首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to investigate the protective effects of vanadyl sulfate on aorta tissue of normal and streptozotocin (STZ)-induced diabetic rats, morphologically and biochemically. The animals were made diabetic by an intraperitoneal injection of streptozotocin (65 mg/kg) and vanadyl sulfate (100 mg/kg) that was given every day for 60 days by gavage technique to rats. Under the light and transmission electron microscopes, hypertrophy of the vessel wall, focal disruption in the elastic lamellae, an increase in thickness of total aortic wall, tunica intima, subendothelial space and adventitial layer, and a disorganization in smooth muscular cells of the tunica media were observed in diabetic animals. The aorta lipid peroxidation (LPO) levels were significantly increased and the aorta glutathione (GSH) levels were significantly reduced in STZ diabetic rats. In diabetic rats administered vanadyl sulfate for 60 days, aorta LPO levels significantly decreased and the aorta GSH level significantly increased. In conclusion, in vivo treatment with vanadyl sulfate of diabetic rats prevented the morphological and biochemical changes observed in thoracic aorta of diabetic animals.  相似文献   

2.
The aim of this work was to investigate the biochemical and histological effects of vanadyl sulfate on blood glucose, urea, and creatinine in serum and nonenzymatic glycosylation and glutathione levels in kidney tissue of normal and streptozotocin (65 mg/kg) diabetic rats. Vanadyl sulfate was administered by gavage at a dose of 100 mg/kg. After 60 d of treatment, serum urea, creatinine, and blood glucose levels significantly increased in the diabetic group but not so in the vanadyl sulfate, which showed significantly reduced serum urea and blood glucose levels and a nonsignificant reduction of serum creatinine levels. Nonenzymatic glycosylation was increased and the glutathione level was decreased in the kidney tissue of diabetic rats. Treatment with vanadyl sulfate reversed these effects. Degenerative changes were detected in diabetic animals by electron and light microscopy. Although there are individual differences in diabetic animals given vanadium, some reduction of degenerative changes were observed.  相似文献   

3.
The effect of the vanadium complex bis[curcumino]oxovanadium (BCOV) on blood glucose level, serum lipid levels, blood pressure and vascular reactivity were studied in non-diabetic and streptozotocin-induced diabetic (STZ-diabetic) rats and compared to that of vanadyl sulfate. Blood glucose level, serum lipid levels, and blood pressure were significantly increased in STZ-diabetic rats. Vascular reactivity to various agonists such as noradrenaline and acetylcholine were significantly increased in STZ-diabetic rats. Blood glucose and serum lipid levels were restored to normal in STZ-diabetic animals treated with vanadyl sulfate at a concentration of 0.5 mmol/kg/day (p.o.). However, vanadyl sulfate at a concentration of 0.2 mmol/kg/day (p.o.) did not produce any significant change in blood glucose and lipid levels. There was no significant effect of vanadyl sulfate (0.2 or 0.5 mmol/kg/day) treatment on blood pressure and vascular reactivity in STZ-diabetic rats. Vanadyl sulfate significantly reduced the body weight of non-diabetic and STZ-diabetic rats. Moreover, it also caused severe diarrhea in both groups of animals. Treatment with BCOV (0.05, 0.1 and 0.2mmol/kg/day, p.o.) significantly decreased blood glucose level and serum lipids in STZ-diabetic rats. Furthermore, administration of BCOV to STZ-diabetic rats restored the blood pressure and vascular reactivity to agonists to normal. There was no significant change in the body weight of BCOV treated non-diabetic and STZ-diabetic rats. Diarrhea was not observed in both BCOV treated groups. In conclusion, the present study shows that the vanadium complex BCOV has antidiabetic and hypolipedimic effects. In addition, it improves the cardiovascular complications associated with diabetes.  相似文献   

4.
In recent years, the role of free radical damage consequent to oxidative stress is widely discussed in diabetic complications. In this aspect, the protection of cell integrity by trace elements is a topic to be investigated. Vanadium is a trace element believed to be important for normal cell function and development. The aim of the present study was to investigate the effect of vanadyl sulfate supplementation on the antioxidant system in the muscle tissue of diabetic rats. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ, 65 mg/kg body weight) to male Swiss albino rats. The rats were randomly divided into 4 groups: Group I, control; Group II, vanadyl sulfate control; Group III, STZ-diabetic untreated; Group IV, STZ-diabetic treated with vanadyl sulfate. Vanadyl sulfate (100 mg/kg) was given daily by gavage for 60 days. At the last day of the experiment, rats were killed, muscle tissues were taken, homogenized in cold saline to make a 10% (w/v) homogenate. Body weights and blood glucose levels were estimated at 0, 30 and 60th days. Antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), glutathione-S-transferase (GST), as well as carbonic anhydrase (CA), myeloperoxidase (MPO) activities and protein carbonyl content (PCC) were determined in muscle tissue. Vanadyl sulfate administration improved the loss in body weight due to STZ-induced diabetes and decreased the rise in blood glucose levels. It was shown that vanadium supplementation to diabetic rats significantly decrease serum antioxidant enzyme levels, which were significantly raised by diabetes in muscle tissue showing that this trace element could be used as preventive for diabetic complications.  相似文献   

5.
Diabetes mellitus manifests itself in a wide variety of complications and the symptoms of the disease are multifactorial. The present study was carried out to investigate the effects of vanadyl sulfate on biochemical parameters, enzyme activities and brain lipid peroxidation, glutathione and nonenzymatic glycosylation of normal- and streptozotocin-diabetic rats. Streptozotocin (STZ) was administered as a single dose (65 mg/kg) to induce diabetes. A dose of 100 mg/kg vanadyl sulfate was orally administered daily to STZ-diabetic and normal rats, separately until the end of the experiment, at day 60. In STZ-diabetic group, blood glucose, serum sialic and uric acid levels, serum catalase (CAT) and lactate dehydrogenase (LDH) activities, brain lipid peroxidation (LPO) and nonenzymatic glycosylation (NEG) increased, while brain glutathione (GSH) level and body weight decreased. In the diabetic group given vanadyl sulfate, blood glucose, serum sialic and uric acid levels, serum CAT and LDH activities and brain LPO and NEG levels decreased, but brain GSH and body weight increased.The present study showed that vanadyl sulfate exerted antioxidant effects and consequently may prevent brain damage caused by streptozotocin-induced diabetes.  相似文献   

6.
Vanadium has been reported to have insulin-like properties and has recently been demonstrated to be beneficial in the treatment of diabetic animals. In the present study, concentration dependence of the therapeutic effects of vanadium and the nature of interaction under in vivo conditions between vanadium and insulin were examined in streptozotocin-diabetic rats. During a 2-week period, blood glucose levels in all treated animals were decreased. At higher concentrations of vanadyl this decrease was greater and more rapid, and remained consistently lower for the entire treatment period. Daily intake of vanadyl, however, reached a similar steady state in all groups. Acute administration of submaximal doses of insulin, which had minimal effects in untreated diabetic rats, lowered blood glucose concentrations in vanadyl-treated and vanadyl-withdrawn animals to control levels. Chronic treatment of streptozotocin-diabetic rats with submaximal levels of vanadyl and insulin, ineffective alone, also produced significant decreases in blood glucose levels when used in combination. Finally, the insulin dosage required to maintain a nonglycosuric state in spontaneously diabetic (BB) rats was reduced in the presence of vanadyl. These studies indicate that chronic oral vanadyl treatment (a) produces a concentration-related lowering of blood glucose in diabetic rats, (b) potentiates the in vivo glucose lowering effects of acute and chronic administrations of insulin in streptozotocin-diabetic rats, and (c) substitutes for, or potentiates, the effects of chronic insulin therapy in spontaneously diabetic BB rats.  相似文献   

7.
The preventive anti-diabetic effect of dangnyosoko (DNSK), a Chinese herbal medicine, was evaluated in STZ-induced diabetic rats. DNSK was orally administered once a day from 3 d after STZ-induction at 100, 200, and 500 mg/kg for 4 weeks, and the results were compared to those for glibenclamide. Dramatic decreases in body weight and plasma insulin levels and increases in blood and urine glucose levels were detected in STZ-induced diabetic animals with disruption and disappearance of pancreatic islets and increases in glucagon- and decreases in insulin-producing cells. However, these diabetic changes were significantly and dose-dependently inhibited by treatment with DNSK, and DNSK at 100 mg/kg showed more favorable effects than glibenclamide at 5 mg/kg. Based on these results, it is thought that DNSK has favorable effects in ameliorating changes in blood and urine glucose levels and body weight, and that histopathological changes in the pancreas in STZ induce diabetes.  相似文献   

8.
Diabetes mellitus is a chronic disease characterized by anomalies forming in carbohydrate, lipid, protein metabolisms and the incidence of this disease varies widely throughout the world. Zinc is an important element which is essential for life and is present in nature. In this study, the animals were divided into four groups. These groups were named as untreated; zinc sulfate; streptozotocin (STZ); STZ and zinc sulfate. STZ (65 mg/kg) was dissolved in a freshly prepared 0.01 M pH 4.5 citrate buffer and given with intraperitoneal injection in a single dose. Zinc sulfate (100 mg/kg) was dissolved in distilled water and given to the animals by gavage at a daily dose for 60 days. The rats were sacrificed under ether anesthesia. This study was aimed to investigate histological and biochemical changes of zinc supplementation on the kidney tissue in STZ-induced diabetic rats. In the current study, histological and histochemical observations showed that the occurred degenerative changes decreased after giving zinc in the kidney tissue of diabetic group. Kidney glutathione (GSH) levels decreased and lipid peroxidation (LPO), nonenzymatic glycosylation (NEG), urea and creatinine levels increased in diabetic rats. GSH levels increased, while LPO, NEG, urea and creatinine levels decreased in the kidney with administration of zinc to diabetic rats. As a result, we observed curative effects of zinc given to diabetic rats. We can say that zinc may be an important antioxidant for the treatment of secondary complications of diabetes in kidney tissue.  相似文献   

9.
Increased oxidative stress and impaired antioxidant defense mechanisms are important factors in the pathogenesis and progression of diabetes mellitus and other oxidant-related diseases. This study was designed to determine whether alpha-lipoic acid, which has been shown to have substantial antioxidant properties, when administered (10 mg/kg ip) once daily for 14 days to normal and diabetic female Sprague-Dawley rats would prevent diabetes-induced changes in biomarkers of oxidative stress in liver, kidney and heart. Serum glucose concentrations, aspartate aminotransferase activity, and glycated hemoglobin levels, which were increased in diabetes, were not significantly altered by alpha-lipoic acid treatment. Normal rats treated with a high dose of alpha-lipoic acid (50 mg/kg) survived but diabetic rats on similar treatment died during the course of the experiment. The activity of glutathione peroxidase was increased in livers of normal rats treated with alpha-lipoic acid, but decreased in diabetic rats after alpha-lipoic acid treatment. Hepatic catalase activity was decreased in both normal and diabetic rats after alpha-lipoic acid treatment. Concentrations of reduced glutathione and glutathione disulfide in liver were increased after alpha-lipoic acid treatment of normal rats, but were not altered in diabetics. In kidney, glutathione peroxidase activity was elevated in diabetic rats, and in both normal and diabetic animals after alpha-lipoic acid treatment. Superoxide dismutase activity in heart was decreased in diabetic rats but normalized after treatment with alpha-lipoic acid; other cardiac enzyme activities were not influenced by either diabetes or antioxidant treatment. These results suggest that after 14 days of treatment with an appropriate pharmacological dose, alpha-lipoic acid may reduce oxidative stress in STZ-induced diabetic rats, perhaps by modulating the thiol status of the cells.  相似文献   

10.
Vanadium and diabetes   总被引:21,自引:0,他引:21  
We demonstrated in 1985 that vanadium administered in the drinking water to streptozotocin (STZ) diabetic rats restored elevated blood glucose to normal. Subsequent studies have shown that vanadyl sulfate can lower elevated blood glucose, cholesterol and triglycerides in a variety of diabetic models including the STZ diabetic rat, the Zucker fatty rat and the Zucker diabetic fatty rat. Long-term studies of up to one year did not show toxicity in control or STZ rats administered vanadyl sulfate in doses that lowered elevated blood glucose. In the BB diabetic rat, a model of insulin-dependent diabetes, vanadyl sulfate lowered the insulin requirement by up to 75%. Vanadyl sulfate is effective orally when administered by either single dose or chronic doses. It is also effective by the intraperitoneal route. We have also been able to demonstrate marked long-terrn effects of vanadyl sulfate in diabetic animals following treatment and withdrawal of vanadyl sulfate. Because vanadyl sulfate is not well absorbed we have synthesized and tested a number of organic vanaditun compounds. One of these, bismaltolato-oxovanadiurn IV (BMOV), has shown promise as a therapeutic agent. BMOV is 2-3x more potent than vanadyl sulfate and has shown less toxicity. Recent studies from our laboratory have shown that the effects of vanadium are not due to a decrease in food intake and that while vanadium is deposited in bone it does not appear to affect bone strength or architecture. The mechanism of action of vanadium is currently under investigation. Several studies indicate that vanadiun is a phosphatase inhibitor and that vanadium can activate serine/threonine kineses distal to tbe insulin receptor presumably by preventing dephosphorylation due to inhibition of phosphatases Short-term clinical trials using inorganic vanadium compounds in diabetic patients have been promising.  相似文献   

11.
Angiotensin converting enzyme (ACE) inhibitors, particularly enalapril and captopril, have been shown to decrease proteinuria in diabetic animals and human subjects. Since heparan sulfate proteoglycan confers a negative charge on the glomerular basement membrane, and either decreased synthesis or loss of this charge causes albuminuria in diabetic animals, we examined the possibility that enalapril prevents albuminuria through glomerular preservation of heparan sulfate in long-term diabetic rats. A total of 22 male Wistar rats were used in the study. Diabetes was induced in 15 rats by a single intraperitoneal injection of streptozotocin (60 mg/kg). The remaining 7 rats received buffer. One week following induction of diabetes, 8 diabetic rats were allowed to drink tap water containing enalapril at a concentration of 50 mg/liter; the remaining 7 diabetic and 7 nondiabetic rats were given only tap water. The drug treatment was continued for 20 weeks. Systolic blood pressure and 24-hr urinary excretion of albumin were measured at 2, 8, 16, and 20 weeks. At the end of 20 weeks, all rats were killed, kidneys were removed, and glomeruli were isolated by differential sieving technique. Total glycosaminoglycan and heparan sulfate synthesis was determined by incubating glomeruli in the presence of [35S]sulfate. Characterization of heparan sulfate was performed by ion-exchange chromatography. Systolic blood pressures were significantly lower in enalapril-treated diabetic rats compared to untreated diabetic rats. Diabetic glomeruli synthesized less heparan sulfate than glomeruli from nondiabetic rats. Also, glomerular heparan sulfate content of diabetics was significantly lower than that of nondiabetics. Further characterization of heparan sulfate showed that the fraction eluted with 1 M NaCl was significantly lower and the fraction eluted with 1.25 M NaCl significantly higher in diabetic than in normal rats. Enalapril treatment normalized not only glomerular synthesis and content but also various fractions of heparan sulfate in diabetic rats. Diabetic rats excreted increased quantities of heparan sulfate and albumin than nondiabetic rats. Enalapril therapy prevented both these increases in diabetic rats. These data suggest that enalapril treatment improves albuminuria through preservation of glomerular heparan sulfate and prevention of its urinary loss in diabetic rats.  相似文献   

12.
Hyperglycemia leads to excess production of reactive oxygen species (ROS), lipid peroxidation and protein glycation that may impair cellular calcium homeostasis and results in calcium sequestration and dysfunction in diabetic tissues. Stobadine (ST) is a pyridoindole antioxidant has been postulated as a new cardio- and neuroprotectant. This study was undertaken to test the hypothesis that the treatment with ST inhibits calcium accumulation, reduces lipid peroxidation and protein glycation and can change Ca2+,Mg2+-ATPase activity in diabetic animals. The effects of vitamin E treatment were also evaluated and compared with the effects of combined treatment with ST. Diabetes was induced by streptozotocin (STZ, 55 mg/kg i.p.). Some of diabetic rats and their age-matched controls were treated orally with a low dose of ST (24.7 mg/kg/day), vitamin E (400-500 IU/kg/day) or ST plus vitamin E for 10 weeks. ST and vitamin E separately produced, in a similar degree, reduction in diabetes-induced hyperglycemia. Each antioxidant alone significantly lowered the levels of plasma lipid peroxidation, cardiac and hepatic protein glycation in diabetic rats but vitamin E treatment was found to be more effective than ST treatment alone. Diabetes-induced increase in plasma triacylglycerol levels was not significantly altered by vitamin E treatment but markedly reduced by ST alone. The treatment with each antioxidant completely prevented calcium accumulation in diabetic heart and liver. Microsomal Ca2+,Mg2+-ATPase activity significantly decreased in both tissues of untreated diabetic rats. ST alone significantly increased microsomal Ca2+,Mg2+-ATPase activity in the heart of normal rats. However, neither treatment with ST nor vitamin E alone, nor their combination did change cardiac Ca2+,Mg2+-ATPase activity in diabetic heart. In normal rats, neither antioxidant had a significant effect on hepatic Ca2+,Mg2+-ATPase activity. Hepatic Ca2+,Mg2+-ATPase activity of diabetic rats was not changed by single treatment with ST, while vitamin E alone completely prevented diabetes-induced inhibition in microsomal Ca2+,Mg2+-ATPase activity in liver. Combined treatment with ST and vitamin E provided more benefits in the reduction of hyperglycemia and lipid peroxidation in diabetic animals. This study describes potential mechanisms on cellular effects of ST in the presence of diabetes-induced hyperglycemia that may delay or inhibit the development of diabetic complications. The use of ST together with vitamin E can better control hyperglycemia-induced oxidative stress.  相似文献   

13.
BACKGROUND: Increased oxidative/nitrosative stress is important in the pathogenesis of diabetic complications, and the protective effects of antioxidants are a topic of intense research. The purpose of this study was to investigate whether a pyridoindole antioxidant stobadine (STB) have a protective effect on tissue oxidative protein damage represented by the parameters such as protein carbonylation (PC), protein thiol (P-SH), total thiol (T-SH) and non-protein thiol (Np-SH), nitrotyrosine (3-NT), and advanced oxidation protein products (AOPP) in streptozotocin-diabetic rats. METHODS: Diabetes was induced in male Wistar rats by intraperitonal injection of streptozotocin (55 mg/kg). Some of the non-diabetic (control) and diabetic rats treated with STB (24.7 mg/kg/day) during 16 weeks, and the effects on blood glucose, PC, AOPP, 3-NT, P-SH, T-SH and Np-SH were studied. Biomarkers were assayed by enzyme-linked immunosorbent assay (ELISA) or by colorimetric methods. RESULTS: Administration of stobadine to diabetic animals lowered elevated blood glucose levels by approximately 16% relative to untreated diabetic rats. Although stobadine decreased blood glucose, poor glycemic control was maintained in stobadine treated diabetic rats during the treatment period. Biochemical analyses of liver proteins showed significant diminution of sulfhydryl groups, P-SH, T-SH, Np-SH, and elevation of carbonyl groups in diabetic animals in comparison to healthy controls. As a biomarker of nitrosative stress, 3-NT levels did not significantly change by diabetes induction or by stobadine treatment when compared to control animals. However, the treatment with stobadine resulted in a significant decrease in PC, AOPP levels and normalized P-SH, T-SH, Np-SH groups in liver of diabetic animals. CONCLUSIONS: The results are in accordance with the pro-oxidant role of chronic hyperglycemia, and the ability of stobadine to attenuate protein oxidation and improving tissue reductive capacity may account, at least partly for its observed beneficial effects on tissue function in diabetes.  相似文献   

14.
Effects of vitamin E and selenium supplementation on aldehyde oxidase (AO) and xanthine oxidase (XO) activities and antioxidant status in liver, kidney, and heart of streptozotocin (STZ)-induced diabetic rats were examined. AO and XO activities increased significantly after induction of diabetes in rats. Following oral vitamin E (300 mg/kg) and sodium selenite (0.5 mg/kg) intake once a day for 4 weeks, XO activity decreased significantly. AO activity decreased significantly in liver, but remained unchanged in kidney and heart of vitamin E- and selenium-treated rats compared to the diabetic rats. Total antioxidants status, paraoxonase-1 (PON1) and erythrocyte superoxide dismutase activities significantly decreased in the diabetic rats compared to the controls, while a higher fasting plasma glucose level was observed in the diabetic animals. The glutathione peroxidase activity remained statistically unchanged. Malondialdehyde and oxidized low-density lipoprotein levels were higher in the diabetic animals; however, these values were significantly reduced following vitamin E and selenium supplementation. In summary, both AO and XO activities increase in STZ-induced diabetic rats, and vitamin E and selenium supplementation can reduce these activities. The results also indicate that administration of vitamin E and selenium has hypolipidemic, hypoglycemic, and antioxidative effects. It decreases tissue damages in diabetic rats, too.  相似文献   

15.
Vanadium salts exhibit a wide variety of insulinomimetic effects. In the present studies, we have examined the modulation of G-protein levels and adenylyl cyclase activity in the liver of streptozotocin-induced chronic diabetic rats (STZD) by vanadyl sulfate treatment and compared it with that of insulin. The basal enzyme activity, as well as the stimulatory effects of guanine nucleotides, glucagon, N-Ethylcarboxamideadenosine (NECA), isoproterenol, forskolin and sodium fluoride (NaF) on adenylyl cyclase were significantly increased in STZ-D rat liver as compared to control. In addition, the levels of stimulatory (Gs) as well as inhibitory (Gi-2 and Gi-3) as determined by immunoblotting techniques were also significantly higher in the STZ-D rat liver, however, the inhibitory effects of oxotremorine and low concentration of GTPS on adenylyl cyclase were not different in the two groups. Vanadyl sulfate and insulin treatments restored the augmented basal enzyme activity, the stimulations exerted by stimulatory inputs on adenylyl cyclase and the G-protein levels to various degrees, however, vanadyl sulfate was more effective than insulin. In addition, unlike vanadyl sulfate, insulin was unable to improve the stimulation exerted by glucagon and isoproterenol on adenylyl cyclase activity in STZD rats. These results suggest that vanadyl sulfate mimics the effects of insulin to restore the defective levels of G-proteins and adenylyl cyclase activity. From these results it may be suggested that one of the mechanisms by which vanadyl sulfate improves the glucose homeostasis in STZ-D rats may be through its ability to modulate the levels of G-proteins and adenylyl cyclase signal transduction system.Abbreviations NECA N-ethylcarboxamideadenosine - Iso Isoproterenol - Glu Glucagon - FSK forskolin - GTPS guanosine 5-[-thio]triphosphate - Gs stimulatory guanine nucleotide regulatory protein - Gi inhibitory guanine nucleotide regulatory protein - STZ streptozotocin This work was supported by grants from Medical Research Council and Canadian Diabetes Association.  相似文献   

16.
Lipid disorders and increased oxidative stress may exacerbate some complications of diabetes mellitus. Previous studies have implicated the beneficial effects of some antioxidants, omega-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the protection of cells from the destructive effect of increased lipids and lipid peroxidation products. This study, therefore, was designed to investigate the effects of cod liver oil (CLO, Lysi Ltd. Island), which comprises mainly vitamin A, PUFAs, EPA and DHA. Effects were monitored on plasma lipids, lipid peroxidation products (MDA) and the activities of antioxidant enzymes, glutathione peroxidase (GSHPx) and catalase in heart, liver, kidney and lung of non-diabetic control and streptozotocin (STZ)-induced-diabetic rats. Two days after STZ-injection (55 mg kg(-1) i.p.), non-diabetic control and diabetic rats were divided randomly into two groups as untreated or treated with CLO (0.5 ml kg(-1) rat per day) for 12 weeks. Plasma glucose, triacylglycerol and cholesterol concentrations were significantly elevated in 12-week untreated-diabetic animals; CLO treatment almost completely prevented these abnormalities in triacylglycerol and cholesterol, but hyperglycaemia was partially controlled. CLO also provided better weight gain in diabetic animals. In untreated diabetic rats, MDA markedly increased in aorta, heart and liver but was not significantly changed in kidney and lung. This was accompanied by a significant increase in both GSHPx and catalase enzyme activities in aorta, heart, and liver of diabetic rats. In kidney and lung, diabetes resulted in reduced catalase while GSHPx was significantly activated. In aorta, heart, and liver, diabetes-induced changes in MDA were entirely prevented by CLO treatment. In the tissues of CLO-treated diabetic animals, GSHPx activity paralleled those of control animals. CLO treatment also caused significant improvements in catalase activities in every tissue of diabetic rats, but failed to affect MDA and antioxidant activity in control animals. The current study suggests that the treatment of diabetic rats with CLO provides better control of glucose and lipid metabolism, allows recovery of normal growth rate, prevents oxidative/peroxidative stress and ameliorates endogenous antioxidant enzyme activities in various tissues. Because CLO contains a plethora of beneficial compounds together, its use for the management of diabetes-induced complications may provide important advantages.  相似文献   

17.
We evaluated the protective effects of gallic acid (3,4,5-trihydroxybenzoic acid) on hepatic lipid peroxidation products, antioxidants, glycoprotein components, and lipids in streptozotocin-induced type II diabetic rats. To induce type II diabetes, rats were injected with streptozotocin intraperitoneally at a single dose of 40 mg/kg. Gallic acid (10 and 20 mg/kg) treatment was given to diabetic rats orally using an intragastric tube daily for 21 days. Streptozotocin-induced diabetic rats showed a significant increase in the levels of blood glucose, hepatic lipid peroxidation products, glycoprotein components, lipids, and the activity of HMG-CoA reductase and a significant decrease in the levels of plasma insulin and liver glycogen. In addition to this, the activities/levels of hepatic antioxidants were decreased in diabetic rats. Gallic acid (10 and 20 mg/kg) treatment showed significant protective effects on all the biochemical parameters studied in diabetic rats. Thus, our study shows the antihyperglycemic, antilipid peroxidative, antioxidant, and antilipidemic effects of gallic acid in streptozotocin-induced type II diabetic rats. A diet containing gallic acid may be beneficial to type II diabetic patients.  相似文献   

18.
This study aimed to investigate the protective and regulatory effects of silymarin (SMN) and melatonin (MEL) on streptozotocin (STZ)-induced diabetic changes in cytochrome P450 3A2 (CYP 3A2) and glutathione peroxidase (GPX) expression and antioxidant status in the liver. Male Wistar rats were divided into five groups, including: control (C), untreated diabetic animals (D), SMN-treated diabetics (S, 50 mg/kg, orally), MEL-treated diabetics (M, 10 mg/kg, i.p.), and SMN plus MEL-treated diabetics (S+M). Diabetes was induced by a single intraperitoneal injection of STZ (50 mg/kg). The blood glucose level, daily urinary volume and body weight changes were measured. After the 28 days treatment period, antioxidant status was analyzed by means of the determination of malondialdehyde (MDA) content, nitric oxide (NO) and total thiol molecules (TTM) levels in the liver. The glycogen depletion in the liver was examined by histochemical staining. The CYP 3A2 and GPX expression at mRNA level was determined using RT-PCT technique. SMN and MEL both individually or in combination prevented from diabetes-induced weight loss and lowered daily urinary volume significantly (p<0.05). None of the test compounds could lower the blood glucose level significantly (p>0.05). Both SMN and MEL could convert the diabetes induced elevated levels of MDA and NO and the diabetes-reduced TTM content to the control level. Moreover, the diabetes-up regulated CYP 3A2 and down regulated GPX, returned to normal values after SMN treatment. Histochemical and histopathological examinations revealed that the diabetes-induced glycogen-depletion and single cell necrosis markedly improved with the SMN and SMN plus MEL treatment. Our data suggest that the STZ-induced diabetes in addition of disturbing the antioxidant status, alters the expression levels of CYP 3A2 and GPX. Moreover, the SMN and SMN plus MEL treatment was able to normalize both the antioxidant status and the expression of CYP 3A2 and GPX in the liver of diabetic rats.  相似文献   

19.
For centuries, mulberry leaf has been used in traditional Chinese medicine for the treatment of diabetes. This study aims to test the prevention effects of a proprietary mulberry leaf extract (MLE) and a formula consisting of MLE, fenugreek seed extract, and cinnamon cassia extract (MLEF) on insulin resistance development in animals. MLE was refined to contain 5% 1-deoxynojirimycin by weight. MLEF was formulated by mixing MLE with cinnamon cassia extract and fenugreek seed extract at a 6:5:3 ratio (by weight). First, the acute toxicity effects of MLE on ICR mice were examined at 5 g/kg BW dose. Second, two groups of normal rats were administrated with water or 150 mg/kg BW MLE per day for 29 days to evaluate MLE’s effect on normal animals. Third, to examine the effects of MLE and MLEF on model animals, sixty SD rats were divided into five groups, namely, (1) normal, (2) model, (3) high-dose MLE (75 mg/kg BW) treatment; (4) low-dose MLE (15 mg/kg BW) treatment; and (5) MLEF (35 mg/kg BW) treatment. On the second week, rats in groups (2)-(5) were switched to high-energy diet for three weeks. Afterward, the rats were injected (ip) with a single dose of 105 mg/kg BW alloxan. After four more days, fasting blood glucose, post-prandial blood glucose, serum insulin, cholesterol, and triglyceride levels were measured. Last, liver lysates from animals were screened with 650 antibodies for changes in the expression or phosphorylation levels of signaling proteins. The results were further validated by Western blot analysis. We found that the maximum tolerance dose of MLE was greater than 5 g/kg in mice. The MLE at a 150 mg/kg BW dose showed no effect on fast blood glucose levels in normal rats. The MLE at a 75 mg/kg BW dose and MLEF at a 35 mg/kg BW dose, significantly (p < 0.05) reduced fast blood glucose levels in rats with impaired glucose and lipid metabolism. In total, 34 proteins with significant changes in expression and phosphorylation levels were identified. The changes of JNK, IRS1, and PDK1 were confirmed by western blot analysis. In conclusion, this study demonstrated the potential protective effects of MLE and MLEF against hyperglycemia induced by high-energy diet and toxic chemicals in rats for the first time. The most likely mechanism is the promotion of IRS1 phosphorylation, which leads to insulin sensitivity restoration.  相似文献   

20.
In an attempt to elucidate the effect of vanadium compounds on the gene expression of neuropeptide Y (NPY), vanadyl sulfate (VOSO4) was orally administrated at the dose of 1 mg/kg body weight into streptozotocin-induced diabetic rats (STZ-diabetic rats) three times daily for 1 week. We found a marked lowering of plasma glucose with a significant decrease of food and water intake in these STZ-diabetic rats treated with VOSO4, although the weight gain was unaffected. The increase of hypothalamic NPY, both the mRNA level and peptide concentration, in STZ-diabetic rats was also reduced by this oral treatment of VOSO4. However, similar treatment of VOSO4 in normal rats failed to modify the feeding behavior and hypothalamic NPY gene expression. These data suggest that decrease of hypothalamic NPY gene expression by VOSO4 is related to the recovery of hyperphagia in diabetic rats lacking insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号