首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S Ohno  Y Akita  Y Konno  S Imajoh  K Suzuki 《Cell》1988,53(5):731-741
Protein kinase C (PKC)-related cDNA clones encode an 84 kd protein, nPKC. nPKC contains a cysteine-rich repeat sequence homologous to that seen in conventional PKCs (alpha, beta I, beta II, and gamma), which make up a family of 77-78 kd proteins with closely related sequences. nPKC, when expressed in COS cells, confers increased high-affinity phorbol ester receptor activity to intact cells. Antibodies raised against nPKC identified a 90 kd protein in rabbit brain extract as well as in extracts from COS cells transfected with the cDNA construct. nPKC shows protein kinase activity that is regulated by phospholipid, diacylglycerol, and phorbol ester but is independent of Ca2+. The structural and enzymological characteristics of nPKC clearly distinguish it from conventional PKCs, which until now have been the only substances believed to mediate the various effects of diacylglycerol and phorbol esters. These results suggest an additional signaling pathway involving nPKC.  相似文献   

2.
Protein kinase C (PKC)-related cDNA clones isolated from mouse epidermis cDNA library encoded a 78-kDa protein, nPKC eta. nPKC eta contains a characteristic cysteine-rich repeat sequence (C1 region) and a protein kinase domain sequence (C3 region), both of which are conserved among PKC family members. However, nPKC eta lacks a putative Ca2+ binding region (C2 region) that is seen in conventional PKCs (alpha, beta I, beta II, gamma), but not in novel PKCs (nPKC delta, -epsilon, -zeta). nPKC eta shows the highest sequence similarity to nPKC epsilon (59.4% identity). The similarity extends to the NH2-terminal sequence (E region) which corresponds to one of the divergent regions (D1 region). Northern blot analysis showed that the mRNA for nPKC eta is highly expressed in the lung and skin but, in contrast to other members of the PKC family, only slightly expressed in the brain. nPKC eta expressed in COS cells shows phorbol ester binding activity with a similar affinity to nPKC epsilon. Antiserum raised against a COOH-terminal peptide of nPKC eta identified an 82-kDa protein in mouse lung extract as well as in an extract from COS cells transfected with the nPKC eta-cDNA expression plasmid. Autophosphorylation of nPKC eta immunoprecipitated with the specific antiserum was observed, indicating that nPKC eta is a protein kinase. These results clearly demonstrate the existence and the possible importance of nPKC eta as a member of the phorbol ester receptor/protein kinase, PKC, family.  相似文献   

3.
4.
Five rabbit cDNAs, encoding four conventional protein kinase Cs (PKCs), alpha, beta I, beta II, and gamma, and a novel PKC-related protein (nPKC epsilon) were transfected into COS cells. Antisera raised against a bacterially synthesized fragment of PKC alpha or nPKC epsilon and against a chemically synthesized peptide of PKC beta I or beta II, specifically identified the corresponding species in the transfected cells. All four PKCs and nPKC epsilon expressed by transfection served as phorbol ester receptors. Phorbol 12,13-dibutyrate (PDBu)-binding activities of all PKCs and nPKC epsilon required phospholipid but not magnesium. The phosphatidylserine requirement for the activity of nPKC epsilon is independent of Ca2+ and similar to that for PKC alpha observed at 0.03 mM Ca2+. Calcium dependence of the binding activity was observed only for the four conventional PKCs. Scatchard plot analysis clearly showed that the dissociation constants of PDBu for all four PKCs were nearly the same (approximately 25 nM) in the presence of Ca2+, and that the value for nPKC epsilon was slightly higher (84 nM) and independent of Ca2+. The latter value is comparable to those observed in several cell types under conditions of Ca2+ chelation. Translocation of conventional PKC alpha to the membranes was induced with phorbol ester in a Ca2+-dependent manner, whereas the PDBu-stimulated translocation of nPKC epsilon did not require Ca2+. These results, together with previous studies on the enzymological characteristics of nPKC epsilon (Ohno, S., Akita, Y., Konno, Y., Imajoh, S., and Suzuki, K. (1988) Cell 53, 731-741), suggest that nPKC epsilon plays an important role in a transmembrane signaling pathway distinct from that involving conventional PKCs.  相似文献   

5.
The Triton X-100 extract of the particulate fraction of porcine spleen contains a protein kinase which can be activated by phospholipid and the phorbol ester TPA but does not respond to phospholipid and calcium. The partially purified kinase has a molecular weight of 76 kDa (p76-kinase) and hence is somewhat smaller than the similarly behaving p82-kinase from mouse epidermis and spleen. The p76-kinase shows strong autophosphorylation. The protein kinase inhibitor K252a clearly differentiates between the Ca2+-unresponsive p76-kinase and Ca2+-responsive PKC. At concentrations of up to 5 x 10(-7)M it fails to suppress p76-kinase-catalyzed autophosphorylation and histone phosphorylation, but it inhibits PKC-catalyzed phosphorylation up to 50%. The IC50 values of K252a regarding PKC and the p76-kinase differ by two orders of magnitude. At low concentrations, K252a appears to slightly activate further TPA-activated p76-kinase. It is not able, however, to replace TPA and to stimulate the p76-kinase in the presence of phospholipid alone.  相似文献   

6.
Exposure of various cell types (rat-1 fibroblasts, bovine adrenocortical cells, human lymphoid cells) to nanomolar concentrations of TPA, resulted in a rapid, apparent loss of cellular protein kinase C content, when the enzyme was assayed by its phospholipid and Ca2+-dependent histone (H1)-kinase activity, following solubilization and DEAE-cellulose chromatography isolation. By contrast, no loss of protein kinase C was detected when the enzyme was probed by its high affinity PDBu binding capacity nor when the kinase activity was assayed with protein substrates other than histones, such as vinculin and a cytochrome P-450. It is concluded that, in addition to the previously reported enzyme subcellular redistribution, following TPA treatment, the phorbol ester induces striking alterations of the cellular protein kinase C catalytic activities. The molecular mechanisms of these changes and their implication in the tumor promotion process remain to be clarified.  相似文献   

7.
A calcium-unresponsive, phorbol ester/phospholipid-activated protein kinase was purified to apparent homogeneity from a Triton X-100 extract of an EGTA/EDTA-preextracted particulate fraction of porcine spleen by chromatography on S-Sepharose Fast Flow, phenyl-Sepharose Fast Flow, protamine-agarose, and Superdex 200. The enzyme had a Mr of 76,000, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (p76-kinase). A similar value (78,000) was obtained by gel filtration. The purified p76-kinase proved to be much more stable than the enzyme in crude preparations. Storage in a buffer containing 50 mM mercaptoethanol and 20% glycerol at -20 degrees C for at least 4 months caused less than 20% loss in enzyme activity. The enzyme exhibited a pH optimum of 8.3. The affinity of the novel enzyme for substrates and cofactors differed to some extent from that of conventional alpha, beta, gamma protein kinase C (PKC). p76-kinase did not respond to calcium, had a lower requirement for magnesium, and a higher affinity for histone III-S than PKC. Both the p76-kinase-catalyzed phosphorylation of histone III-S and the autophosphorylation of the enzyme could be activated by the phorbol ester TPA (or diacylglycerol) plus phosphatidyl serine, but not by calcium plus phosphatidyl serine. The stoichiometry of autophosphorylation suggested that fully phosphorylated p76-kinase contained two phosphoserine residues and one phosphothreonine residue. Like PKC, p76-kinase bound TPA with high affinity (KD = 9.6 nM). In the absence of TPA, various unsaturated fatty acids, particularly arachidonic acid, were more potent as activators of the enzyme than phosphatidyl serine. The p76-kinase was recognized by an antiserum raised against a delta PKC-specific peptide, but not by an alpha, beta, gamma PKC-specific antiserum. The previously described p82-kinase of mouse epidermis and spleen exhibiting the same properties as the p76-kinase did also react with the p76-kinase-specific antiserum.  相似文献   

8.
A protein recognizing apolipoproteins AI, AII and AIV was purified from cultured mouse adipose cells of the Ob17MT18 clonal line. Apolipoprotein A binding sites were solubilized in the presence of proteinase inhibitors using the non-denaturating detergent CHAPS. Chromatography of the soluble extract on DEAE-Trisacryl was followed by immunoaffinity chromatography of the complex apolipoprotein AI-binding proteins on anti-(apolipoprotein AI) coupled to Sepharose 4B and then by h.p.l.c. on an RP-Select B column. A 1400-fold purification over the starting crude homogenate was achieved. The purified material contained two proteins that were both able to bind apolipoproteins AI, AII and AIV, but not low-density lipoprotein. Glycopeptidase F treatment showed the existence of a single protein bearing either N-linked high-mannose or complex oligosaccharide chains. The purified material showed an apparent molecular mass of 80 +/- 9 kDa by h.p.l.c. on a TSKG 3000 SW column. Rabbit polyclonal antibodies directed against the purified material revealed two protein bands of 80 and 92 kDa after SDS/PAGE under reducing conditions and immunoblotting. These bands were undetectable in growing Ob17PY cells previously shown not to bind the various apolipoproteins A and not to undergo cholesterol efflux, whereas they were conspicuous in growth-arrested Ob17PY cells which have recovered these properties.  相似文献   

9.
D Ron  M G Kazanietz 《FASEB journal》1999,13(13):1658-1676
Protein kinase C (PKC), a family of related serine-threonine kinases, is a key player in the cellular responses mediated by the second messenger diacylglycerol (DAG) and the phorbol ester tumor promoters. The traditional view of PKCs as DAG/phospholipid-regulated proteins has expanded in the last few years by three seminal discoveries. First, PKC activity and maturation is controlled by autophosphorylation and transphosphorylation mechanisms, which includes phosphorylation of PKC isozymes by phosphoinositide-dependent protein kinases (PDKs) and tyrosine kinases. Second, PKC activity and localization are regulated by direct interaction with different types of interacting proteins. Protein-protein interactions are now recognized as important mechanisms that target individual PKCs to different intracellular compartments and confer selectivity by associating individual isozymes with specific substrates. Last, the discovery of novel phorbol ester receptors lacking kinase activity allows us to speculate that some of the biological responses elicited by phorbol esters or by activation of receptors coupled to elevation in DAG levels could be mediated by PKC-independent pathways.  相似文献   

10.
The calcium- and phospholipid-dependent kinase activity (protein kinase C) was isolated from bovine brains by a combination of DEAE-cellulose chromatography, gel filtration and hydrophobic chromatography on octyl-Sepharose and phenyl-Sepharose. The phorbol ester receptor co-purifies with the protein kinase C throughout the procedure yielding a homogeneous protein of 79 500 daltons on SDS-polyacrylamide gels. The purified kinase incorporated approximately 5000 nmol phosphate into substrate/min/mg protein at saturating concentrations of Ca2+ and phosphatidyl serine. Reciprocal plots of protein kinase activity at varying phosphatidyl serine concentrations were biphasic and yielded two apparent Ka values for phosphatidyl serine of 0.6-2 and 35-80 micrograms/ml). These apparent Ka values were reduced 2- to 3-fold by either diolein (20 micrograms/ml) or phorbol-12,13-dibutyrate (10 micrograms/ml). The protein binds [3H]phorbol-12,13-dibutyrate ( [3H]PDB) with high affinity (Ka = 15 nM) in a phosphatidyl serine-dependent manner. At saturating phosphatidyl serine concentrations 0.89 mol [3H]PDB are bound per mol protein. The identification of protein kinase C as the phorbol ester receptor is discussed with respect to the function and regulation of this protein.  相似文献   

11.
The regulation of receptor-operated calcium channels of human platelets by phospholipid-dependent, Ca2+- and diacylglycerol-activated protein kinase C was studied. In order to induce the activation of endogenous protein kinase C, a cell-penetrable structural diacylglycerol analog, 4 beta-phorbol 12 beta-myristate-13 alpha-acetate (FMA), was used. Using two independent approaches, i. e., the fluorescent probe for Ca2+, quin-2, and 45Ca2+ absorption technique, it was demonstrated that FMA (10(-10) - 10(-8) g/ml) blocks Ca2+ influx into the platelets induced by aggregation factors, e. g., ADP, vasopressin, platelet activating factor, thrombin and thromboxane A2 receptor agonist U46619. The half-maximum inhibition of the receptor-sensitive influx of Ca2+ was observed at (3-6) X 10(-10) g/ml of FMA. Under physiological conditions, protein kinase C is activated with an increase in Ca2+ concentration in the cytoplasm in the presence of diacylglycerol. Since the above-mentioned inducers besides Ca2+ influx stimulate diacylglycerol synthesis, it was assumed that the activation of protein kinase C triggers a negative feedback mechanism which blocks the receptor-operated calcium channels.  相似文献   

12.
Rat pancreatic islet homogenates display protein kinase C activity. This phospholipid-dependent and calcium-sensitive enzyme is activated by diacylglycerol or the tumor-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). In the presence of TPA, the Ka for Ca2+ is close to 5 microM. TPA does not affect phosphoinositide turnover but stimulates [32P]- and [3H]choline-labelling of phosphatidylcholine in intact islets. Exogenous phospholipase C stimulates insulin release, in a sustained and glucose-independent fashion. The secretory response to phospholipase C persists in media deprived of CaCl2. It is proposed that protein kinase C participates in the coupling of stimulus recognition to insulin release evoked by TPA, phospholipase C and, possibly, those secretatogues causing phosphoinositide breakdown in pancreatic islets.  相似文献   

13.
The activation of protein kinase C (PKC) by diacylglycerol or tumor promoters plays a pivotal role in signal transduction and subsequent activation of cellular processes. Since the activity of this enzyme is dependent on its immediate lipid domain, its relative distribution within the cell may be an important regulatory mechanism. We report here a relative decrease in PKC/phorbol ester receptor associated with the particulate fraction of mouse keratinocytes induced to differentiate by two separate systems. First, proliferating keratinocytes maintained in low Ca2+ (0.09 mM) serum-free medium were induced to differentiate rapidly by the addition of Ca2+ (1.8 mM). A 1.4-fold decrease in the percent of total phorbol receptor binding activity present in the particulate fraction and concomitant increase in binding in the cytosol fraction was evident 20 min after the Ca2+ addition. Second, in keratinocytes that differentiate over a 6 day cultivation period in serum-containing medium with Ca2+ concentration of 1.8 mM, a significant decrease in the percent of the phorbol receptor binding activity present in the particulate fraction was observed as the culture begins to differentiate on days 3 and 4. Maximal phorbol ester binding in the particulate fraction corresponded to the proliferative phase of the culture (day 2), while lower levels of PKC/phorbol ester binding to particulate fractions were noted during the early differentiative phase (days 3 and 4). Addition of the synthetic diacylglycerols 1-oleoyl-2-acetylglycerol or L-alpha-1,2 dioctanyl glycerol at 30 micrograms/ml to proliferating keratinocyte cultures induced a modest increase in two markers of terminal differentiation: cornified envelope formation and transglutaminase levels. These findings, taken together, support the hypothesis that PKC activation plays a role in the initial signalling events for keratinocyte differentiation.  相似文献   

14.
15.
A tumor-promoting phorbol ester, [3H]phorbol-12,13-dibutyrate, may bind to a homogeneous preparation of Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C) in the simultaneous presence of Ca2+ and phospholipid. This tumor promoter does not bind simply to phospholipid nor to the enzyme per se irrespective of the presence and absence of Ca2+. All four components mentioned above appear to be bound together, and the quaternary complex thus produced is enzymatically fully active for protein phosphorylation. Phosphatidylserine is most effective. Various other phorbol derivatives which are active in tumor promotion compete with [3H]phorbol-12,13-dibutyrate for the binding, and an apparent dissociation binding constant of the tumor promoter is 8 nM. This value is identical with the activation constant for protein kinase C and remarkably similar to the dissociation binding constant that is described for intact cell surface receptors. The binding of the phorbol ester is prevented specifically by the addition of diacylglycerol, which serves as activator of protein kinase C under physiological conditions. Scatchard analysis suggests that one molecule of the tumor promoter may bind to every molecule of protein kinase C in the presence of Ca2+ and excess phospholipid. It is suggestive that protein kinase C is a phorbol ester-receptive protein, and the results presented seem to provide clues for clarifying the mechanism of tumor promotion.  相似文献   

16.
The phosphorylation of an Mr 82,000 protein (p82) in the Triton X-100 extract of the particulate fraction of mouse epidermis is dependent on the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) or diacylglycerol and phospholipid and, contrary to protein kinase C (PKC)-catalyzed phosphorylation, cannot be activated by calcium plus phospholipid. The novel p82 kinase differs also from PKC in many other respects, such as substrate specificity, turnover rate, and sensitivity to inhibitors. The p82 kinase can be separated from PKC by chromatography on phenyl sepharose and does not react with a polyclonal PKC antiserum. Like PKC, the novel kinase phosphorylates its substrate on threonine and serine, but not on tyrosine. Similar to PKC, the epidermal p82-kinase system is down-modulated after TPA treatment of mouse skin, with a half-life of around 5 h. Down-modulation is also accomplished by the phorbol ester RPA, but not by the Ca2+ ionophore A23187, and it is inhibited by the immunosuppressive agent cyclosporin A. In addition to down-modulation, TPA treatment of the animals activates a phosphatase that dephosphorylates phosphorylated p82 in the extract of the particulate fraction.  相似文献   

17.
alpha 2-adrenergic receptor-mediated signal transduction in rat adrenocortical carcinoma cells occurs through the opposing regulation of two second messengers, cyclic GMP and cyclic AMP, in which guanylate cyclase is coupled positively and adenylate cyclase negatively to the receptor signal. We now show that in these cells phorbol 12-myristate 13-acetate (PMA), a known activator of protein kinase C, inhibits the alpha 2-agonist (p-aminoclodine)-dependent production of cyclic GMP in a dose-dependent and time-dependent fashion. The half-maximal inhibitory concentration of PMA was 10(-10) M. A protein kinase C inhibitor, 1-(5-isoquinolinyl-sulfonyl)-2-methyl piperazine (H-7), caused the release of the PMA-dependent attenuation of p-aminoclodine-stimulated cyclic GMP formation. These results suggest that protein kinase C negatively regulates the alpha 2-receptor coupled cyclic GMP system in these cells, a feature apparently shared with the other cyclic GMP-coupled receptors such as those of muscarine, histamine, and atrial natriuretic factor.  相似文献   

18.
The double-stranded RNA-dependent protein kinase (PKR) is one of the key mediators of interferon (IFN) action against certain viruses. PKR also plays an important role in signal transduction and immunomodulation. Understanding the regulation of PKR activity is important for the use of PKR as a tool to discover and develop novel therapeutics for viral infections, cancer and immune dysfunction. We found that phorbol 12-myristate 13-acetate (PMA), a potent activator of protein kinase C (PKC), decreased the level of autophosphorylated PKR in a dose- and time-dependent manner in IFN-treated mouse fibroblast cells. Polyinosinic-polycytidylic acid (poly I:C) treatment enhanced the activity of PKR induced by IFN, but did not overcome the PMA-induced reduction of PKR autophosphorylation. Western blot analysis with a monoclonal antibody to mouse PKR revealed that the decrease of PKR autophosphorylation in cells by PMA was a result of PKR protein degradation. Selective PKC inhibitors blocked the degradation of PKR stimulated by PMA, indicating that PKC activity was required for the effect. Furthermore, we also found that proteasome inhibitors prevented PMA-induced down regulation of PKR, indicating that an active proteasome is required. Our results identify a novel mechanism for the post-translational regulation of PKR.  相似文献   

19.
Calcium phospholipid dependent protein kinase C (PKC) is activated by diacylglycerol (DG) and by phorbol esters and is recognized to be the phorbol ester receptor of cells; DG displaces phorbol ester competitively from PKC. A phospholipid, phosphatidylinositol 4,5-bisphosphate (PIP2), can also activate PKC in the presence of phosphatidylserine (PS) and Ca2+ with a KPIP2 of 0.04 mol %. Preliminary experiments have suggested a common binding site for PIP2 and DG on PKC. Here, we investigate the effect of PIP2 on phorbol ester binding to PKC in a mixed micellar assay. In the presence of 20 mol % PS, PIP2 inhibited specific binding of [3H]phorbol 12,13-dibutyrate (PDBu) in a dose-dependent fashion up to 85% at 1 mol %. Inhibition of binding was more pronounced with PIP2 than with DG. Scatchard analysis indicated that the decrease in binding of PDBu in the presence of PIP2 is the result of an altered affinity for the phorbol ester rather than of a change in maximal binding. The plot of apparent dissociation constants (Kd') against PIP2 concentration was linear over a range of 0.01-1 mol % with a Ki of 0.043 mol % and confirmed the competitive nature of inhibition between PDBu and PIP2. Competition between PIP2 and phorbol ester could be demonstrated in a liposomal assay system also. These results indicate that PIP2, DG, and phorbol ester all compete for the same activator-receiving region on the regulatory moiety of protein kinase C, and they lend support to the suggestion that PIP2 is a primary activator of the enzyme.  相似文献   

20.
Baudouin E  Charpenteau M  Ranjeva R  Ranty B 《Planta》2002,214(3):400-405
Phorbol 12-myristate 13-acetate (PMA), a potent activator of protein kinases in animals, elicits the transient activation of a 45-kDa protein kinase in tobacco cell-suspension cultures. The 45-kDa protein kinase preferentially phosphorylates myelin basic protein (MBP), a general substrate for MAPK. Studies using cycloheximide indicated that protein synthesis is not required for the activation of the kinase. Treatment of tobacco cell extracts containing the activated kinase with either serine/threonine-specific or tyrosine-specific protein phosphatase abolished the kinase activity, which consequently appears to be regulated by phosphorylation. By using an immune complex kinase assay with antibodies specific for stress-responsive MAPKs, we show that the PMA-activated kinase is immunologically related to the wound-induced protein kinase (WIPK), and not to the salicylic acid-induced protein kinase (SIPK), two representative members of the tobacco MAPK family, known to be activated by extracellular stimuli. Furthermore, the activated kinase was recognized by phospho-specific MAPK antibodies. Collectively, these results indicate that phorbol ester promotes the activation of a 45-kDa protein kinase related to WIPK in tobacco cells. Activation of WIPK in response to PMA is associated with protein phosphorylation but not with an increase in protein level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号