首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
In the budding yeast Saccharomyces cerevisiae, the DNA damage-induced G2 arrest requires the checkpoint control genes RAD9, RAD17, RAD24, MEC1, MEC2 and MEC3. These genes also prevent entry into mitosis of a temperature-sensitive mutant, cdc13, that accumulates chromosome damage at 37°?C. Here we show that a cdc13 mutant overexpressing Cdc20, a β-transducin homologue, no longer arrests in G2 at the restrictive temperature but instead undergoes nuclear division, exits mitosis and enters a subsequent division cycle, which suggests that the DNA damage-induced G2/M checkpoint control is not functional in these cells. This is consistent with our observation that overexpression of CDC20 in wild-type cells results in increased sensitivity to UV irradiation. Overproduction of Cdc20 does not influence the arrest phenotype of the cdc mutants whose cell cycle block is independent of RAD9-mediated checkpoint control. Therefore, we suggest that the DNA damage-induced checkpoint controls prevent mitosis by inhibiting the nuclear division pathway requiring CDC20 function.  相似文献   

6.
Dydrogesterone is widely used for menstrual disorders, endometriosis, threatened and habitual abortion and postmenopausal hormone replacement therapy. Although progestins have a promiscuous nature, dydrogesterone does not have clinically relevant androgenic, estrogenic, glucocorticoid or mineralocorticoid activities. To date, systematic biochemical characterization of this progestin and its active main metabolite, 20α-dihydrodydrogesterone, has not been performed in comparison to progesterone. The objective of this study was to evaluate the selectivity and potential androgenic/antiandrogenic effects of dydrogesterone and its metabolite in comparison to progesterone and medroxyprogesterone acetate by analyzing their interference with AR signaling in vitro. We characterized dydrogesterone and its metabolite for their binding and transactivation of androgen and other steroid hormone receptors and for their potential inhibitory effects against androgen biosynthetic enzymes, 17β-hydroxysteroid dehydrogenase types 3 and 5 and 5α-reductase types 1 and 2. We found that dydrogesterone resembled progesterone mainly in its progestogenic effects and less in its androgenic, anti-androgenic, glucocorticoid and antiglucocorticoid effects; whereas, 20α-dihydrodydrogesterone showed reduced progestogenic potency with no androgenic, glucocorticoid and mineralocorticoid effects. Effects on the androgen and glucocorticoid receptor differed depending on the technology used to investigate transactivation. Progesterone, but not dydrogesterone and 20α-dihydrodydrogesterone, exerted anti-androgenic effects at the pre-receptor level by inhibiting 5α-reductase type 2. Dydrogesterone, 20α-dihydrodydrogesterone and progesterone inhibited the biosynthesis of testosterone catalyzed by 17β-hydroxysteroid dehydrogenase types 3 and 5; however, due to their micromolar Ki values, these activities appeared to be not of relevance at therapeutic levels. Overall, our data show that the anti-androgenic potential of dydrogesterone and 20α-dihydrodydrogesterone is less pronounced compared to progesterone.  相似文献   

7.
8.
9.
10.
The geneCAL1 (also known asCDC43) ofSaccharomyces cerevisiae encodes theβ subunit of geranylgeranyl transferase I (GGTase I), which modifies several small GTPases. Biochemical analyses of the mutant enzymes encoded bycall-1, andcdc43-2 tocdc43-7, expressed in bacteria, have shown that all of the mutant enzymes possess reduced activity, and that none shows temperature-sensitive enzymatic activities. Nonetheless, all of thecall/cdc43 mutants show temperature-sensitive growth phenotypes. Increase in soluble pools of the small GTPases was observed in the yeast mutant cells at the restrictive temperature in vivo, suggesting that the yeast prenylation pathway itself is temperature sensitive. Thecall-1 mutation, located most proximal to the C-terminus of the protein, differs from the othercdc43 mutations in several respects. An increase in soluble Rholp was observed in thecall-1 strain grown at the restrictive temperature. The temperature-sensitive phenotype ofcall-1 is most efficiently suppressed by overproduction of Rholp. Overproduction of the other essential target, Cdc42p, in contrast, is deleterious incall-1 cells, but not in othercdc43 mutants or the wild-type strains. Thecdc43-5 mutant cells accumulate Cdc42p in soluble pools andcdc43-5 is suppressed by overproduction of Cdc42p. Thus, several phenotypic differences are observed among thecall/cdc43 mutations, possibly due to alterations in substrate specificity caused by the mutations.  相似文献   

11.
Homo-oligomeric proteins fulfill numerous functions in all cells. The ability to co-express subunits of these proteins that preferentially self-assemble without cross-oligomerizing provides for controlled experiments to analyze the function of mutant homo-oligomers in vivo. Hsp90 is a dimeric chaperone involved in the maturation of many kinases and steroid hormone receptors. We observed that co-expression of different Hsp90 subunits in Saccharomyces cerevisiae caused unpredictable synthetic growth defects due to cross-dimerization. We engineered superstabilized Hsp90 dimers that resisted cross-dimerization with endogenous Hsp90 and alleviated the synthetic growth defect. Superstabilized Hsp90 dimers supported robust growth of S. cerevisiae, indicating that dissociation of Hsp90 dimers could be hindered without compromising essential function. We utilized superstabilized dimers to analyze the activity of ATPase mutant homodimers in a temperature-sensitive yeast background where elevated temperature inactivated all other Hsp90 species. We found that ATP binding and hydrolysis by Hsp90 are both required for the efficient maturation of glucocorticoid receptor and v-Src, confirming the critical role of ATP hydrolysis in the maturation of steroid hormone receptors and kinases in vivo.  相似文献   

12.
WW domain binding protein-2 (WBP-2) was cloned as an E6-associated protein interacting protein, and its role in steroid hormone receptors functions was investigated. We show that WBP-2 specifically enhanced the transactivation functions of progesterone receptor (PR) and estrogen receptor (ER), whereas it did not have any significant effect on the androgen receptor, glucocorticoid receptor, or the activation functions of p53 and VP-16. Depletion of endogenous WBP-2 with small interfering RNAs indicated that WBP-2 was required for the proper functioning of PR and ER. We also demonstrated that WBP-2 contains an intrinsic activation domain. Moreover, chromatin immunoprecipitation assays demonstrate the hormone-dependent recruitment of WBP-2 onto an estrogen-responsive promoter. Mutational analysis suggests that one of three polyproline (PY) motifs of WBP-2 is essential for its coactivation and intrinsic activation functions. We show that WBP-2 and E6-associated protein each enhance PR function, and their effect on PR action are additive when coexpressed, suggesting a common signaling pathway. In this study, we also demonstrate that the WBP-2 binding protein, Yes kinase-associated protein (YAP) enhances PR transactivation, but YAP's coactivation function is absolutely dependent on WBP-2. Taken together, our data establish the role of WBP-2 and YAP as coactivators for ER and PR transactivation pathways.  相似文献   

13.
14.
15.
Cdc31p is the yeast homologue of centrin, a highly conserved calcium-binding protein of the calmodulin superfamily. Previously centrins have been implicated only in microtubule-based processes. To elucidate the functions of yeast centrin, we carried out a two-hybrid screen for Cdc31p-interacting proteins and identified a novel essential protein kinase of 1,080 residues, Kic1p (kinase that interacts with Cdc31p). Kic1p is closely related to S. cerevisiae Ste20p and the p-21– activated kinases (PAKs) found in a wide variety of eukaryotic organisms. Cdc31p physically interacts with Kic1p by two criteria; Cdc31p coprecipitated with GST–Kic1p and it bound to GST–Kic1p in gel overlay assays. Furthermore, GST–Kic1p exhibited in vitro kinase activity that was CDC31-dependent. Although kic1 mutants were not defective for spindle pole body duplication, they exhibited a variety of mutant phenotypes demonstrating that Kic1p is required for cell integrity. We also found that cdc31 mutants, previously identified as defective for spindle pole body duplication, exhibited lysis and morphological defects. The cdc31 kic1 double mutants exhibited a drastic reduction in the range of permissive temperature, resulting in a severe lysis defect. We conclude that Kic1p function is dependent upon Cdc31p both in vivo and in vitro. We postulate that Cdc31p is required both for SPB duplication and for cell integrity/morphogenesis, and that the integrity/morphogenesis function is mediated through the Kic1p protein kinase.  相似文献   

16.
Many protein kinases are regulated by phosphorylation in the activation loop, which is required for enzymatic activity. Glutamic acid can substitute for phosphothreonine in some proteins activated by phosphorylation, but this substitution (T169E) at the site of activation loop phosphorylation in the Saccharomyces cerevisiae cyclin-dependent kinase (Cdk) Cdc28p blocks biological function and protein kinase activity. Using cycles of error-prone DNA amplification followed by selection for successively higher levels of function, we identified mutant versions of Cdc28p-T169E with high biological activity. The enzymatic and biological activity of the mutant Cdc28p was essentially normally regulated by cyclin, and the mutants supported normal cell cycle progression and regulation. Therefore, it is not a requirement for control of the yeast cell cycle that Cdc28p be cyclically phosphorylated and dephosphorylated. These CDC28 mutants allow viability in the absence of Cak1p, the essential kinase that phosphorylates Cdc28p-T169, demonstrating that T169 phosphorylation is the only essential function of Cak1p. Some growth defects remain in suppressed cak1 cdc28 strains carrying the mutant CDC28 genes, consistent with additional nonessential roles for CAK1.  相似文献   

17.
18.

Background

The S73/S97/loop motif is a hallmark of the Cdc34 family of E2 ubiquitin-conjugating enzymes that together with the SCF E3 ubiquitin ligases promote degradation of proteins involved in cell cycle and growth regulation. The inability of the loop-less Δ12Cdc34 mutant to support growth was linked to its inability to catalyze polyubiquitination. However, the loop-less triple mutant (tm) Cdc34, which not only lacks the loop but also contains the S73K and S97D substitutions typical of the K73/D97/no loop motif present in other E2s, supports growth. Whether tmCdc34 supports growth despite defective polyubiquitination, or the S73K and S97D substitutions, directly or indirectly, correct the defect caused by the loop absence, are unknown.

Results

tmCdc34 supports yeast viability with normal cell size and cell cycle profile despite producing fewer polyubiquitin conjugates in vivo and in vitro. The in vitro defect in Sic1 substrate polyubiquitination is similar to the defect observed in reactions with Δ12Cdc34 that cannot support growth. The synthesis of free polyubiquitin by tmCdc34 is activated only modestly and in a manner dependent on substrate recruitment to SCFCdc4. Phosphorylation of C-terminal serines in tmCdc34 by Cka2 kinase prevents the synthesis of free polyubiquitin chains, likely by promoting their attachment to substrate. Nevertheless, tm CDC34 yeast are sensitive to loss of the Ubp14 C-terminal ubiquitin hydrolase and DUBs other than Ubp14 inefficiently disassemble polyubiquitin chains produced in tm CDC34 yeast extracts, suggesting that the free chains, either synthesized de novo or recycled from substrates, have an altered structure.

Conclusions

The catalytic motif replacement compromises polyubiquitination activity of Cdc34 and alters its regulation in vitro and in vivo, but either motif can support Cdc34 function in yeast viability. Robust polyubiquitination mediated by the S73/S97/loop motif is thus not necessary for Cdc34 role in yeast viability, at least under typical laboratory conditions.  相似文献   

19.
The Saccharomyces cerevisiae SBA1 gene was cloned by PCR amplification from yeast genomic DNA following its identification as encoding an ortholog of human p23, an Hsp90 cochaperone. The SBA1 gene product is constitutively expressed and nonessential, although a disruption mutant grew more slowly than the wild type at both 18 and 37°C. A double deletion of SBA1 and STI1, encoding an Hsp90 cochaperone, displayed synthetic growth defects. Affinity isolation of histidine-tagged Sba1p (Sba1His6) after expression in yeast led to coisolation of Hsp90 and the cyclophilin homolog Cpr6. Using an in vitro assembly assay, purified Sba1His6 bound to Hsp90 only in the presence of adenosine 5′-O-(3-thiotriphosphate) or adenyl-imidodiphosphate. Furthermore, interaction between purified Sba1His6 and Hsp90 in yeast extracts was inhibited by the benzoquinoid ansamycins geldanamycin and macbecin. The in vitro assay was also used to identify residues in Hsp90 that are important for complex formation with Sba1His6, and residues in both the N-terminal nucleotide binding domain and C-terminal half were characterized. In vivo analysis of known Hsp90 substrate proteins revealed that Sba1 loss of function had only a mild effect on the activity of the tyrosine kinase v-Src and steroid hormone receptors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号