首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Adenosine 3′,5′-monophosphate (cAMP), folic acid and pterin are chemoattractants in the cellular slime molds. The cAMP analog, 3′-amino-cAMP, inhibits a chemotactic reaction to cAMP at a concentration at which the analog is chemotactically inactive. The antagonistic effect of 3′-amino-cAMP on the chemotactic activity of cAMP is competitive, which suggests that 3′-amino-cAMP antagonizes cAMP via the chemotactic receptor for cAMP. 3′-Amino-cAMP does not antagonize folic acid or pterin. The binding of folic acid to post-vegetative Dictyostelium discoideum cells is inhibited by low concentrations of 2-deamino-2-hydro folic acid (DAFA [7]). DAFA is neither chemotactically active, nor does it inhibit a chemotactic reaction to folic acid. This questions the involvement of the main folic acid cell surface-binding sites in the chemotactic response to folic acid. The pterin analog, 6-aminopterin, is an antagonist of pterin, but not of cAMP or folic acid. Our results show that cAMP, folic acid and pterin are detected by different receptors. Furthermore, they suggest that the antagonistic action of 3′-amino-cAMP and 6-aminopterin is localized in the signal transduction pathway at a step before the signals from the separate receptors have arrived at a single pathway.  相似文献   

2.
To elucidate the structural basis for important differences between types I and II regulatory subunit isoforms (RI and RII) of adenosine 3′,5′-cyclic monophosphate (cAMP)-dependent protein kinase, the full-length RIIβ isoform and five RIIβ deletion mutants were constructed, expressed, purified, and screened for crystallization. Only one of these six proteins yielded diffraction quality crystals. Crystals were grown of the RIIβ deletion mutant (Δ1–111) monomer potentially in complex with two cAMP molecules. X-ray diffraction quality data were obtained only after significant modification to existing purification procedures. Modifications required a Sepharose, not agarose, support for cAMP affinity chromatography followed by rapid, quantitative removal of free cAMP by size-exclusion chromatography under reducing conditions. Data to 2.4 Å resolution were collected at 29°C using synchrotron radiation on a single crystal measuring 0.2 × 0.3 × 1.2 mm3. Data were 99% complete. The hexagonal crystal belonged to space group P6(1) or P6(5) with unit cell dimensions a = b = 161.62 Å and c = 39.66 Å.  相似文献   

3.
The mechanism of the stimulatory effect of prostaglandin (PG) F on the production of hexosamine-containing substances by cultured fibroblasts was studied with special reference to adenosine 3′:5′- cyclic monophosphate (cAMP). At the stationary phase, the cells were exposed for 6 hrs to PGF, E1, cAMP or dibutyryl-cAMP in a wide range of concentrations. cAMP itself showed a slight stimulation on the production of hexosamine-containing substances, and the effect was enhanced by using the dibutyryl derivative. PGF had much a greater capacity than either the exogeneous cAMP or the dibutyryl-cAMP for enhancing the production of hexosamine-containing substances. To know whether cAMP is involved in the stimulatory effect of PGF, intracellular cAMP level was concomitantly measured in both PGF and PGE1 treated cultures. Although the cellular cAMP level in PGE1 treated cultures was much higher than that in the PGF treated cultures, the stimulatory effect on the production of hexosamine-containing substances in PGE1 treated cultures was always much smaller than that in the PGF treated cultures. Moreover, PGF had a significant stimulatory effect on the production of hexosamine-containing substances even at a low concentration as 100 pg/ml, which is small enough not to increase any cellular cAMP level. From these results, it was concluded that the stimulatory effect of PGF on the production of hexosamine-containing substances by cultured fibroblasts is not mediated by cAMP and is caused by a mechanism different from that caused by cAMP.  相似文献   

4.
The amino acids involved in substrate (cAMP) binding to human platelet cGMP-inhibited cAMP phosphodiesterase (PDE3A) are identified. Less is known about the inhibitor (cGMP) binding site. We have now synthesized a nonhydrolyzable reactive cGMP analog, Rp-guanosine-3′,5′-cyclic-S-(4-bromo-2, 3-dioxobutyl)monophosphorothioate (Rp-cGMPS-BDB). Rp-cGMPS-BDB irreversibly inactivates PDE3A (KI = 43.4 ± 7.2 μM and kcart = 0.007 ± 0.0006 min−1). The effectiveness of protectants in decreasing the rate of inactivation by Rp-cGMPS-BDB is: Rp-cGMPS (Kd = 72 μM) > Sp-cGMPS (124), Sp-cAMPS (182) > GMP (1517), Rp-cAMPS (3762), AMP (4370 μM). NAD+, neither a substrate nor an inhibitor of PDE3A, does not protect. Nonhydrolyzable cGMP analogs exhibit greater affinity than the cAMP analogs. These results indicate that Rp-cGMPS-BDB targets favorably the cGMP binding site consistent with a docking model of PDE3A-Rp-cGMPS-BDB active site. We conclude that Rp-cGMPS-BDB is an effective active site-directed affinity label for PDE3A with potential for other cGMP-dependent enzymes.  相似文献   

5.
6.
Prostaglandins exert their effects on target cells by coupling to specific G protein-coupled receptors (GPCRs) that are often co-expressed in the same cells and use alternate and in some cases opposing intracellular signaling pathways. This study investigated the cross-talk that influences intracellular signaling and gene expression profiling in response to co-activation of the EP2 and FP prostanoid receptors in Ishikawa cells stably expressing both receptors (FPEP2 cells). In this study we show that in FPEP2 cells, PGF alone does not alter adenosine 3′,5′-cyclic monophosphate (cAMP) production, but in combination with Butaprost enhances EP2 receptor mediated cAMP release compared to treatment with Butaprost alone. PGF-mediated potentiation of cAMP release was abolished by antagonism of the FP receptor, inhibition of phospholipase C (PLC) and inositol phosphate receptor (IP3R) whereas inhibition of protein kinase C (PKC) had no effect. Moreover, inhibition of calcium effectors using calmodulin antagonist (W7) or Ca2+/calmodulin-dependent kinase II (CaMK-II) inhibitor (KN-93) abolished PGF potentiation of Butaprost-mediated cAMP release. Using siRNA molecules targeted against the adenylyl cyclase 3 (AC3) isoform, we show that AC3 is responsible for the cross-talk between the FP and EP2 receptors. Using gene array studies we have identified a candidate gene, Spermidine/N1-acetyltransferase (SAT1), which is regulated by this cAMP mediated cross-talk. In conclusion, this study demonstrates that co-activation of the FP and EP2 receptors results in enhanced release of cAMP via FP receptor-Gαq-Ca2+-calmodulin pathway by activating calcium sensitive AC3 isoform.  相似文献   

7.
Di-nor-benzofuran neolignan aldehydes, Δ7-3,4-methylenedioxy-3′-methoxy-8′,9′-dinor-4′,7-epoxy-8,3′-neolignan-7′-aldehyde (ocophyllal A) 1, Δ7-3,4,5,3′-tetramethoxy-8′,9′-dinor-4′,7-epoxy-8,3′-neolignan-7′-aldehyde (ocophyllal B) 2, and macrophyllin-type bicyclo[3.2.1]octanoid neolignans (7R, 8R, 3′S, 4′S, 5′R)-Δ8′-4′-hydroxy-5′-methoxy-3,4-methylenedioxy-2′,3′,4′,5′-tetrahydro-2′-oxo-7.3′,8.5′-neolignan (ocophyllol A) 3, (7R, 8R, 3′S, 4′S, 5′R)-Δ8′-4′-hydroxy-3,4,5′-trimethoxy-2′,3′,4′,5′-tetrahydro-2′-oxo-7.3′,8.5′-neolignan (ocophyllol B) 4, (7R, 8R, 3′S, 4′S, 5′R)-Δ8′-4′-hydroxy-3,4,5,5′-tetramethoxy-2′,3′,4′,5′-tetrahydro-2′-oxo-7.3′,8.5′-neolignan (ocophyllol C) 5, as well as 2′-epi-guianin 6 and (+)-licarin B 7, were isolated and characterized from leaves of Ocotea macrophylla (Lauraceae). The structures and configuration of these compounds were determined by extensive spectroscopic analyses. Inhibition of platelet activating factor (PAF)-induced aggregation of rabbit platelets were tested with neolignans 1–7. Although compound 6 was the most potent PAF-antagonist, compounds 3–5 showed some activity.  相似文献   

8.
The electron withdrawing 5,10,15,20-tetra(2′,6′-dichlorophenyl)porphyrin iron (III) chloride [C18TPPFe(III)C1] and 5,10,15,20-tetra(2′,3′,4′,5′,6′-pentafluorophenyl)porphyrin iron(III)chloride [F20TPPFe(III)C1] are more efficient catalysts than sterically hindered 5,10,15,20-tetra (2′,4′,6′-trimethylphenyl)porphyrin iron (III)chloride during the biomimetic oxidation of 21-hydroxypregn-4-en-3,20-dione with CumOOH in the presence of N-methylimidazole.  相似文献   

9.
10.
The chemotactic response of Dictyostelium discoideum cells to stationary, linear gradients of cyclic adenosine 3′,5′-monophosphate (cAMP) was studied using microfluidic devices. In shallow gradients of less than 10−3 nM/μm, the cells showed no directional response and exhibited a constant basal motility. In steeper gradients, cells moved up the gradient on average. The chemotactic speed and the motility increased with increasing steepness up to a plateau at around 10−1 nM/μm. In very steep gradients, above 10 nM/μm, the cells lost directionality and the motility returned to the sub-threshold level. In the regime of optimal response the difference in receptor occupancy at the front and back of the cell is estimated to be only about 100 molecules.  相似文献   

11.
A procedure was developed for the detection of 2′,3′-cyclic nucleotide 3′-phosphohydrolase in myelin. This assay was sufficiently sensitive to detect the low levels of 2′,3′-cyclic nucleotide 3′-phosphohydrolase in human erythrocytes. The 2′,3′-cyclic nucleotide 3′-phosphohydrolase of human erythrocytes was determined to be exclusively associated with the inner (cytosolic) side of the membrane. Leaky ghostsand resealed ghosts were assayed for 2′,3′-cyclic nucleotide 3′-phosphohydrolase, (Ca2+/Mg2+-ATPase, and acetylcholinesterase activity, and the 2′,3′-cyclic nucleotide 3′-phosphohydrolase profile is the same as that of the (Ca2+/Mg2+)-ATPase, an established inner membrane maker.  相似文献   

12.
Both enantiomers of 2,2′-dihydroxy-4,4′,5,5′,6,6′-hexamethybiphenyl (2), a potentially useful chiral synthon, were obtained with >99% ee in high enantioselectivity by cholesterol esterase or porcine pancreas lipase (PPL)-mediated hydrolysis of the corresponding (±)-dipentanoate or (±)-dihexanoate, respectively. Absolute configuration of (S)-3-bromo-2,6′-dimethoxy-4,5,6,2′,3′,4′-hexamethyl-biphenyl (2h) was determined by X-ray analysis.  相似文献   

13.
Prostacyclin (PGI2) dose-dependently increases the adenosine 3′,5′-cyclic monophosphate (cyclic AMP) levels in canine femoral, carotid, and canine and bovine coronary arteries. The prostacyclin-stimulation is enhanced by phosphodiesterase inhibitors, and is readily measurable after 60 sec incubation. The prostaglandin endoperoxide PGH2, but not PGH1, also elevates cAMP levels in femoral arteries. Inhibition of arterial prostacyclin synthetase with 28 μM 9,11-azoprosta-5,13-dienoic acid (azo analog I) blocks the PGH2-stimulation of cAMP accumulation. Azo analog I does not attenuate a direct PGI2 stimulation, indicating that the PGH2 dependent elevation of cAMP is due to conversion of PGH2 to PGI2 by the artery. PGI2 and PGE1 increase cyclic AMP levels and relax dog femoral and bovine coronary arteries, while PGE2, which actually contracts bovine coronary arteries, has no effect on arterial cyclic AMP levels. The significance of the PGI2-stimulation of arterial cyclic AMP is not known, but it is probably related to relaxation of arterial strips.  相似文献   

14.
Investigation of the twigs of Dorstenia mannii gave 6,8-diprenyl-5,7,3′4′-tetrahydroxyflavanone and four new prenylated flavanones, named dorsmanins E-H and characterized as 5,6-7,8-bis-(2,2-dimethylchromano)-3′,4′-dihydroxyflavanone, 7,8-[2″-(1-hydroxy-1-methylethyl)-dihydrofurano]-6-prenyl-5,3′,4′-trihydroxyflavanone, 6,7-[2″-(1-hydroxy-1-methylethyl)dihydrofurano]-8-prenyl-5,3′,4′-trihydroxyflavanone and 6-prenyl-8-(2-hydroxy-3-methylbut-3-enyl)-5,7,3′,4′-tetrahydroxyflavanone, respectively, on the basis of spectral analysis and chemical evidence for the chromano derivative.  相似文献   

15.
Mutagenicities of 2,4- and 2,6-dinitrotoluene (2,4-and 2,6-DNT), and reduced metabolites formed by the incubation of 2,4- and 2,6-DNT with Salmonella typhimurium TA98, were tested using S. typhimurium YG strains possessing high level of nitroreductase (NR) and/or O-acetyltransferase (OAT) activities. All compounds tested showed greatest mutagenic activities toward strains YG1041 and YG1042, which possess high levels of NR and OAT activities. The relative mutagenic activities of 2,4-DNT and its related compounds toward YG1041 and YG1042 were aminonitrotoluenes (2A4NT, 4A2NT)<2,4-DNT<2,2′-dimethyl-5,5′-dinitroazoxybenzene (2,2′-DM-5,5′-DNAOB)4-hydroxylamino-2-nitrotoluene (4HA2NT)4,4′-dimethyl-3,3′-dinitroazoxybenzene (4,4′-DM-3,3′-DNAOB), and aminonitrotoluenes (2A4NT, 4A2NT)<2,4-DNT<4HA2NT4,4′-dimethyl-3,3′-dinitroazoxybenzene (4,4′-DM-3,3′-DNAOB)<2HA4NT, respectively. In addition, the relative mutagenic activities of 2,6-DNT and its related compounds toward YG1041 and YG1042 were 2,6-DNT<2-hydroxylamino-6-nitrotoluene (2HA6NT)<2,2′-dimethyl-3,3′-dinitroazoxybenzene (2,2′-DM-3,3′-DNAOB), and 2-amino-6-nitrotoluene (2A6NT)<2,6-DNT<2HA6NT, respectively. These results, together with previous findings, suggested that aminohydroxylamino dimethylazoxybenzenes or aminohydroxylamino dimethylazobenzenes produced either by the reduction of hydroxylaminonitrotoluenes or by the reduction of dimethyl dinitroazoxybenzenes are active metabolites responsible for the mutagenic activities of 2,4- and 2,6-DNT.  相似文献   

16.
Transforming naringin using the mycelium of Trichoderma harzianum CGMCC 1523 produces two metabolites, 3′,4′,5,7-tetrahydroxy flavanone-7-rhamnoglucoside (3′-OHN) and 3′,4′,5′,5,7-pentahydroxy flavanone-7-rhamnoglucoside (3′,5′-DOHN), both of which were characterized by ESI–MS, 1H NMR and 13C NMR analyses. The time course of the biotransformation by T. harzianum showed that 3′-OHN and 3′,5′-DOHN appeared simultaneously at 6 h, and the conversion yield (32.6%) of 3′,5′-DOHN was higher (10.6%) than that of 3′-OHN at 56 h. The optimal biotransformation temperature was 30 °C, the optimal pH was 5.0, and the optimal concentration of naringin was 400 mg/l. The bigger volume of biotransformation mixture and lower shaking speed did not favor hydroxylation reactions. The radical scavenging activity of naringin at 2000 μM was 11.1%, whereas activity of 3′-OHN at 100 μM could reach 38.4%, which is 68.6 times more than naringin. Antioxidative activity of 3′,5′-DOHN was increased 13.5% at 100 μM compared to 3′-OHN.  相似文献   

17.
The effect of several inhibitors of the enzyme cyclic 3′,5′-AMP phosphodiesterase as chemoattractants in Physarum polycephalum was examined. Of the compounds tested, 4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (Roche 20-1724/001) and 1-ethyl-4-(isopropylidinehydrazino)-1H-pyrazolo-(3,4-b)-pyridine-5-carboxylic acid ethyl ester, hydrochloride (Squibb 20009) were the most potent attractants. 3-Isobutyl-1-methyl xanthine, theophylline, and morin (a flavanoid) were moderate attractants and sometimes gave negative chemotaxis at high concentrations. Cyclic 3′,5′-AMP was an effective, but not potent attractant. A repellent effect following the positive chemotactic action was sometimes observed with cyclic 3′,5′-AMP at concentrations as high as 1 · 10−2 M. Dibutyryl cyclic AMP appeared to be a somewhat more potent attractant than cyclic 3′,5′-AMP. The 8-thiomethyl and 8-bromoderivatives of cyclic AMP, which are poorly hydrolyzed by the phosphodiesterase, were not attractants in Physarum. Possible participation of cyclic 3′,5′-AMP in the directional movement in P. polycephalum is discussed.  相似文献   

18.
The structural elucidation of 1′,2′-dideacetylboronolide, 5,6-dihydro-6-(3′-acetoxy-1′,2′-dihydroxyheptyl)2-pyrone, a new α-pyrone isolated from the leaves of Iboza riparia has been performed. Additionally, three sterols, sitosterol, stigmasterol and campesterol, have been identified in this species.  相似文献   

19.
De-etherification of 6,6′-di-O-tritylsucrose hexa-acetate (2) with boiling, aqueous acetic acid caused 4→6 acetyl migration and gave a syrupy hexa-acetate 14, characterised as the 4,6′-dimethanesulphonate 15. Reaction of 2,3,3′4′,6-penta-O-acetylsucrose (5) with trityl chloride in pyridine gave a mixture containing the 1′,6′-diether 6 the 6′-ether 9, confirming the lower reactivity of HO-1′ to tritylation. Subsequent mesylation, detritylation, acetylation afforded the corresponding 4-methanesulphonate 8 1′,4-dimethanesulphonate 11. Reaction of these sulphonates with benzoate, azide, bromide, and chloride anions afforded derivatives of β- -fructofuranosyl α- -galactopyranoside (29) by inversion of configuration at C-4. Treatment of the 4,6′-diol 14 the 1,′4,6′-triol 5, the 4-hydroxy 1′,6′-diether 6 with sulphuryl chloride effected replacement of the free hydroxyl groups and gave the corresponding, crystalline chlorodeoxy derivatives. The same 4-chloro-4-deoxy derivative was isolated when the 4-hydroxy-1′,6′-diether 6 was treated with mesyl chloride in N,N-dimethylformamide.  相似文献   

20.
The results of an investigation of the carotenoids in the seven species of sea cucumber (Stichopus japonicus, Holothuria leucospilota, H. moebi and H. pervicax of the order Aspidochirotida, Cucumaria japonica, C. echinata and Pentacta australis of the order Dendrochirotida), from the comparative biochemical point of view, are reported. β-Carotene, β-echinenone, canthaxanthin, phoenicoxanthin and astaxanthin were common in all the sea cucumbers examined. A series of novel marine carotenoids (cucumariaxanthin A, B and C) was obtained from the sea cucumbers of the order Dendrochirotida, while they could not be found from those of the order Aspidochirotida. Significant differences in the carotenoid patterns of the two orders were also observed. The structures of cucumariaxanthin A, B and C have been determined, by chemical and spectroscopic investigations, to be (9Z,9′Z)-5,6,5′,6′-tetrahydro-β,β-carotene-4,4′-dione, (9Z,9′Z)-4′-hydroxy-5,6,5′,6′-tetrahydro-β,β-caroten-4-one, and (9Z,9′Z)-5,6,5′,6′-tetrahydro-β,β-carotene-4,4'-diol, respectively. From the experimental results of carotenoids in the sea cucumbers examined, an oxidative metabolic pathway for β-carotene to astaxanthin, and a new reductive and isomeric metabolic pathway for canthaxanthin to cucumariaxanthin C (via cucumariaxanthin A and B) are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号