首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biological nitrogen fixation, the reduction of chemically inert dinitrogen to bioavailable ammonia, is a central process in the global nitrogen cycle highly relevant for life on earth. N2 reduction to NH3 is catalyzed by nitrogenases exclusively synthesized by diazotrophic prokaryotes. All diazotrophs have a molybdenum nitrogenase containing the unique iron‐molybdenum cofactor FeMoco. In addition, some diazotrophs encode one or two alternative Mo‐free nitrogenases that are less efficient at reducing N2 than Mo‐nitrogenase. To permit biogenesis of Mo‐nitrogenase and other molybdoenzymes when Mo is scarce, bacteria synthesize the high‐affinity molybdate transporter ModABC. Generally, Mo supports expression of Mo‐nitrogenase genes, while it represses production of Mo‐free nitrogenases and ModABC. Since all three nitrogenases and ModABC can reach very high levels at suitable Mo concentrations, tight Mo‐mediated control saves considerable resources and energy. This review outlines the similarities and differences in Mo‐responsive regulation of nitrogen fixation and molybdate transport in diverse diazotrophs.  相似文献   

2.
Methanosarcina barkeri 227 possesses two clusters of genes potentially encoding nitrogenases. We have previously demonstrated that one cluster, called nif2, is expressed under molybdenum (Mo)-sufficient conditions, and the deduced amino acid sequences for nitrogenase structural genes in that cluster most closely resemble those for the Mo nitrogenase of the gram-positive eubacterium Clostridium pasteurianum. The previously cloned nifH1 from M. barkeri shows phylogenetic relationships with genes encoding components of eubacterial Mo-independent eubacterial alternative nitrogenases and other methanogen nitrogenases. In this study, we cloned and sequenced nifD1 and part of nifK1 from M. barkeri 227. The deduced amino acid sequence encoded by nifD1 from M. barkeri showed great similarity with vnfD gene products from vanadium (V) nitrogenases, with an 80% identity at the amino acid level with the vnfD gene product from Anabaena variabilis. Moreover, there was a small open reading frame located between nifD1 and nifK1 with clear homology to vnfG, a hallmark of eubacterial alternative nitrogenases. Stimulation of diazotrophic growth of M. barkeri 227 by V in the absence of Mo was demonstrated. The unusual complement of nif genes in M. barkeri 227, with one cluster resembling that from a gram-positive eubacterium and the other resembling a eubacterial V nitrogenase gene cluster, suggests horizontal genetic transfer of those genes.  相似文献   

3.
We studied the effects of molybdenum, vanadium, and tungsten on the diazotrophic growth of Methanococcus maripaludis. Mo stimulated growth, with a maximal response at 4.0 microM, while V had no effect at any concentration tested. W specifically inhibited diazotrophic growth in the presence of Mo. Coupling the results of our analysis and other known metal requirements with phylogenies derived from nifD and nifK genes revealed distinct clusters for Mo-, V-, and Fe-dinitrogenases and suggested that most methanogens also have molybdenum-type nitrogenases.  相似文献   

4.
5.
6.
Temperature affects the expression of the three different nitrogenases in Azotobacter vinelandii. Molybdenum repressed the vnfH and anfH operons relatively more at 30°C than at 20°C; at 14°C molybdenum did not repress these genes at all. Similarly, V repressed the anf operon at 30°C but not at 20 or 14°C. Mo was poorly transported into cells grown at the lower temperatures. A. vinelandii thus has the potential to synthesize any of the three nitrogenases at 14 to 20°C regardless of the presence of Mo or V.  相似文献   

7.
Diversity of Nitrogenase Systems in Diazotrophs   总被引:1,自引:0,他引:1  
Nitrogenase is a metalloprotein complex that catalyses the reaction of biological nitrogen fixation. At least three genetically distinct nitrogenase systems have been confirmed in diazotrophs, namely Nil, Vnf, and Anf, in which the active-site central metals are Mo, V, and Fe, respectively. The present review summarizes progress on the genetic, structural, and functional investigations into the three nitrogenases and discusses the possibility of the existence of other novel nitrogenases.  相似文献   

8.
Bellenger  J. P.  Darnajoux  R.  Zhang  X.  Kraepiel  A. M. L. 《Biogeochemistry》2020,149(1):53-73

Biological nitrogen fixation (BNF), a key reaction of the nitrogen cycle, is catalyzed by the enzyme nitrogenase. The best studied isoform of this metalloenzyme requires molybdenum (Mo) at its active center to reduce atmospheric dinitrogen (N2) into bioavailable ammonium. The Mo-dependent nitrogenase is found in all diazotrophs and is the only nitrogenase reported in diazotrophs that form N2-fixing symbioses with higher plants. In addition to the canonical Mo nitrogenase, two alternative nitrogenases, which use either vanadium (V) or iron (Fe) instead of Mo are known to fix nitrogen. They have been identified in ecologically important groups including free-living bacteria in soils and freshwaters and as symbionts of certain cryptogamic covers. Despite the discovery of these alternative isoforms more than 40 years ago, BNF is still believed to primarily rely on Mo. Here, we review existing studies on alternative nitrogenases in terrestrial settings, spanning inland forests to coastal ecosystems. These studies show frequent Mo limitation of BNF, ubiquitous distribution of alternative nitrogenase genes and significant contributions of alternative nitrogenases to N2 fixation in ecosystems ranging from the tropics to the subarctic. The effect of temperature on nitrogenase isoform activity and regulation is also discussed. We present recently developed methods for measuring alternative nitrogenase activity in the field and discuss the associated analytical challenges. Finally, we discuss how the enzymatic diversity of nitrogenase forces a re-examination of existing knowledge gaps and our understanding of BNF in nature.

  相似文献   

9.
The major part of biological nitrogen fixation is catalysed by the molybdenum nitrogenase that carries at its active site the iron and molybdenum cofactor (FeMo-co). The nitrogen fixation (nif) genes required for the biosynthesis of FeMo-co are derepressed in the absence of a source of fixed nitrogen. The nifB gene product is remarkable because it assembles NifB-co, a complex cluster proposed to comprise a [6Fe-9S-X] cluster, from simpler [Fe-S] clusters common to other metabolic pathways. NifB-co is a common intermediate of the biosyntheses of the cofactors present in the molybdenum, vanadium and iron nitrogenases. In this work, the expression of the Azotobacter vinelandii nifB gene was uncoupled from its natural nif regulation to show that NifB protein levels are lower in cells growing diazotrophically than in cells growing at the expense of ammonium. A. vinelandii carries a duplicated copy of the ATPase component of the ubiquitous ClpXP protease (ClpX2), which is induced under nitrogen fixing conditions. Inactivation of clpX2 resulted in the accumulation of NifB and NifEN and a defect in diazotrophic growth, especially when iron was in short supply. Mutations in nifE, nifN and nifX or in nifA also affected NifB accumulation, suggesting that NifB susceptibility to degradation might vary during its catalytic cycle.  相似文献   

10.
The nitrogenase metalloenzyme family, essential for supplying fixed nitrogen to the biosphere, is one of life's key biogeochemical innovations. The three forms of nitrogenase differ in their metal dependence, each binding either a FeMo‐, FeV‐, or FeFe‐cofactor where the reduction of dinitrogen takes place. The history of nitrogenase metal dependence has been of particular interest due to the possible implication that ancient marine metal availabilities have significantly constrained nitrogenase evolution over geologic time. Here, we reconstructed the evolutionary history of nitrogenases, and combined phylogenetic reconstruction, ancestral sequence inference, and structural homology modeling to evaluate the potential metal dependence of ancient nitrogenases. We find that active‐site sequence features can reliably distinguish extant Mo‐nitrogenases from V‐ and Fe‐nitrogenases and that inferred ancestral sequences at the deepest nodes of the phylogeny suggest these ancient proteins most resemble modern Mo‐nitrogenases. Taxa representing early‐branching nitrogenase lineages lack one or more biosynthetic nifE and nifN genes that both contribute to the assembly of the FeMo‐cofactor in studied organisms, suggesting that early Mo‐nitrogenases may have utilized an alternate and/or simplified pathway for cofactor biosynthesis. Our results underscore the profound impacts that protein‐level innovations likely had on shaping global biogeochemical cycles throughout the Precambrian, in contrast to organism‐level innovations that characterize the Phanerozoic Eon.  相似文献   

11.
[NEt4]3[Fe6M2S8(SEt)9] (M = Mo or W) compounds are isomorphous and contain molybdenum and tungsten atoms in an essentially identical environment. These complexes undergo an irreversible one-electron oxidation at −0.46 V (Mo) and −0.51 V (W) and two one-electron reductions at −1.56 and −1.76 V (Mo) and −1.52 and −1.84 V (W), in DMSO solution versus (0.1 M). The only distinction between the behavior of these molybdenum and tungsten complexes identified thus far is that, for the former the reductions are reversible whereas for the latter they are irreversible. This difference may be relevant to the low activity found for nitrogenases reconstituted with tungsten in place of molybdenum.  相似文献   

12.
The nitrogenase enzyme complex of Methanosarcina barkeri 227 was found to be more sensitive to NaCl than previously studied molybdenum nitrogenases are, with total inhibition of activity occurring at 190 mM NaCl, compared with >600 mM NaCl for Azotobacter vinelandii and Clostridium pasteurianum nitrogenases. Na+ and K+ had equivalent effects, whereas Mg2+ was more inhibitory than either monovalent cation, even on a per-charge basis. The anion Cl- was more inhibitory than acetate was. Because M. barkeri 227 is a facultative halophile, we examined the effects of external salt on growth and diazotrophy and found that inhibition of growth was not greater with N2 than with NH4+. Cells grown with N2 and cells grown with NH4+ produced equal concentrations of alpha-glutamate at low salt concentrations and equal concentrations of Nepsilon-acetyl-beta-lysine at NaCl concentrations greater than 500 mM. Despite the high energetic cost of fixing nitrogen for these osmolytes, we obtained no evidence that there is a shift towards nonnitrogenous osmolytes during diazotrophic growth. In vitro nitrogenase enzyme assays showed that at a low concentration (approximately 100 mM) potassium glutamate enhanced activity but at higher concentrations this compound inhibited activity; 50% inhibition occurred at a potassium glutamate concentration of approximately 400 mM.  相似文献   

13.
Molybdenum-independent nitrogenases were first described in the nitrogen-fixing bacterium Azotobacter vinelandii and have since been described in other diazotrophic bacteria. Previously, we reported the isolation of seven diazotrophs with Mo-independent nitrogenases from aquatic environments. In the present study, we extend these results to include diazotrophs isolated from wood chip mulch, soil, "paraffin dirt," and sediments from mangrove swamps. Mo-deficient, N-free media under both aerobic and anaerobic conditions were used for the isolations. A total of 26 isolates were genetically and physiologically characterized. Their phylogenetic placement was determined using 16S rRNA gene sequence analysis. Most of the isolates are members of the gamma subdivision of the class Proteobacteria and appear to be specifically related to fluorescent pseudomonads and azotobacteria. Two other isolates, AN1 and LPF4, are closely related to Enterobacter spp. and Paenibacillus spp., respectively. PCR and/or Southern hybridization were used to detect the presence of nitrogenase genes in the isolates. PCR amplification of vnfG and anfG was used to detect the genetic potential for the expression of the vanadium-containing nitrogenase and the iron-only nitrogenase in the isolates. This study demonstrates that diazotrophs with Mo-independent nitrogenases can be readily isolated from diverse natural environments.  相似文献   

14.
Lei S  Pulakat L  Gavini N 《FEBS letters》2000,482(1-2):149-153
Azotobacter vinelandii carries three different and genetically distinct nitrogenase systems on its chromosome. Expression of all three nitrogenases is repressed by high concentrations of fixed nitrogen. Expression of individual nitrogenase systems is under the control of specific metal availability. We have isolated a novel type of A. vinelandii DJ54 revertant, designated A. vinelandii BG54, which carries a defined deletion in the nifH gene and is capable of diazotrophic growth in the presence of molybdenum. Inactivation of nifDK has no effect on growth of this mutant strain in nitrogen-free medium suggesting that products of the nif system are not involved in supporting diazotrophic growth of A. vinelandii BG54. Similar to the wild type, A. vinelandii BG54 is also sensitive to 1 mM tungsten. Tn5-B21 mutagenesis to inactivate the genes specific to individual systems revealed that the structural genes for vnf nitrogenase are required for diazotrophic growth of A. vinelandii BG54. Analysis of promoter activity of different nif systems revealed that the vnf promoter is activated in A. vinelandii BG54 in the presence of molybdenum. Based on these data we conclude that A. vinelandii BG54 strain utilizes vnf nitrogenase proteins to support its diazotrophic growth.  相似文献   

15.
16.
Expression of alternative nitrogenases in Azotobacter vinelandii is repressed by molybdenum. Two strains with Tn5 insertion mutations showed alternative nitrogenase-dependent diazotrophic growth in the presence of Mo. The mutations were in a region which contained four open reading frames (ORFs 1–4). The genetic structure and predicted products of ORFs 2, 3 and 4 are typical of the membrane-associated elements of the ATP-binding cassette (ABC) superfamily of transport systems. The products of 0RF3 and 0RF4 are homologous with the products of the Escherichia coli genes chlD and the partially sequenced chlJ, respectively, both of which are implicated in molybdenum transport. ORF1, which is in the relative position of bacterial permease genes commonly specifying periplasmic binding proteins, encodes a 29 kDa protein with a novel primary structure. It lacks a potential signal sequence, and its C-terminal half consists of a tandem repeat of a segment which is homologous with the Mr 7 kDa molybdenum-pterin binding protein Mop from Clostridium pasteurianum. This suggests that a substituted pterin may be involved in the initial capture or early metabolism of molybdenum.  相似文献   

17.
18.
The nitrogenase proteins from eight organisms have been highly purified, and a survey of their cross-reactions shows that the nitrogenase proteins from a wide variety of organisms can interact with one another. An active cross-reaction is the complementary functioning of the MoFe protein and the Fe protein from different organisms. Of 64 possible combinations of component proteins, 8 yielded homologous nitrogenases (components from the same organism); 45 of the 56 possible heterologous crosses generated active hybrid nitrogenases; 4 heterologous crosses yielded no measurable nitrogenase activity but did form inactive tight-binding complexes; 6 crosses did not give measurable activity; and 1 cross was not made. All these crosses were assayed for acetylene reduction, and some also were assayed for ammonia formation, hydrogen evolution, and ATP hydrolysis activity. The activity generated by combining two complementary heterologous nitrogenase components depended on pH, component ratio, and protein concentration, the same factors that determine the activity of homologous nitrogenases. However, several crosses showed an unusual dependency on component ratio and protein concentration, and some cross-reactions showed interesting ATP hydrolysis activity.  相似文献   

19.
Influence of pN2 and pD2 on HD formation by various nitrogenases   总被引:6,自引:0,他引:6  
J L Li  R H Burris 《Biochemistry》1983,22(19):4472-4480
Formation of HD from D2 has been demonstrated with nitrogenase preparations from Azotobacter vinelandii, Clostridium pasteurianum, Klebsiella pneumoniae, and Azospirillum sp. We conclude that the formation of HD from D2 is a general property of nitrogenases. However, the nitrogenases differ in their Ki values for D2 (N2 fixation) and in their rates of catalyzing HD formation; among the nitrogenases tested, C. pasteurianum nitrogenase had the lowest activity for formation of HD. When contaminating N2 was removed from the atmospheres above reaction mixtures, less than 1% of the total electron flux in the system was directed to HD formation; hence, we doubt that N2-independent HD formation is significant. A working hypothesis is suggested that operates without invoking an N2-independent reaction for forming HD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号