrity in natural populations.  相似文献   

8.
It has been hypothesized that the pathogenesis of idiopathic talipes equinovarus (ITEV, or clubfoot) is explained by genetic regulation of development and growth. The objective of the present study was to determine whether a single Mendelian gene explains the probability of having ITEV in a sample of 143 Caucasian pedigrees from Iowa. These pedigrees were ascertained through probands with ITEV. Complex segregation analyses were undertaken using a regressive logistic model. The results of these analyses strongly rejected the hypotheses that the probability of having ITEV in these pedigrees was explained by a non-Mendelian pattern of transmission with residual sibling correlation, a nontransmitted (environmental) factor with residual sibling correlation, or residual sibling correlation alone. These results were consistent with the hypothesis that the probability of having ITEV was explained by the Mendelian segregation of a single gene with two alleles plus the effects of some unmeasured factor(s) shared among siblings. The segregation of alleles at this single Mendelian gene indicated that the disease allele A was incompletely dominant to the nondisease allele B. The disease allele A, associated with ITEV affection, was estimated to occur in the population of inference with a frequency of .007. After adjusting for sex-specific population incidences of ITEV, the conditional probability (penetrance) of ITEV affection given the AA, AB, and BB genotypes was computed to be 1.0, .039, and .0006, respectively. Individual pedigrees in this sample that most strongly supported the single Mendelian gene hypothesis were identified. These pedigrees are candidates for genetic linkage analyses or DNA association studies.  相似文献   

9.
We compare the evolutionary pressures that direct the modification of gene conversion and meiotic drive at loci subject to purifying and overdominant viability selection. Gene conversion differs from meiotic drive in that modifers do not affect their own segregation ratios, even when linked to the viability locus. Segregation distortion generates gametic level disequilibria between alleles at the viability locus and modifiers of gene conversion and meiotic drive: enhancers of segregation distortion become positively associated with driven alleles. Suppression of gene conversion evolves if the driven allele is marginally disadvantageous (overdominant viability selection), and higher rates evolve if the driven alleles are relatively advantageous (purifying viability selection). Gametic disequilibria permit enhancers of meiotic drive that are linked to the driven locus to promote their own segregation. We attribute the failure of genetic modifiers of gene conversion and meiotic drive to maximinize mean fitness to the generation of such associations.  相似文献   

10.
Meiotic drive at the myotonic dystrophy (DM) locus has recently been suggested as being responsible for maintaining the frequency, in the human population, of DM chromosomes capable of expansion to the disease state. In order to test this hypothesis, we have studied samples of single sperm from three individuals heterozygous at the DM locus, each with one allele larger and one allele smaller than 19 CTG repeats. To guard against the possible problem of differential PCR amplification rates based on the lengths of the alleles, the sperm were also typed at another closely linked marker whose allele size was unrelated to the allele size at the DM locus. Using statistical models specifically designed to study single-sperm segregation data, we find no evidence of meiotic segregation distortion. The upper limit of the two-sided 95% confidence interval for the estimate of the common segregation probability for the three donors is at or below .515 for all models considered, and no statistically significant difference from .5 is detected in any of the models. This suggests that any greater amount of segregation distortion at the myotonic dystrophy locus must result from events following sperm ejaculation. The mathematical models developed make it possible to study segregation distortion with high resolution by using sperm-typing data from any locus.  相似文献   

11.
A significant heterozygote deficiency was found for microsatellite locus 20H7 among adult breeding birds in four populations of the oystercatcher ( Haematopus ostralegus ). Genotype frequencies at seven other loci were according to Hardy–Weinberg equilibria. Deviations between observed and expected genotype numbers decreased substantially when the data were corrected based on the estimated frequency of a putative null allele at locus 20H7 . However, no null homozygotes were observed in the total sample of 378 individuals. The probability that, because of chance effects, null homozygotes were not represented in the sample ( n =230) from the most intensively studied population (Schiermonnikoog) was estimated to be less than 1%. Parent–offspring comparisons from Schiermonnikoog showed that observed genotype numbers in the offspring were in accordance with expected values based on the estimated frequency of the putative null allele in the population. Moreover, a null homozygote was observed among the nestlings. The combined results indicated that a null allele is present at locus 20H7 in oystercatchers and that the inheritance is according to normal Mendelian segregation. If the absence of null homozygotes among adult animals cannot be ascribed to statistical effects, null homozygotes may suffer a selective disadvantage during the juvenile stage.  相似文献   

12.
Natural Selection and Y-Linked Polymorphism   总被引:8,自引:3,他引:5       下载免费PDF全文
Andrew G. Clark 《Genetics》1987,115(3):569-577
Several population genetic models allowing natural selection to act on Y-linked polymorphism are examined. The first incorporates pleiotropic effects of a Y-linked locus, such that viability, segregation distortion, fecundity and sexual selection can all be determined by one locus. It is shown that no set of selection parameters can maintain a stable Y-linked polymorphism. Interaction with the X chromosome is allowed in the next model, with viabilities determined by both X- and Y-linked factors. This model allows four fixation equilibria, two equilibria with X polymorphism and a unique point with both X- and Y-linked polymorphism. Stability analysis shows that the complete polymorphism is never stable. When X- and Y-linked loci influence meiotic drive, it is possible to have all fixation equilibria simultaneously unstable, and yet there is no stable interior equilibrium. Only when viability and meiotic drive are jointly affected by both X- and Y-linked genes can a Y-linked polymorphism be maintained. Unusual dynamics, including stable limit cycles, are generated by this model. Numerical simulations show that only a very small portion of the parameter space admits Y polymorphism, a result that is relevant to the interpretation of levels of Y-DNA sequence variation in natural populations.  相似文献   

13.
Abstract Segregation distorters are selfish genetic elements that bias Mendelian segregation in their favor. All well-known segregation distortion systems consist of one or more "distorter" loci that act upon a "responder" locus. At the t complex of the house mouse, segregation distortion is brought about by the harmful effect of t alleles at a number of distorter loci on the wild-type variant of the responder locus. The responder and distorter alleles are closely linked by a number of inversions, thus forming a coherent t haplotype. It has been conjectured that the close integration of the various components into a "complete" t haplotype has been crucial for the evolutionary success of these selfish genetic elements. By means of a population genetical metapopulation model, we show that this intuition may be unfounded. In fact, under most circumstances an "insensitive" t haplotype retaining only the responder did invade and reach a high frequency, despite the fact that this haplotype has a strong segregation disadvantage. For certain population structures, the complete t haplotype was even competitively excluded by partial t haplotypes with lower segregation ratios. Moreover, t haplotypes carrying one or more recessive lethals only prevailed over their nonlethal counterparts if the product of local population size and migration rate ( Nm ) was not much smaller or larger than one. These phenomena occurred for rather realistic fitness, segregation, and recombination values. It is therefore quite puzzling that partial t haplotypes are absent from natural house mousepopulations, and that t haplotypes carrying recessive lethals prevail over nonlethal t haplotypes.  相似文献   

14.
Drosophila pseudoobscura harbors a rich gene arrangement polymorphism on the third chromosome generated by a series of overlapping paracentric inversions. The arrangements suppress recombination in heterokaryotypic individuals, which allows for the selective maintenance of coadapted gene complexes. Previous mapping experiments used to determine the degree to which recombination is suppressed in gene arrangement heterozygotes produced non-recombinant progeny in non-Mendelian ratios. The deviations from Mendelian expectations could be the result of viability differences between wild and mutant chromosomes, meiotic drive because of achiasmate pairing of homologues in heterokaryotypic females during meiosis, or a combination of both mechanisms. The possibility that the frequencies of the chromosomal arrangements in natural populations are affected by mechanisms other than adaptive selection led us to consider these hypotheses. We performed reciprocal crosses involving both heterozygous males and females to determine if the frequency of the non-recombinant progeny deviates significantly from Mendelian expectations and if the frequencies deviate between reciprocal crosses. We failed to observe non-Mendelian ratios in multiple crosses, and the frequency of the non-recombinant classes differed in only one of five pairs of reciprocal crosses despite sufficient power to detect these differences in all crosses. Our results indicate that deviations from Mendelian expectations in recombination experiments involving the D. pseudoobscura inversion system are most likely due to fitness differences of gene arrangement karyotypes in different environments.  相似文献   

15.
By means of population genetical models, we investigate the competition between sex-specific segregation distorters. Although the models are quite general, they are motivated by a specific example, the t complex of the house mouse. Some variants at this gene complex, the t haplotypes, distort Mendelian segregation in heterozygous males in their favor. The selective advantage at the gamete level is counterbalanced by strong negative fitness effects at the individual level (male sterility or even lethality in both sexes). A plethora of different t haplotypes has been found, both in the field and in the lab. Up to now, however, models have focused on the equilibrium frequency of a single t haplotype. In contrast, we explicitly model the competition between several t haplotypes. A deterministic model for a large, well-mixed population predicts a surprisingly high degree of polymorphism. Haplotypes with seemingly inferior fitness characteristics may easily coexist with “superior” haplotypes. For instance, a lethal haplotype with a low segregation ratio may stably coexist with a sterile haplotype with a high segregation ratio. Stable coexistence is even possible for haplotypes with a segregation disadvantage. A simple stochastic model shows that the same principles apply in the context of a structured metapopulation. Although counterintuitive at first sight, all our results can be explained by the fact that segregation distorters have an inherent advantage when they are rare. We conclude that fitness comparisons are not sufficient to predict the outcome of competition when selective forces are acting at different levels.  相似文献   

16.
OBJECTIVE: The objective of this study was to ascertain the most likely inheritance pattern of restless legs syndrome (RLS) using segregation analysis. METHODS: Probands were RLS patients presenting to the Neurology and Sleep clinics of the Johns-Hopkins Bayview medical center with willing first and second degree relatives. Blinded diagnosis was made in those who exhibited the four diagnostic features of RLS. Analysis was performed on RLS as a dichotomous trait and considering age of onset models on 590 phenotyped subjects from 77 pedigrees. RESULTS: All non-genetic models were rejected considering RLS as a dichotomous trait. A single locus Mendelian dominant model with gender as a covariate had best fit with allele frequency of 0.077 and complete penetrance. RLS frequency in non-carrier subjects was estimated to be 0.14. Two underlying distributions of age of onset, with a possible dichotomy at 26.3 years, were identified. Contrary to the results for RLS as a dichotomous trait, age of onset models did not indicate single major gene inheritance. CONCLUSION: This segregation analysis suggests that the pattern of segregation is consistent with that of a single major locus, when RLS is treated as a dichotomous trait without considering age of onset. The high rate of phenocopies matches known population frequencies and taken with significant residual familial effects and the lack of evidence for a major gene controlling age of onset, indicates that non-genetic causes of RLS may exist and RLS is a complex disorder.  相似文献   

17.
Sex ratio theory proposes that the equal sex ratio typically observed in birds and mammals is the result of natural selection. However, in species with chromosomal sex determination, the same 1 : 1 sex ratio is expected under random Mendelian segregation. Here, we present an analysis of 14 years of sex ratio data for a population of song sparrows (Melospiza melodia) on Mandarte Island, at the nestling stage and at independence from parental care. We test for the presence of variance in sex ratio over and above the binomial variance expected under Mendelian segregation, and thereby quantify the potential for selection to shape sex ratio. Furthermore, if sex ratio variation is to be shaped by selection, we expect some of this extra-binomial variation to have a genetic basis. Despite ample statistical power, we find no evidence for the existence of either genetic or environmentally induced variation in sex ratio, in the nest or at independence. Instead, the sex ratio variation observed matches that expected under random Mendelian segregation. Using one of the best datasets of its kind, we conclude that female song sparrows do not, and perhaps cannot, adjust the sex of their offspring. We discuss the implications of this finding and make suggestions for future research.  相似文献   

18.
Transmission ratio distortion (TRD) is frequently observed in inter- and intraspecific hybrids of plants, leading to a violation of Mendelian inheritance. Sex-independent TRD (siTRD) was detected in a hybrid between Asian cultivated rice and its wild ancestor. Here we examined how siTRD caused by an allelic interaction at a specific locus arose in Asian rice species. The siTRD is controlled by the S(6) locus via a mechanism in which the S(6) allele acts as a gamete eliminator, and both the male and female gametes possessing the opposite allele (S(6)(a)) are aborted only in heterozygotes (S(6)/S(6)(a)). Fine mapping revealed that the S(6) locus is located near the centromere of chromosome 6. Testcross experiments using near-isogenic lines (NILs) carrying either the S(6) or S(6)(a) alleles revealed that Asian rice strains frequently harbor an additional allele (S(6)(n)) the presence of which, in heterozygotic states (S(6)/S(6)(n) and S(6)(a)/S(6)(n)), does not result in siTRD. A prominent reduction in the nucleotide diversity of S(6) or S(6)(a) carriers relative to that of S(6)(n) carriers was detected in the chromosomal region. These results suggest that the two incompatible alleles (S(6) and S(6)(a)) arose independently from S(6)(n) and established genetically discontinuous relationships between limited constituents of the Asian rice population.  相似文献   

19.
Gibert P  Moreteau B  Munjal A  David JR 《Genetica》1999,105(2):165-176
Drosophila kikkawai is known to be polymorphic for a single autosomal locus controlling abdomen pigmentation in females. Two strains homozygous at this locus (Abdomen pigmentation, Abp) were established from a polymorphic Indian population: one was homozygous (DD) for the dark allele, the other (LL) for the light allele. A Mendelian analysis of crosses at 25°C confirmed the occurrence of a major locus, with dominance of the D allele. Phenotypic variation of pigmentation according to growth temperature was then analyzed in DD and LL male and female flies, and in reciprocal F1. A slight difference was found between reciprocal F1 females from a dark mother were darker but not at all temperatures. In females, the D allele exhibited an antero‐posterior gradient of increasing expression from segment 27, with dominance over L and an increased expression at low temperatures. In males, abdomen pigmentation was uniformly light in segments 25, the D allele being repressed by the sex genotype. In segment 6, the D allele was expressed but only at low temperatures, and was either recessive to L or codominant. Phenotypic plasticity that is, amount of change induced by different growth temperatures, was variable according to genotype and segment. It always corresponded to a darkening of the fly at lower temperatures, but was generally much less than in D. melanogaster. In D. kikkawai, climatic adaptation might occur more by changing the frequency of the D allele than by phenotypic plasticity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
In several Drosophila species, the XY Mendelian ratio is disturbed by X-linked segregation distorters (sex-ratio drive). We used a collection of recombinants between a nondistorting chromosome and a distorting X chromosome originating from the Seychelles to map a candidate sex-ratio region in Drosophila simulans using molecular biallelic markers. Our data were compatible with the presence of a sex-ratio locus in the 7F cytological region. Using sequence polymorphism at the Nrg locus, we showed that sex-ratio has induced a strong selective sweep in populations from Madagascar and Réunion, where distorting chromosomes are close to a 50% frequency. The complete association between the marker and the sex-ratio phenotype and the near absence of mutations and recombination in the studied fragment after the sweep event indicate that this event is recent. Examples of selective sweeps are increasingly reported in a number of genomes. This case identifies the causal selective force. It illustrates that all selective sweeps are not necessarily indicative of an increase in the average fitness of populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号