首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multicellular development requires that cells reduce in size as a result of consecutive cell divisions without increase in embryo volume. To maintain cellular integrity, organelle size adapts to cell size throughout development. During mitosis, the longest chromosome arm must be shorter than half of the mitotic spindle for proper chromosome segregation. Using high-resolution time-lapse microscopy of living Caenorhabditis elegans embryos, we have quantified the relation between cell size and chromosome length. In control embryos, chromosome length scaled to cell size. Artificial reduction of cell size resulted in a shortening of chromosome length, following a trend predicted by measurements from control embryos. Disturbing the RAN (Ras-related nuclear protein)-GTP gradient decoupled nuclear size from cell size and resulted in chromosome scaling to nuclear size rather than cell size; smaller nuclei contained shorter chromosomes independent of cell size. In sum, quantitative analysis relating cell, nuclear, and chromosome size predicts two levels of chromosome length regulation: one through cell size and a second in response to nuclear size.  相似文献   

2.
How cells regulate the size of intracellular structures and organelles is a longstanding question. Recent experiments suggest that size control of intracellular structures is achieved through the depletion of a limiting subunit pool in the cytoplasm. While the limiting pool model ensures organelle-to-cell size scaling, it does not provide a mechanism for robust size control of multiple co-existing structures. Here we develop a generalized theory for size-dependent growth of intracellular structures to demonstrate that robust size control of multiple intracellular structures, competing for a limiting subunit pool, is achieved via a negative feedback between the growth rate and the size of the individual structure. This design principle captures size maintenance of a wide variety of subcellular structures, from cytoskeletal filaments to three-dimensional organelles. We identify the feedback motifs for structure size regulation based on known molecular processes, and compare our theory to existing models of size regulation in biological assemblies. Furthermore, we show that positive feedback between structure size and growth rate can lead to bistable size distribution and spontaneous size selection.  相似文献   

3.
Interspecifically, a reasonable body of evidence supports a trade‐off between offspring size and number. However, at the intraspecific level, a whole manner of phenotypic correlations between offspring size and number are observed. These correlations may be predicted when heterogeneity in resource availability, or quality, is considered. Making the assumption that maternal size is a proxy for resource availability, we meta‐analytically quantified four phenotypic reproductive correlations within numerous species: (1) maternal size and offspring size, (2) maternal size and offspring number, (3) offspring number and offspring size, and (4) offspring number and offspring size after controlling for maternal size. Within species, maternal size showed a positive correlation with both offspring size and number. Despite this consistency, no correlation between offspring size and number was found. After controlling for maternal size, however, offspring size and number showed a significant negative correlation. A phylogenetic component of our analysis accounted for little heterogeneity in the data, suggesting that our findings show remarkable consistency across taxa. Overall, our results support an observable phenotypic trade‐off between offspring size and number. However, this analysis also highlights the importance of considering quality when examining trade‐offs, a task that is not always straightforward as quality is context dependant.  相似文献   

4.
The flesh-burrowing parasitic isopod Ichthyoxenus fushanensis was found infecting the body cavity of a freshwater fish, Varicorhinus bacbatulus , in heterosexual pairs. Herein we investigate the question of how the host body size may constrain the parasite size and clutch size by analyzing the interactions among the body size and clutch size of the parasite, and host size. Due to the low transmission rate of I. fushanensis to its host and the positive relationship between clutch size and female size, selection may favor larger females with larger clutch sizes to compensate for massive losses of manca (the free-living juveniles). The path model reveals that clutch size depends not only directly on female size, but also on the sizes of her host and mate. Female size also depends on the sizes of the host and her mate. A negative correlation exists between the body sizes of the paired males and females. This negative correlation may be regarded as a consequence of competition for limited available space or other resources provided by the host. The effects of host size on parasite size, however, act on the total volume of both sexes as a whole, not specifically on either the female or the male. In this case, the available space/resources may not allow both individuals of different sexes to evolve toward a larger size simultaneously. Under the constraint of host size, a strategy of reducing the body size of the paired male may provide a way to increase the body size of the paired female and achieve a larger clutch size.  相似文献   

5.
The negative relationship between offspring number and offspring size provides a classic example of the role of trade-offs in life history theory. However, the evolutionary transitions in egg size and clutch size that have produced this negative relationship are still largely unknown. Since body size may affect both of these traits, it would be helpful to understand how evolutionary changes in body size may have facilitated or constrained shifts in clutch and egg size. By using comparative methods with a database of life histories and a phylogeny of 222 genera of cichlid fishes, we investigated the order of evolutionary transitions in these traits in relation to each other. We found that the ancestral large-bodied cichlids first increased egg size, followed by a decrease in both body size and clutch size resulting in the common current combination of a small-bodied cichlid with a small clutch of large eggs. Furthermore, lineages that deviated from the negative relationship between clutch and egg size underwent different transitions in these traits according to their body size (large bodied genera have moved towards the large clutch/small egg end of the continuum and small bodied genera towards the small clutch/large egg end of the continuum) to reach the negative relationship between clutch size and egg size. Our results show that body size is highly important in shaping the negative relationship between clutch size and egg size.  相似文献   

6.
A family of empirically based ecological ‘rules’, collectively known as temperature‐size rules, predicts larger body size in colder environments. This prediction is based on studies demonstrating that a wide range of ectotherms show increased body size, cell size or genome size in low‐temperature habitats, or that individuals raised at low temperature become larger than conspecifics raised at higher temperature. There is thus a potential for reduction in size with global warming, affecting all levels from cell volume to body size, community composition and food webs. Increased body size may be obtained either by increasing the size or number of cells. Processes leading to changed cell size are of great interest from an ecological, physiological and evolutionary perspective. Cell size scales with fundamental properties such as genome size, growth rate, protein synthesis rates and metabolic activity, although the causal directions of these correlations are not clear. Changes in genome size will thus, in many cases, not only affect cell or body size, but also life‐cycle strategies. Symmetrically, evolutionary drivers of life‐history strategies may impact growth rate and thus cell size, genome size and metabolic rates. Although this goes to the core of many ecological processes, it is hard to move from correlations to causations. To the extent that temperature‐driven changes in genome size result in significant differences among populations in body size, allometry or life‐cycle events such as mating season, it could serve as a fast route to speciation. We offer here a novel perspective on the temperature‐size rules from a ‘bottom‐up’ perspective: how temperature may induce changes in genome size, and thus implicitly in cell size and body size of metazoans. Alternatively: how temperature‐driven enlargement of cells also dictates genome‐size expansion to maintain the genome‐size to cell‐volume ratio. We then discuss the different evolutionary drivers in aquatic versus terrestrial systems, and whether it is possible to arrive at a unifying theory that also may serve as a predictive tool related to temperature changes. This, we believe, will offer an updated review of a basic concept in ecology, and novel perspectives on the basic biological responses to temperature changes from a genomic perspective.  相似文献   

7.
The number of group members in an animal society can have a major influence on group members’ life history, survival, and reproductive success. Identifying the factors that limit group size is therefore fundamental for a complete understanding of social behavior. Here, I examined the relationships between resource availability, social conflict, and group size in the coral‐dwelling fish, Paragobiogon xanthosomus (Gobiidae). The size of the largest (breeding) female and the minimum size difference required for hierarchy stability strongly but not perfectly predicted maximum group size, suggesting that social conflicts and hierarchy structure set the upper limit on group size. Deviations in group size around the predicted maximum were explained by variation in average body size ratios but not by variation in coral size, suggesting that coral size does not directly influence group size. In contrast, coral size was a significant predictor of body size ratios, and possible explanations for this relationship are discussed. Group size may be limited by the social conflicts that characterize size‐based dominance hierarchies. Ecological factors, namely coral size, may in turn play an indirect role via an effect on body size ratios.  相似文献   

8.
We present a phylogenetic comparative study assessing the evolutionary determinants of egg size in the moth family Geometridae. These moths were found to show a strong negative allometric relationship between egg size and maternal body size. Using recently developed comparative methods based on an Ornstein-Uhlenbeck process, we show that maternal body size explains over half the variation in egg size. However, other determinants are less clear: ecological factors, previously hypothesized to affect egg size, were not found to have a considerable influence in the Geometridae. The limited role of such third factors suggests a direct causal link between egg size and body size rather than an indirect correlation mediated by some ecological factors. Notably, no large geometrid species lay small eggs. This pattern suggests that maternal body size poses a physical constraint on egg size, but within these limits, there appears to be a rather invariable selection for larger eggs.  相似文献   

9.
10.
In teleosts, egg size is an important determinant of larval size. The latter determines where larvae start feeding in the size spectrum of biomass particles. Egg and larval size also determine the size range of predators exploiting these early ontogenetic stages. Thus, egg size is important in determining the particle size range sampled during ontogeny. However, egg size also largely determines how many can be produced by a female. Optimum egg size for marine, pelagic fishes was estimated using a modification of a model developed by Ware. A numerical analysis using empirical information on size and temperature dependent mortality and growth in pelagic, marine systems suggests that allometry of size-dependent mortality and temperature are significant factors in determining optimum egg size. Allometry of mortality will depend on the frequency of encounters between particles of different sizes. Both empirical and modelling studies of such frequencies in pelagic and other environments are required.  相似文献   

11.
Iizuka M  Tachida H  Matsuda H 《Genetics》2002,161(1):381-388
We consider a diffusion model with neutral alleles whose population size is fluctuating randomly. For this model, the effects of fluctuation of population size on the effective size are investigated. The effective size defined by the equilibrium average heterozygosity is larger than the harmonic mean of population size but smaller than the arithmetic mean of population size. To see explicitly the effects of fluctuation of population size on the effective size, we investigate a special case where population size fluctuates between two distinct states. In some cases, the effective size is very different from the harmonic mean. For this concrete model, we also obtain the stationary distribution of the average heterozygosity. Asymptotic behavior of the effective size is obtained when the population size is large and/or autocorrelation of the fluctuation is weak or strong.  相似文献   

12.
We tested the hypothesis that egg size should evolve in sexually dimorphic birds to reduce costs associated with more rapid growth by nestlings of the larger sex. Consistent with this hypothesis, we found that in species in which males were larger, females laid proportionately larger eggs as sexual size dimorphism increased. However, this result was also consistent with the hypothesis that egg size varied allometrically with both male and female body size. Furthermore we found that in species in which females were larger, relative egg size decreased as size dimorphism increased, which is consistent with the “allometry hypothesis” but not the “cost-reduction hypothesis. That male body size contributes to the allometric relationship between egg size and body size suggests that the basis for the allometric relationship is not wholly a mechanical one stemming from the physical requirements of developing, transporting, and laying an egg of a particular size. Rather, the relationship seems likely to be tied more directly to body size itself the tact that male body size influences a female trait suggests that egg size–body size relationships otter some scope for investigating the basis for allometric relationships in general.  相似文献   

13.
Evolution of body size is likely to involve trade-offs between body size, growth rate and longevity. Within species, larger body size is associated with faster growth and ageing, and reduced longevity, but the cellular processes driving these relationships are poorly understood. One mechanism that might play a key role in determining optimal body size is the relationship between body size and telomere dynamics. However, we know little about how telomere length is affected when selection for larger size is imposed in natural populations. We report here on the relationship between structural body size and telomere length in wild house sparrows at the beginning and end of a selection regime for larger parent size that was imposed for 4 years in an isolated population of house sparrows. A negative relationship between fledgling size and telomere length was present at the start of the selection; this was extended when fledgling size increased under the selection regime, demonstrating a persistent covariance between structural size and telomere length. Changes in telomere dynamics, either as a correlated trait or a consequence of larger size, could reduce potential longevity and the consequent trade-offs could thereby play an important role in the evolution of optimal body size.  相似文献   

14.
The evolution of reproductive strategies and the trade-off between number and size of eggs were investigated in a comparative analysis of free-living and parasitic copepods. Data from 1038 copepod species were used to obtain family averages for 105 families; the phylogenetic relationships among these families include 94 branching events or 94 independent contrasts on which the analysis was based. Transition from a free-living existence to parasitism on invertebrates resulted in small increases in body size. Transition from parasitism on invertebrates to parasitism on fish was associated with greater increases in body size. After controlling for body size, a switch to fish hosts resulted in an increase in the number of eggs produced and a reduction in egg size. Among all contrasts, there was a negative relationship between changes in relative clutch size and changes in relative egg size, suggesting the existence of a trade-off between egg size and numbers. However, opposite changes in these measures of clutch size and egg size were not quite more frequent than expected by chance, therefore indicating that investments into egg numbers are not necessarily made at the expense of egg size, and vice versa. Latitude affected copepod body size, clutch size, and egg size, whereas the effects of freshwater colonization or size of the fish host were not significant. Comparative analyses at either the genus or species levels within given taxa of copepods parasitic on fish provided limited support for a trade-off between clutch size and egg size, but were hampered by the small number of independent phylogenetic contrasts available. From the family-level comparative analysis, it appears that the evolutionary transition from a free life to parasitism on invertebrates, and the transition from parasitism on invertebrates to parasitism on fish, have led to changes in life-history traits in response to the different selective pressures associated with the different modes of life.  相似文献   

15.
Optimal offspring sizes in small litters   总被引:1,自引:0,他引:1  
Summary Numerous evolutionary models explore the trade-off between offspring size and offspring number. However, such models often fail when the number of offspring is small because optimal litter size (or litter size at optimal offspring size) may fall between the necessarily integer values for real litters. This paper extends a classic model for optimal investment per offspring to the case of small litters and predicts that range in offspring size and the largest (smallest) offspring size should decline (increase) with increased litter size. Application of the model to egg size data from a poeciliid fish,Gambusia hubbsi, reveals a surprisingly close approximation to the largest offspring size and variation in offspring size at small litter sizes.  相似文献   

16.
Aim There is substantial residual scatter about the positive range size–body size relationship in Australian frogs. We test whether species’ life history and abundance can account for this residual scatter. Location Australia. Methods Multiple regressions were performed using both cross‐species and independent contrasts analyses to determine whether clutch size, egg size and species abundance account for variation in range size over and above the effects of body size. Results In both cross‐species and independents contrasts models with body size, clutch size and egg size as predictors, partial r2 values revealed that only egg size was significantly and uniquely related to range size. Contrary to expectation, neither body size nor clutch size could account for significant variation in range size. Incorporating species abundance as a predictor in further multiple regression analysis demonstrated that while abundance accounted for a significant proportion of range size variation, the contribution of egg size was reduced but still significant. Notably, non‐significant relationships persisted between range size and both body size and clutch size. Conclusions The weak positive correlation between body size and range size in Australian frogs disappears after accounting for species abundance and egg size. Our findings demonstrate that species with both high local abundance and small eggs occupy comparatively wider geographical ranges than species with low abundance and large eggs.  相似文献   

17.
Classic egg size theory predicts that, in a given environment, there is a level of maternal investment per offspring that will maximize maternal fitness. However, positive correlations among egg size and female body size are observed within populations in diverse animal taxa. A popular explanation for this phenomenon is that, in some populations, morphological constraints on egg size, such as ovipositor size (insects) or pelvic aperture width (lizards and turtles), limit egg size. Egg size may therefore increase with female body size due to body size‐specific constraints on investment per offspring, coupled with selection towards an optimal egg size. We use 17 years of data from a population of painted turtles Chrysemys picta to evaluate this hypothesis. In accordance with our predictions, we find that (1) morphological constraints on egg size are apparent only in relatively small females, similarly (2) egg mass exhibits a strong asymptotic relationship with female body size, suggesting egg mass is optimized only at large body sizes, (3) clutch size, not egg mass, varies with female condition, and (4) clutch size varies more than egg mass across years. Contrary to our predictions, we observe that (5) the egg mass‐clutch size tradeoff is not less pronounced at large body sizes. Our data do not fully support the traditional hypothesis, and recent models suggest that this hypothesis is indeed overly simplistic. When the selective environment of a female's offspring is influenced by her phenotype, optimal egg size may vary among maternal phenotypes. This concept can explain correlations among egg size and body size in many taxa, as well as the patterns observed in the present study. In this paradigm, a tight coupling of aperture width (or other ‘constraints’) and egg size may occur in small females, even when such morphological features are not causally related to variation in egg size. In this spirit, we question validity of invoking morphological constraints to explain covariation among egg size and female body size.  相似文献   

18.
Body size is highly variable within and among populations, both as a result of genetic variation and as a plastic response to environmental variation. From a proximate perspective, body size depends upon cell size, cell number, and extracellular matrix, but we know little about their independent contributions to size nor how these contributions vary with environmental influences. Here, I introduce the tail muscle of anuran tadpoles as a new system for studying this issue. Body size and tail size of tadpoles is sensitive to variation in food and temperature. I show first that tail muscle size is strongly correlated with overall body size, thus making it a good tissue to study size regulation. Second, the relative role of cell size and cell number, but not extracellular matrix, shows an interaction between food and temperature treatments and across ages. For example, in young tadpoles food effects on size are due exclusively to cell size at low temperatures but both cell size and number at high temperatures. This pattern partially reverses for older tadpoles. Despite the complexity of this interaction, the two populations compared show nearly identical patterns, suggesting that the plastic response is robust.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 499–510.  相似文献   

19.
Ben L. Phillips  Richard Shine 《Oikos》2006,112(1):122-130
Because many organismal traits vary with body size, interactions between species can be affected by the respective body sizes of the participants. We focus on a novel predator–prey system involving an introduced, highly toxic anuran (the cane toad, Bufo marinus ) and native Australian snakes. The chance of a snake dying after ingesting a toad depends on the size of the snake and the size of the toad, and ultimately reflects the effect of four allometries: (1) physiological tolerance (the rate that physiological tolerance to toad toxin changes with snake size); (2) swallowing ability (the rate that maximal ingestible toad size (i.e. snake head size) increases with snake body size); (3) prey size (the rate that prey size taken by snakes increases with snake head size) and (4) toad toxicity (the rate that toxicity increases with toad size). We measured these allometries, and combined them to estimate the rate at which a snake's resistance changes with toad toxicity. The parotoid glands (and thus, toxicity) of toads increased disproportionately with toad size (i.e. relative to body size, larger toads were more toxic) but simultaneously, head size relative to body size (and thus, maximal ingestible prey size relative to predator size) declined with increasing body size in snakes. Thus, these two allometries tended to cancel each other out. Physiological tolerance to toxins did not vary with snake body size. The end result was that across snake species, mean adult body size did not affect vulnerability. Within species, however, smaller predators were more vulnerable, because the intraspecific rate of decrease in relative head size of snakes was steeper than the rate of increase in toxicity of toads. Thus, toad invasion may cause disproportionate mortality of juvenile snakes, and adults of the sex with smaller mean adult body sizes.  相似文献   

20.
Plants may express two separate seed-size characters during their lifetimes: the size of the seeds from which they germinate (initial seed size) and the mean size of seed they produce as adults (maternal seed size). Many empirical studies indicate that selection often favors a larger initial seed size. In contrast, patterns of natural selection on maternal seed size have not been measured, although theory often predicts stabilizing selection. Here, I report on a field study of the common morning glory Ipomoea purpurea, which provided measurements of natural selection on both initial and maternal seed size. For initial seed size, selection favored larger seeds, but a greenhouse study indicated no genetic variation for this trait. For maternal seed size, there was no evidence of either directional or stabilizing selection, but there was significant additive genetic variation. The genetic correlation between the number and size of seeds was not significant, indicating no trade-off between these traits, but a negative genetic correlation was found between maternal seed size and the probability of surviving to reproduce. The absence of the predicted pattern of stabilizing selection on maternal seed size in the study population highlights the need for more empirical work on the evolution of seed size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号