首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In yeast the Golgi-associated retrograde protein (GARP) complex is required for tethering of endosome-derived transport vesicles to the late Golgi. It consists of four subunits--Vps51p, Vps52p, Vps53p, and Vps54p--and shares similarities with other multimeric tethering complexes, such as the conserved oligomeric Golgi (COG) and the exocyst complex. Here we report the functional characterization of the GARP complex in the nematode Caenorhabditis elegans. Furthermore, we identified the C. elegans Vps51 subunit, which is conserved in all eukaryotes. GARP mutants are viable but show lysosomal defects. We show that GARP subunits bind specific sets of Golgi SNAREs within the yeast two-hybrid system. This suggests that the C. elegans GARP complex also facilitates tethering as well as SNARE complex assembly at the Golgi. The GARP and COG tethering complexes may have overlapping functions for retrograde endosome-to-Golgi retrieval, since loss of both complexes leads to a synthetic lethal phenotype.  相似文献   

2.
The late Golgi of the yeast Saccharomyces cerevisiae receives membrane traffic from the secretory pathway as well as retrograde traffic from post-Golgi compartments, but the machinery that regulates these vesicle-docking and fusion events has not been characterized. We have identified three components of a novel protein complex that is required for protein sorting at the yeast late Golgi compartment. Mutation of VPS52, VPS53, or VPS54 results in the missorting of 70% of the vacuolar hydrolase carboxypeptidase Y as well as the mislocalization of late Golgi membrane proteins to the vacuole, whereas protein traffic through the early part of the Golgi complex is unaffected. A vps52/53/54 triple mutant strain is phenotypically indistinguishable from each of the single mutants, consistent with the model that all three are required for a common step in membrane transport. Native coimmunoprecipitation experiments indicate that Vps52p, Vps53p, and Vps54p are associated in a 1:1:1 complex that sediments as a single peak on sucrose velocity gradients. This complex, which exists both in a soluble pool and as a peripheral component of a membrane fraction, colocalizes with markers of the yeast late Golgi by immunofluorescence microscopy. Together, the phenotypic and biochemical data suggest that VPS52, VPS53, and VPS54 are required for the retrograde transport of Golgi membrane proteins from an endosomal/prevacuolar compartment. The Vps52/53/54 complex joins a growing list of distinct multisubunit complexes that regulate membrane-trafficking events.  相似文献   

3.
Intracellular membrane fusion requires the complex coordination of SNARE, rab/ypt, and rab effector function. In the yeast Saccharomyces cerevisiae, fusion of endosome-derived vesicles with the late Golgi depends on a cascade of protein-protein interactions that results in the recruitment to Golgi membranes of a conserved docking complex, VFT. This complex binds to Ypt6-GTP, which is necessary for its localization to the Golgi, and also to the SNARE Tlg1p. We show here that the VFT complex contains a fourth, previously uncharacterized, subunit, Vps51p (Ykr020w). Yeast cells lacking VPS51 have defects in vacuole morphology and recycling of the SNARE Snc1p to the plasma membrane, but still assemble a core VFT complex consisting of Vps52p, Vps53p, and Vps54p that localizes properly to the Golgi. Binding to Ypt6-GTP is a property of Vps52p. In contrast, binding to Tlg1p is mediated by a short sequence at the N terminus of Vps51p. Recent evidence suggests that components of a number of rab/ypt effector complexes share a common, distantly related helical coiled-coil motif. We show that each VFT subunit requires this coiled-coil motif for assembly into the complex.  相似文献   

4.
The Golgi-associated retrograde protein (GARP) complex mediates tethering and fusion of endosome-derived transport carriers to the trans-Golgi network (TGN). In the yeast Saccharomyces cerevisiae, GARP comprises four subunits named Vps51p, Vps52p, Vps53p, and Vps54p. Orthologues of the GARP subunits, except for Vps51p, have been identified in all other eukaryotes. A yeast two-hybrid screen of a human cDNA library yielded a phylogenetically conserved protein, Ang2/Fat-free, which interacts with human Vps52, Vps53 and Vps54. Human Ang2 is larger than yeast Vps51p, but exhibits significant homology in an N-terminal coiled-coil region that mediates assembly with other GARP subunits. Biochemical analyses show that human Ang2, Vps52, Vps53 and Vps54 form an obligatory 1:1:1:1 complex that strongly interacts with the regulatory Habc domain of the TGN SNARE, Syntaxin 6. Depletion of Ang2 or the GARP subunits similarly impairs protein retrieval to the TGN, lysosomal enzyme sorting, endosomal cholesterol traffic¤ and autophagy. These findings indicate that Ang2 is the missing component of the GARP complex in most eukaryotes.  相似文献   

5.
Structural analysis of the interaction between the SNARE Tlg1 and Vps51   总被引:2,自引:0,他引:2  
Membrane fusion in cells involves the interaction of SNARE proteins on apposing membranes. Formation of SNARE complexes is preceded by tethering events, and a number of protein complexes that are thought to mediate this have been identified. The VFT or GARP complex is required for endosome-Golgi traffic in yeast. It consists of four subunits, one of which, Vps51, has been shown to bind specifically to the SNARE Tlg1, which participates in the same fusion event. We have determined the structure of the N-terminal domain of Tlg1 bound to a peptide from the N terminus of Vps51. Binding depends mainly on residues 18-30 of Vps51. These form a short helix which lies in a conserved groove in the three-helix bundle formed by Tlg1. Surprisingly, although both Vps51 and Tlg1 are required for transport to the late Golgi from endosomes, removal of the Tlg1-binding sequences from Vps51 does not block such traffic in vivo. Thus, this particular interaction cannot be crucial to the process of vesicle docking or fusion.  相似文献   

6.
Autophagy, pexophagy, and the Cvt pathway are processes that deliver hydrolytic enzymes and substrates to the yeast vacuole/lysosome via double-membrane cytosolic vesicles. Whereas these pathways operate under different nutritional conditions, they all employ common machinery with only a few specific factors assisting in the choice of the delivery program and the membrane source for the sequestering vesicle. We found that the YKR020w gene product is essential for Cvt vesicle formation but not for pexophagy or induction of autophagy. Autophagosomes in the ykr020wdelta mutant, however, have a reduced size. We demonstrate that Ykr020 is a subunit of the Vps fifty-three tethering complex, composed of Vps52, Vps53, and Vps54, which is required for retrograde traffic from the early endosome back to the late Golgi, and for this reason we named it Vps51. This complex participates in a fusion event together with Tlg1 and Tlg2, two SNAREs also shown to be necessary for Cvt vesicle assembly. In particular, those factors are essential to correctly target the prApe1-Cvt19-Cvt9 complex to the preautophagosomal structure, the site of Cvt vesicle formation.  相似文献   

7.
The specificity of intracellular vesicle transport is mediated in part by tethering factors that attach the vesicle to the destination organelle prior to fusion. We have identified a protein, Dor1p, that is involved in vesicle targeting to the yeast Golgi apparatus and found it to be associated with seven further proteins. Identification of these revealed that they include Sec34p and Sec35p, the two known components of the Sec34/35 complex previously proposed to tether vesicles to the Golgi. Of the six previously uncharacterized components, four have homologs in higher eukaryotes, including a subunit of a mammalian Golgi transport complex. Furthermore, several of the proteins show distant homology to components of two other putative tethering complexes, the exocyst and the Vps52/53/54 complex, revealing that tethering factors involved in different membrane traffic steps are structurally related.  相似文献   

8.
Tethering factors are large protein complexes that capture transport vesicles and enable their fusion with acceptor organelles at different stages of the endomembrane system. Recent studies have shed new light on the structure and function of a heterotetrameric tethering factor named Golgi-associated retrograde protein (GARP), which promotes fusion of endosome-derived, retrograde transport carriers to the trans-Golgi network (TGN). X-ray crystallography of the Vps53 and Vps54 subunits of GARP has revealed that this complex is structurally related to other tethering factors such as the exocyst, the conserved oligomeric Golgi (COG) and Dsl1 (dependence on SLY1-20) complexes, indicating that they all might work by a similar mechanism. Loss of GARP function compromises the growth, fertility and/or viability of the defective organisms, emphasizing the essential nature of GARP-mediated retrograde transport.  相似文献   

9.
The Golgi associated retrograde protein complex (GARP) or Vps fifty-three (VFT) complex is part of cellular inter-compartmental transport systems. Here we report the identification of the VFT tethering factor complex and its interactions in mammalian cells. Subcellular fractionation shows that human Vps proteins are found in the smooth membrane/Golgi fraction but not in the cytosol. Immunostaining of human Vps proteins displays a vesicular distribution most concentrated at the perinuclear envelope. Co-staining experiments with endosomal markers imply an endosomal origin of these vesicles. Significant accumulation of VFT complex positive endosomes is found in the vicinity of the Trans Golgi Network area. This is in accordance with a putative role in Golgi associated transport processes. In Saccharomyces cerevisiae, GARP is the main effector of the small GTPase Ypt6p and interacts with the SNARE Tlg1p to facilitate membrane fusion. Accordingly, the human homologue of Ypt6p, Rab6, specifically binds hVps52. In human cells, the "orphan" SNARE Syntaxin 10 is the genuine binding partner of GARP mediated by hVps52. This reveals a previously unknown function of human Syntaxin 10 in membrane docking and fusion events at the Golgi. Taken together, GARP shows significant conservation between various species but diversification and specialization result in important differences in human cells.  相似文献   

10.
Membrane traffic requires vesicles to fuse with a specific target, and SNARE proteins and Rab/Ypt GTPases contribute to this specificity. In the yeast Saccharomyces cerevisae, the Rab/Ypt GTPase Ypt6p is required for fusion of endosome-derived vesicles with the late Golgi. We have shown previously that activation of Ypt6p depends on its exchange factor, Ric1p-Rgp1p, a peripheral membrane protein complex restricted to the Golgi. We show here that a conserved trimeric protein complex, VFT (Vps52/53/54), binds directly to Ypt6p:GTP. Localization of VFT to the Golgi requires Ypt6p, but is unaffected in gos1 and tlg1 mutants, in which late Golgi integral membrane proteins, including SNAREs, are mislocalized. The VFT complex also binds directly to the N-terminal domain of the SNARE Tlg1p, both in vitro and in vivo, in a Ypt6p-independent manner. We suggest that the VFT complex links vesicles containing Tlg1p to their target, which is defined by the local activation of Ypt6p.  相似文献   

11.
Tethering factors and SNAREs control the last two steps of vesicular trafficking: the initial interaction and the fusion, respectively, of transport vesicles with target membranes. The Golgi-associated retrograde protein (GARP) complex regulates retrograde transport from endosomes to the trans-Golgi network (TGN). Although GARP has been proposed to function as a tethering factor at the TGN, direct evidence for such a role is still lacking. Herein we report novel and specific interactions of the mammalian GARP complex with SNAREs that participate in endosome-to-TGN transport, namely, syntaxin 6, syntaxin 16, and Vamp4. These interactions depend on the N-terminal regions of Vps53 and Vps54 and the SNARE motif of the SNAREs. We show that GARP functions upstream of the SNAREs, regulating their localization and assembly into SNARE complexes. However, interactions of GARP with SNAREs are insufficient to promote retrograde transport, because deletion of the C-terminal region of Vps53 precludes GARP function without affecting GARP-SNARE interactions. Finally, we present in vitro data consistent with a tethering role for GARP, which is disrupted by deletion of the Vps53 C-terminal region. These findings indicate that GARP orchestrates retrograde transport from endosomes to the TGN by promoting vesicle tethering and assembly of SNARE complexes in consecutive, independent steps.Conveyance of cargo among organelles of the secretory and endosomal-lysosomal pathways is mediated by transport vesicles that bud from a donor compartment and fuse with an acceptor compartment in a specific and regulated manner (2, 25, 42). The accuracy and efficiency of vesicle fusion with the target compartment are provided by the concomitant actions of at least three protein families: tethers, small GTPases, and SNAREs. The general view is that a transport vesicle first finds its target organelle through interaction with tethering factors and then fuses with it through assembly of SNARE proteins while small GTPases of the Rab and Arl subfamilies orchestrate multiple steps of the overall process (1, 38, 44). The mechanistic details, however, are far from being completely understood and might vary depending on the transport pathway considered.Tethering represents the first step in the interaction between a transport vesicle and its target membrane and results in the formation of physical links between two membranes that are bound to fuse. Two types of tethering factor, long coiled-coil proteins (e.g., p115, GCC185, and GM-130) and multisubunit complexes (e.g., HOPS/Vps-C, exocyst, COG, and GARP/VFT) have been implicated in nearly all vesicular transport routes (19, 38), although their direct role in connecting two opposing membranes has been documented for only a few (7, 40). Fusion is triggered by the assembly of SNAREs on the transport vesicle (v-SNAREs) with their cognate SNAREs on the target membranes (t-SNAREs) to form a SNARE pin or SNARE complex (12, 35). SNARE complex assembly involves the formation of a four-helix bundle that drives fusion of the two lipid bilayers (10, 14). Small GTPases participate in the initial recruitment of tethering factors and other peripherally associated effectors to specific locations on membranes, as well as in the subsequent fusion events (21). For example, the long coiled-coil protein GCC185 binds different GTPases, Rab9 on transport vesicles through the middle part and Rab6 and Arl1 at the trans-Golgi network (TGN) through the C-terminal part, thereby facilitating the recognition and connection of both membrane-bound compartments (11, 33). Other coiled-coil tethers have the ability to bind several different Rabs through domains that are not required for Golgi apparatus targeting. This supports a general model for a tentacular Golgi complex in which coiled-coil proteins capture and retain Rab-containing vesicles (33).In addition to bringing together transport vesicles with target organelles, tethers may also regulate SNARE complex assembly, thus coordinating these two steps of vesicular transport. Several examples of tether-SNARE interactions have been reported, but no consensus for a mechanism of interaction or functional significance has yet emerged. For example, the HOPS complex associates with v- and t-SNARE complexes on Saccharomyces cerevisiae vacuoles both before and after fusion (37). Sec6p, a member of the exocyst complex, binds to the plasma membrane t-SNARE Sec9p, preventing its interaction with the cognate t-SNARE Sso1p (34). The COG complex binds the Golgi t-SNARE syntaxin 5 and enhances intra-Golgi SNARE complex stability (29). The long coiled-coil protein p115 also stimulates SNARE complex assembly (30).The Golgi-associated retrograde protein (GARP) complex, also named the Vps fifty-three (VFT) complex, together with COG and the exocyst, belongs to the quatrefoil family of multisubunit tethering complexes (43), a structurally diverse group of peripheral membrane protein assemblies. Defects in the GARP, COG, or exocyst complexes cause accumulation of untethered vesicles that are scattered throughout the cytoplasm and contain different cargo proteins (18, 20, 45, 47). Direct proof of a tethering function for the GARP complex is still lacking, although its inactivation leads to defects consistent with a prominent role in the fusion of endosome-derived transport intermediates with the TGN (4-6, 20, 31). The yeast GARP complex is composed of four subunits named Vps51p, Vps52p, Vps53p, and Vps54p. Mutations in any of these subunits impair the retrieval of the secretory vesicle v-SNARE Snc1p and the carboxypeptidase Y receptor, Vps10p, from endosomes (5, 23, 32). The mammalian GARP complex also comprises Vps52, Vps53, and Vps54 subunits, but no Vps51 subunit has been identified to date (13). Depletion of the mammalian GARP complex prevents the delivery of Shiga toxin B subunit and the retrieval of TGN-localized proteins, such as TGN46, from endosomes to the TGN (20). Moreover, GARP depletion blocks the recycling of the cation-independent mannose 6-phosphate receptor (CI-MPR) from endosomes to the TGN, leading to missorting of the CI-MPR cargo, lysosomal hydrolases, into the extracellular space (20). The essential nature of mammalian GARP function in endosome-to-TGN transport is highlighted by the embryonic lethality of mice with ablation of the Vps54 subunit gene (27) and the motor neuron degeneration of Wobbler mice bearing a Vps54 hypomorphic mutation (27).In yeast, the GARP subunit Vps51p specifically binds to the conserved N-terminal regulatory domain of the t-SNARE Tlg1p (5, 32). This finding led to the proposal that GARP tethers endosome-derived vesicles through its interaction with Tlg1p. However, deletions or point mutations that eliminate the binding of Vps51p to Tlg1p do not show any functional phenotype in vivo (8). Binding of Tlg1p to Vps51p is thus not essential for GARP-mediated vesicle tethering. In this work, we set out to study the possible link between the mammalian GARP complex and SNAREs. We found that GARP specifically and directly interacts with SNAREs that participate in the endosome-to-TGN retrograde route (i.e., syntaxin 6 [Stx6], Stx16, and Vamp4). These interactions depend on the fusion-inducing SNARE “motif” of the SNAREs and the N-terminal regions of Vps53 and Vps54. Functional analyses place the GARP complex upstream of the SNAREs, regulating their localization and assembly into SNARE complexes. In addition, we demonstrate that the GARP complex has a vesicle tethering function independent of its interaction with the SNAREs.  相似文献   

12.
N J Bryant  D E James 《The EMBO journal》2001,20(13):3380-3388
Sec1p-like/Munc-18 (SM) proteins bind to t-SNAREs and inhibit ternary complex formation. Paradoxically, the absence of SM proteins does not result in constitutive membrane fusion. Here, we show that in yeast cells lacking the SM protein Vps45p, the t-SNARE Tlg2p is down-regulated, to undetectable levels, by rapid proteasomal degradation. In the absence of Vps45p, Tlg2p can be stabilized through abolition of proteasome activity. Surprisingly, the stabilized Tlg2p was targeted to the correct intracellular location. However, the stabilized Tlg2p is non-functional and unable to bind its cognate SNARE binding partners, Tlg1p and Vti1p, in the absence of Vps45p. A truncation mutant lacking the first 230 residues of Tlg2p no longer bound Vps45p but was able to form complexes with Tlg1p and Vti1p in the absence of the SM protein. These data provide us with two valuable insights into the function of SM proteins. First, SM proteins act as chaperone-like molecules for their cognate t-SNAREs. Secondly, SM proteins play an essential role in the activation process allowing their cognate t-SNARE to participate in ternary complex formation.  相似文献   

13.
Tethering complexes contribute to the specificity of membrane fusion by recognizing organelle features on both donor and acceptor membranes. The Golgi-associated retrograde protein (GARP) complex is required for retrograde traffic from both early and late endosomes to the trans-Golgi network (TGN), presenting a paradox as to how a single complex can interact specifically with vesicles from multiple upstream compartments. We have found that a subunit of the GARP complex, Vps54, can be separated into N- and C-terminal regions that have different functions. Whereas the N-terminus of Vps54 is important for GARP complex assembly and stability, a conserved C-terminal domain mediates localization to an early endocytic compartment. Mutation of this C-terminal domain has no effect on retrograde transport from late endosomes. However, a specific defect in retrieval of Snc1 from early endosomes is observed when recycling from late endosomes to the Golgi is blocked. These data suggest that separate domains recruit tethering complexes to different upstream compartments to regulate individual trafficking pathways.  相似文献   

14.
The screening of the Versailles collection of Arabidopsis T-DNA transformants allowed us to identify several male gametophytic mutants, including poky pollen tube (pok). The pok mutant, which could only be isolated as a hemizygous line, exhibits very short pollen tubes, explaining the male-specific transmission defect observed in this line. We show that the POK gene is duplicated in the Arabidopsis genome and that the predicted POK protein sequence is highly conserved from lower to higher eukaryotes. The putative POK homolog in yeast (Saccharomyces cerevisiae), referred to as Vps52p/SAC2, has been shown to be located at the late Golgi and to function in a complex with other proteins, Vps53p, Vps54p, and Vps51p. This complex is involved in retrograde trafficking of vesicles between the early endosomal compartment and the trans-Golgi network. We present the expression patterns of the POK gene and its duplicate P2 in Arabidopsis, and of the putative Arabidopsis homologs of VPS53 and VPS54 of yeast. We show that a POK::GFP fusion protein localizes to Golgi in plant cells, supporting the possibility of a conserved function for Vps52p and POK proteins. These results, together with the expression pattern of the POK::GUS fusion and the lack of plants homozygous for the pok mutation, suggest a more general role for POK in polar growth beyond the pollen tube elongation process.  相似文献   

15.
Soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) proteins catalyze membrane fusion events in the secretory and endolysosomal systems, and all SNARE-mediated fusion processes require cofactors of the Sec1/Munc18 (SM) family. Vps33 is an SM protein and subunit of the Vps-C complexes HOPS (homotypic fusion and protein sorting) and CORVET (class C core vacuole/endosome tethering), which are central regulators of endocytic traffic. Here we present biochemical studies of interactions between Saccharomyces cerevisiae vacuolar SNAREs and the HOPS holocomplex or Vps33 alone. HOPS binds the N-terminal Habc domain of the Qa-family SNARE Vam3, but Vps33 is not required for this interaction. Instead, Vps33 binds the SNARE domains of Vam3, Vam7, and Nyv1. Vps33 directly binds vacuolar quaternary SNARE complexes, and the affinity of Vps33 for SNARE complexes is greater than for individual SNAREs. Through targeted mutational analyses, we identify missense mutations of Vps33 that produce a novel set of defects, including cargo missorting and the loss of Vps33-HOPS association. Together these data suggest a working model for membrane docking: HOPS associates with N-terminal domains of Vam3 and Vam7 through Vps33-independent interactions, which are followed by binding of Vps33, the HOPS SM protein, to SNARE domains and finally to the quaternary SNARE complex. Our results also strengthen the hypothesis that SNARE complex binding is a core attribute of SM protein function.  相似文献   

16.
Srivastava A  Woolford CA  Jones EW 《Genetics》2000,156(1):105-122
Pep3p and Pep5p are known to be necessary for trafficking of hydrolase precursors to the vacuole and for vacuolar biogenesis. These proteins are present in a hetero-oligomeric complex that mediates transport at the vacuolar membrane. PEP5 interacts genetically with VPS8, implicating Pep5p in the earlier Golgi to endosome step and/or in recycling from the endosome to the Golgi. To understand further the cellular roles of Pep3p and Pep5p, we isolated and characterized a set of pep3 conditional mutants. Characterization of mutants revealed that pep3(ts) mutants are defective in the endosomal and nonendosomal Golgi to vacuole transport pathways, in the cytoplasm to vacuole targeting pathway, in recycling from the endosome back to the late Golgi, and in endocytosis. PEP3 interacts genetically with two members of the endosomal SNARE complex, PEP12 (t-SNARE) and PEP7 (homologue of mammalian EEA1); Pep3p and Pep5p associate physically with Pep7p as revealed by two-hybrid analysis. Our results suggest that a core Pep3p/Pep5p complex promotes vesicular docking/fusion reactions in conjunction with SNARE proteins at multiple steps in transport routes to the vacuole. We propose that this complex may be responsible for tethering transport vesicles on target membranes.  相似文献   

17.
The CGP1 gene was identified in a screen for mutations that were synthetic lethal in combination with a deletion of the gene (CPF1) for centromere and promoter factor 1. Cells deleted for CGP1 showed reduced viability, were temperature sensitive for growth and exhibited altered sensitivity to microtubule-destabilizing drugs. Furthermore, Deltacgp1 cells showed increased rates of loss of a circular minichromosome and defects in the positioning of the short mitotic spindle. Further phenotypic analysis of Deltacgp1 cells revealed that loss of Cgp1p function led to severe depolarization of the actin cytoskeleton. In addition, cells deleted for CGP1 were hypersensitive to the actin-disrupting compound Latrunculin-A, exhibited strongly reduced polarized localization of the unconventional myosin Myo2p, and showed defects in other actin-related processes, such as shmoo formation and cell wall integrity. Cgp1p was recently identified by several groups as Vps54p, which is a member of the VFT complex that is involved in vesicular protein transport at the level of the late Golgi, acting as a tethering factor. Our data show for the first time that Cgp1p/Vps54p links aspects of vesicular protein transport with the organization of the actin cytoskeleton.  相似文献   

18.
Vps8 is a subunit of the CORVET tethering complex, which is involved in early-to-late endosome fusion. Here, we examine the role of Vps8 in membrane fusion at late endosomes in Saccharomyces cerevisiae. We demonstrate that Vps8 associates with membranes and that this association is independent of the class C/HOPS core complex and, contrary to a previous report, also independent of the Rab GTPase Vps21. Our data indicate that Vps8 makes multiple contacts with membranes. One of these membrane binding regions could be mapped to the N-terminal part of the protein. By two-hybrid analysis, we obtained evidence for a physical interaction between Vps8 and the Rab5 homologue Vps21. In addition, the interaction with the HOPS core complex was confirmed by immunoprecipitation experiments. By deletion analysis, the Vps21 and HOPS binding sites were mapped in Vps8. Deletions that abrogated HOPS core complex binding had a strong effect on the turnover of the endocytic cargo protein Ste6 and on vacuolar sorting of carboxypeptidase Y. In contrast, deletions that abolished Vps21 binding showed only a modest effect. This suggests that the Vps21 interaction is not essential for endosomal trafficking but may be important for some other aspect of Vps8 function.The compartments of the exocytic/endocytic membrane system are dynamic structures that continuously exchange materials by budding and fusion of transport vesicles. Despite this continuous exchange, the compartments maintain their specific identities. A basic machinery consisting of tethering factors, Rab GTPases, SNARE proteins, and Sec1/Munc18 (SM) proteins accomplishes membrane targeting and fusion. For each individual membrane fusion event, a characteristic set of proteins is used.We are interested in a particular membrane fusion step, the fusion of early endosome-derived vesicles with late endosomes. Screening for vps (vacuolar protein sorting) mutants in Saccharomyces cerevisiae identified factors involved in this fusion step (3). Mutants defective in the early-to-late endosome trafficking step belong to the class D group of vps mutants, whose hallmark is an enlarged vacuole (21). Among the class D functions, representatives of the main groups of targeting and fusion factors can be found. The Q-SNARE protein Pep12, for instance, a member of the syntaxin family, serves as a marker for late endosomal membranes (2). Together with the Q-SNAREs Vti1 and Syn8 or Tlg1, it forms two alternative t-SNARE complexes on late endosomal membranes (17). These t-SNAREs combine with the v-SNARES Snc1/Snc2 or Ykt6 to form functional trans-SNARE complexes. Pep12 functionally interacts with another class D protein, the SM protein Vps45 (4). Another component of the basic fusion machinery at late endosomes is the class D protein Vps21, a member of the Rab GTPase family and the yeast homologue of mammalian Rab5 (8, 12, 30). Rab proteins are key regulators of membrane fusion (9). They are involved in the recruitment of tethering and docking factors, and by their interplay with Rab effectors they contribute to the establishment of specific membrane domains. Another class D protein connected to Rab function is Vps9, a guanidine nucleotide exchange factor (GEF) for Vps21 (11).Additional class D proteins are involved in vesicle tethering at late endosomes. Basically, there are two kinds of tethers, proteins containing extensive coiled-coil domains and large multisubunit complexes (33). The prototype of the coiled-coil tethers is p115, with its yeast homologue Uso1, involved in tethering of vesicles to Golgi apparatus membranes (25). Another member of this class is EEA1, which is involved in tethering of vesicles to endosomes. The yeast class D protein Vps19/Pep7/Vac1 could be functionally similar to EEA1 (16). Two further class D proteins, Vps3 and Vps8, are part of the multisubunit (class C core vacuole/endosome tethering) CORVET tethering complex (20, 32). This complex shares core components with the HOPS (homotypic fusion and vacuole protein sorting) tethering complex involved in homotypic vacuolar fusion (28). This core complex, the class C Vps complex, consists of Vps11/Pep5, Vps16, Vps18/Pep3, and the SM protein Vps33 (26). Instead of Vps3 and Vps8, HOPS contains two additional subunits, Vps39/Vam6 and Vps41 (35), which appear to be functionally equivalent to Vps3 and Vps8 (20). In addition to bridging donor and acceptor membranes, tethers appear to be involved in coordinating Rab and SNARE functions. This was suggested by the finding that the equivalent CORVET/HOPS subunits Vps3 and Vps39/Vam6 both display GEF activity toward their respective Rab proteins, Vps21 and Ypt7 (20, 35). In addition, whole tethering complexes act as Rab effectors by binding to activated Rab-GTP and interact with the corresponding SNARE complexes (6, 20, 31).How exactly the tethers coordinate Rab and SNARE functions during membrane fusion is at present unclear. Here, we examine the function of the CORVET subunit Vps8 (5, 13) in membrane fusion at late endosomes in yeast. We demonstrate that Vps8 directly associates with membranes. Contrary to a previous report (13), we show that this membrane association is not dependent on Vps21. We further investigate the functional relationship between Vps8 and Vps21. We found that Vps21 physically interacts with Vps8 but that this interaction does not appear to be absolutely required for endosomal trafficking. Finally, we speculate that Vps8 could be part of a higher-order structure.  相似文献   

19.
The dynamic equilibrium between vesicle fission and fusion at Golgi, endosome, and vacuole/lysosome is critical for the maintenance of organelle identity. It depends, among others, on Rab GTPases and tethering factors, whose function and regulation are still unclear. We now show that transport among Golgi, endosome, and vacuole is controlled by two homologous tethering complexes, the previously identified HOPS complex at the vacuole and a novel endosomal tethering (CORVET) complex, which interacts with the Rab GTPase Vps21. Both complexes share the four class C Vps proteins: Vps11, Vps16, Vps18, and Vps33. The HOPS complex, in addition, contains Vps41/Vam2 and Vam6, whereas the CORVET complex has the Vps41 homolog Vps8 and the (h)Vam6 homolog Vps3. Strikingly, the CORVET and HOPS complexes can interconvert; we identify two additional intermediate complexes, both consisting of the class C core bound to Vam6-Vps8 or Vps3-Vps41. Our data suggest that modular assembled tethering complexes define organelle biogenesis in the endocytic pathway.  相似文献   

20.
The vacuolar protein sorting (VPS) pathway of Saccharomyces cerevisiae mediates transport of vacuolar protein precursors from the late Golgi to the lysosome-like vacuole. Sorting of some vacuolar proteins occurs via a prevacuolar endosomal compartment and mutations in a subset of VPS genes (the class D VPS genes) interfere with the Golgi-to-endosome transport step. Several of the encoded proteins, including Pep12p/Vps6p (an endosomal target (t) SNARE) and Vps45p (a Sec1p homologue), bind each other directly [1]. Another of these proteins, Vac1p/Pep7p/Vps19p, associates with Pep12p and binds phosphatidylinositol 3-phosphate (PI(3)P), the product of the Vps34 phosphatidylinositol 3-kinase (PI 3-kinase) [1] [2]. Here, we demonstrate that Vac1p genetically and physically interacts with the activated, GTP-bound form of Vps21p, a Rab GTPase that functions in Golgi-to-endosome transport, and with Vps45p. These results implicate Vac1p as an effector of Vps21p and as a novel Sec1p-family-binding protein. We suggest that Vac1p functions as a multivalent adaptor protein that ensures the high fidelity of vesicle docking and fusion by integrating both phosphoinositide (Vps34p) and GTPase (Vps21p) signals, which are essential for Pep12p- and Vps45p-dependent targeting of Golgi-derived vesicles to the prevacuolar endosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号