首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Throughout winter and early spring, rule and auxanometer measurementsshowed that leaf extension rate (RE) was directly related totemperature and stopped at about 0°C. During this period,both night and day time RE responded similarly to temperature.Bright sunshine in late April and May caused fast transpirationwhich was associated with low leaf water potential () and slowRE. When bright sun was obscured by cloud, RE increased butthis did not compensate for previous slow RE. Leaf turgor potential,calculated as the difference between and leaf osmotic potential,was large (0.6–1.8 MPa) and bore little relation to RE.Low was associated with slower RE than would have been expectedwithout water stress, but the relation was not unique. On abright day in May, adaptation to low occurred and during theafternoon RE was faster than at similar values of and meristemtemperatures before noon. The response of RE and duration ofleaf extension to temperature suggested that for any particularleaf grown under field conditions, variation in mean growingtemperature would affect final leaf length only slightly. Becausesevere water stress slows RE without affecting the durationof leaf extension markedly, it decreases final leaf size.  相似文献   

2.
A mechanical auxanometer, suitable for measuring hourly ratesof leaf extension of grass and cereal crops, is described. Severalof these instruments were used to monitor leaf extension rates(RE) of a spring barley crop. RE of main stem and first leaftillers responded similarly to environmental factors. DuringMay, when soil water deficits were less than 50 mm, and on dulldays later in the season, RE was directly related to meristemtemperature with night and day measurements responding similarly.During the central 10 h of bright days in late May and June,RE was unrelated to temperature but slowed during bright sunshineand accelerated at the start of cloudy periods. Pressure chambermeasurements of total leaf water potential () showed that brightsun caused to decrease rapidly and that this was associatedwith slow RE. Analysis of 2 h mean values of and RE indicatedthat, at any given temperature, RE slowed in direct proportionto decrease of .  相似文献   

3.
Measurements of leaf initiation, appearance, and expansion arepresented for winter wheat and spring barley crops. For winterwheat, these processes occurred during periods of several weekswhen fluctuating temperatures influenced process rates. Analysisof these measurements was facilitated by plotting variablesagainst the time integral of temperature above an appropriatebase temperature (O °C), here called thermal time with unitsof °C d. Leaf primordial number and appearance stage increasedlinearly with thermal time for both winter wheat and springbarley which initiated 12 and 9 leaves respectively. When plottedagainst thermal time 90% of laminar and leaf length growth and80% of laminar width growth was satisfactorily described bya straight line for both species. This enabled an average extensionrate and duration of linear growth to be defined for each leaf.When expressed in thermal time, wheat leaves had a similar durationof linear growth (210 °C d; s.d. 30 °C d) with insolationexerting a negligible influence. The first seven barley leaveshad a shorter duration of linear growth (151 °C d; s.d.8 °C d). For wheat, final leaf length and laminar widthincreased with leaf number and were not apparently associatedwith changes in apical development stage. Changes of barleyleaf dimensions with leaf number were more complex.  相似文献   

4.
The growing part of a wheat leaf (the extension zone) is loocatedat the leaf base and following from this it was proposed thatthe absolute leaf extension rate (Ler) can be partitioned intotwo components: the length of the extension zone (Lez) and therelative extension rate of that extension zone (Rez). Rez isan appropriate measure of the efficiency of leaf growth forcomparing different leaves. This model of a wheat leaf was thenused to investigate whether differences in growth rates betweensuccessive leaves on wheat plants were due to differences inhexose sugar or protein concentrations within the extensionzone. Measurements were done in an irrigated field crop suppliedwith 0, 3, 10, or 30 kg N ha–1 per week. The mean values of Ler at 15 °C increased with leaf numberand with nitrogen supply as did values for Lez. In contrastRez at 15 °C declined from 0.9 d–1 for the first leavesto 0.3 d–1 for the flag leaf. Nitrogen supply had littleeffect on Rez. A separate measure of the efficiency of leafgrowth, the responsiveness of Ler to temperature (measured asthe slope of the temperature response curve), also decreasedwith leaf number by the same order as Rez and was similarlyunaffected by nitrogen supply. The protein concentrations in the extension zones of the firstleaves were around 40 mg g–1 fr. wt. and this declinedto approximately 20 mg g–1 fr. wt for leaves emergingafter tillers emerged and remained low thereafter. Protein concentrationswere not correlated with the external supply of nitrogen. Hexosesugar concentrations followed a reverse pattern of increasingin the later order leaves and these also increased as nitrogensupply decreased. Both Rez and the responsiveness of Ler to temperature were positivelycorrelated with the protein concentration, the relationshipin each case being described by a rectangular hyperbola equation(P < 0.01), and negatively correlated with hexose concentrations.It was concluded that internal competition between growing pointsfor reduced nitrogen caused the observed effects. However, differencesin protein concentrations may not simply reflect differencesin enzyme concentrations; rather these differences may indicatechanges in some other character such as cell numbers.  相似文献   

5.
The effects of nitrate supply on the composition (cell numbers,protein and chlorophyll contents) of flag leaves of winter wheatgrown with two amounts of N fertilizer and of spring wheat grownin the glasshouse under controlled nitrate supply are describedand related to photosynthesis. Nitrogen deficiency decreasedthe size of leaves, mainly by reducing cell number and, to asmaller extent, by decreasing cell volume. Protein content perunit leaf area, per cell and per unit cell volume was largerwith abundant N. Total soluble protein, ribulose bisphosphatecarboxylase-oxygenase (RuBPc-o) protein and chlorophyll changedin proportion irrespective of nitrogen supply and leaf age.Photosynthesis per unit area of flag leaf and carboxylationefficiency in both winter and spring wheat were proportionalto the amount of total soluble protein up to 7.0 g m–2and to the amount of RuBPc-o protein up to 4.0 g m–2.However, photosynthesis did not increase in proportion to theamount of total soluble or RuBPc-o protein above these amounts.In young leaves with a high protein content the measured ratesof photosynthesis were lower than expected from the amount andactivity of RuBPc-o. Carboxylation per unit of RuBPc-o protein,measured in vitro, was slightly greater in N-deficient leavesof winter wheat but not of spring wheat. RuBPc-o activity perunit of RuBPc-o protein was similar in winter and spring wheatleaves and remained approximately constant with age, but increasedin leaves showing advanced senescence. RuBPc-o protein fromN-deficient leaves migrated faster on polyacrylamide gels thanprotein from leaves with high N content. Regulation of the rateof photosynthesis in leaves and chloroplasts with a high proteincontent is discussed. The conductance of the cell to the fluxof CO2 from intercellular spaces to RuBPc-o active sites iscalculated, from cell surface areas and CO2 fluxes, to decreasethe CO2 partial pressure at the active site by less than 0.8Pa at an internal CO2 partial pressure of 34 Pa. Thus the decreasein partial pressure of CO2 is insufficient to account for theinefficiency of RuBPc-o in vivo at high protein contents. Otherlimitations to the rate of photosynthesis are considered. Key words: Wheat, photosynthesis, nitrogen, ribulose, bisphosphate carboxylase  相似文献   

6.
The temperature of the roots and shoots of Zea mays plants werevaried independently of each other and the rates of leaf extensionand leaf water potentials were measured. Restrictions of leafextension occurred when root temperatures were lowered from35 to 0 °C, but leaf water potentials were lowered onlyat root temperatures below 5 °C. Similar changes in ratesof leaf extension were measured at air temperatures from 30to 5 °. Between 30 and 35 °C air temperature, in anunsaturated atmosphere, restrictions of leaf extension wereassociated with low leaf water potentials. It was concluded that, at root temperatures 5 to 35 °C,and shoot temperatures 5 to 30 °C, water stress was notthe main factor restricting the extension of Zea mays leaves.  相似文献   

7.
农田冬小麦生长和产量对臭氧动态暴露的响应   总被引:7,自引:0,他引:7       下载免费PDF全文
 评估臭氧(O3)污染对农田冬小麦生长和产量的影响是污染生态学和生理生态学研究的重要内容之一。该研究运用开顶式气室(OTC),对冬小麦‘ 嘉403’(Triticum aestivum cv. Jia 403)进行了O3动态暴露的田间原位试验。实验设置过滤空气组(CF)、自然大气组(NF)和两个不同浓度的 O3动态暴露组(DO100和DO150)。结果表明:1) O3浓度增加,一方面可以改变灌浆期冬小麦叶片气体交换参数的日变化规律;另一方面引起表观 光量子产额、光饱和点和光补偿点等光响应参数的显著降低。这表明灌浆期叶片光合能力的下降是气孔因素和非气孔因素共同作用的结果。2) O3暴露可以改变小麦形态特征,如植株变矮、叶片衰老加速、 叶面积变小,并最终导致产量大幅下降。  相似文献   

8.
We studied the course of early leaf area expansion and specificleaf area (SLA) in potato (Solanum tuberosum L.) and wheat (Triticumaestivum L.) genotypes and tested whether air temperature explainsdifferences in these courses within different environments.Such knowledge can be used to improve crop growth modelling.The relative rate of leaf area expansion (RL) of potato andwheat decreased with thermal time, but was nearly linear upto a leaf area index (L) of 1.0. TheRL (L < 1; mean: 17.9x 10-3°C-1 d-1) of potato showed an interaction betweengenotype and environment, and varied with year. TheRL (L <1; mean: 7.1 x 10-3°C-1 d-1) of winter wheat was lower thanthat of spring wheat (mean: 10.9 x 10-3°C-1 d-1), and bothvaried with year. SLAof potato increased nearly linearly withthermal time from 5 to 15 m2 kg-1at 50% emergence, to 20 to25 m2 kg-1at 155°Cd, and then decreased slightly. The SLAofboth winter and spring wheat began at 16 to 23 m2 kg-1and inmost cases increased slightly with thermal time. In potato,regression parameters of SLAwith thermal time were affectedby environment (management conditions and year) and genotype;in wheat they were affected by environment (year and site).Treatment effects on RLof potato were not correlated with thoseon SLA , and were only partly correlated for wheat. Thereforewe conclude that the early foliar expansion of potato is associatedwith a strong increase in SLA , and not so for wheat. For bothcrops the course of early leaf area expansion and ofSLA withair temperature is not robust over environments and genotypes.The consequences of these results for modelling are discussed.Copyright 2000 Annals of Botany Company Triticum aestivum, spring wheat, winter wheat, Solanum tuberosum, leaf area expansion, specific leaf area, early growth, genotype, environment, modelling  相似文献   

9.
真红树和半红树植物叶片氯含量及叶性状的比较   总被引:1,自引:0,他引:1       下载免费PDF全文
 依据红树植物在潮间带的分布,将其分为真红树植物和半红树植物两大类。但对一些过渡地带种类的归属问题一直存在争议。该研究选取国内大部分红树植物,比较其成熟叶片中的Cl含量、肉质化程度、比叶面积(SLA)、单位重量叶氮含量(Nmass)和单位面积叶氮含量(Narea),并对争议树种重新进行界定。结果表明:1)真红树植物叶片中Cl含量和肉质化程度远高于半红树植物;2)真红树植物具有低SLA和高Narea的特点,除水芫花(Pemphis acidula)外半红树植物具有高SLA和低Narea的特点。3)争议的7种红树植物中,银叶树(Heritiera littoralis)、海漆(Excoecaria agallocha)、卤蕨(Acrostichum aureum )和尖叶卤蕨(Acrostichum speciosum)归为半红树植物更合适;老鼠(Acanthus ilicifolius)和小花老鼠(Acanthus ebrecteatus)归为真红树植物。木果楝(Xylocarpus granatum)有待进一步研究。  相似文献   

10.
Data are presented which show, when stomatal control is eliminated,that wheat leaves may lose 5–6 per cent. and Pelargoniumleaves 10–12 per cent. of their water without any reductionin the transpiration rate. Experiments in which Pelargonium and wheat leaves, with stomatalcontrol present, were submitted to cycles of changing watercontent also failed to establish any direct relation betweentranspiration rate and leaf water content. It is concluded that leaf water content over the range of 70–100per cent. of that present in the turgid state has no significanteffect in determining the rate of water loss from leaves. A repetition of Knight's experiment showed that stomata openedin still air and closed in moving air. This was not recordedby Knight, who used a porometer cup permanently attached tothe leaf. It is concluded that the higher transpiration raterecorded by Knight after a period of still air was due to widerstomatal aperture and not to the higher leaf water content assuggested by him.  相似文献   

11.
Mohamed, H. A., Clark, J. A. and Ong, C. K. 1988. Genotypicdifferences in the temperature responses of tropical crops.II. Seedling emergence and leaf growth of groundnut (Arachishypogaea L.) and pearl millet (Pennisetum typhoides S. &H.).—J. exp. Bot. 39: 1129-1135. Measurements of seedling emergence and leaf growth of five milletand seven groundnut genotypes were made at soil temperaturesranging from 7 to 27?C. The rate of seedling emergence (Re)varied greatly between millet genotypes but Re was remarkablysimilar in groundnut genotypes. In pearl millet there is a strongcorrelation between the rate of germination and the rate ofleaf production, hourly leaf extension and seedling emergence.The results are discussed in terms of the thermal time requirementsof various processes. Key words: Temperature, emergence, groundnut, millet  相似文献   

12.
Wheat seedlings {Triticum aestivum L.) were grown on soils withcontrasted resistances to root penetration (measured as penetrometerresistance, Rs. High Rs reduced the rates of leaf appearanceand expansion. Although the duration of expansion was increased,mature leaves were smaller. Underlying changes in leaf anatomywere investigated on cleared mature leaves, focusing on theepidermes. Three leaves were analysed: leaves 1 and 3 whichstarted their development in the embryo, and leaf 5 which wasinitiated on the seedling, after imposition of contrasted soilconditions. In all leaves, high Rs, caused a reduction in maturecell sizes, lengths and widths, and a shift in the relativeproportions of functionally different cell types, with a decreasein the relative proportions of stomata and associated cell types(interstomatal and sister cells) and an increase in the proportionsof unspecialized elongated epidermal cells and of trichomes.In leaves 3 and 5 the number of cellular files across the bladewas also reduced, while in leaf 1 it was similar at the twoRs. These differences between leaves are attributed to differencesin their developmental stage when root stress was first perceived.Remarkably, Rs had no effect (leaf 1) or relatively small effects(leaves 3 and 5) on the total number of cells per file, suggestingthat this parameter is either largely insensitive to variationin root environment, or is programmed at the outset before stresswas perceived at the apex. Key words: Wheat, anatomy, mature epidermis, root impedance  相似文献   

13.
A model is presented for growth of individual and successivemain-stem leaves of cotton, based on a series of indoor experimentsand data sets from the literature. Three variable parametersare used to describe individual leaf growth: relative growthrate of meristematic tissue (R1), relative rate of approachof final area (R2) and a ‘position parameter’ (t0.5)which governs the transition from meristematic to extensiongrowth. Final area of a leaf does not occur in the model asa deterministic quantity but it is a result of the processesduring growth. The model generates successive mainstem leavesand sympodial leaves as an integrated system. Assimilate shortagesoccurring in the plant operate on R1 leading to the characteristicchange of final leaf area along the mainstem. Gossypium hirsutumL., cotton, leaf growth, relative growth rate, meristematic tissue, extension growth, mathematical model  相似文献   

14.
Both field measurements and a computer model were used to study the interception of photosynthetically active radiation (PAR) by Agave deserti (Engelm.), a desert CAM plant with a basal rosette of massive opaque leaves. PAR interception was determined in the winter and the summer for upper and lower leaf surfaces on a plant with about 60 leaves. Total daily PAR on the leaf surfaces was approximately 10 mol m-2 for a winter day and 20 mol m-2 for a summer day. For a PAR of 15 mol m-2, the nocturnal increase in acidity was about 0.6 mol m-2 for both leaf surfaces and various leaf orientations, except for the oldest most horizontal leaves where the increase was less than half as large. The acidity increase measured in the field was 90% saturated at 25 mol m-2. Thus, daytime PAR in the desert is often limiting for the nocturnal acidity increase, especially for the lower leaf surfaces. Simulated tilting of the plant by 55° so that the vertical axis pointed to the sun at solar noon on a winter day increased the PAR incident on the upper surfaces of the leaves, but did not affect the total nocturnal increase in acidity by the whole plant. Although simulated removal of alternate leaves increased the PAR per unit leaf area for the remaining leaves, it reduced the total increase in nocturnal acidity of the whole plant by 31%. PAR interception by plants on slopes facing steeply north, east, or west was substantially reduced compared to the horizontal. Thus, the model proved to be quite useful for quantifying the relation between leaf orientation, PAR interception, and nocturnal increases in acidity by A. deserti, and it indicated that the lower frequency of plants on north- compared to south-facing slopes was due to PAR limitations.  相似文献   

15.
At low nitrogen (N) supply, it is well known that rye has ahigher biomass production than wheat. This study investigateswhether these species differences can be explained by differencesin dry matter and nitrogen partitioning, specific leaf area,specific root length and net assimilation rate, which determineboth N acquisition and carbon assimilation during vegetativegrowth. Winter rye (Secale cereale L.), wheat (Triticum aestivumL.) and triticale (X Triticosecale) were grown in solution cultureat relative addition rates (RN) of nitrate-N supply rangingfrom 0.03–0.18 d-1and at non-limiting N supply under controlledconditions. The relative growth rate (RW) was closely equalto RNin the range 0.03–0.15 d-1. The maximalRW at non-limitingnitrate nutrition was approx. 0.18 d-1. The biomass allocationto the roots showed a considerable plasticity but did not differbetween species. There were no interspecific differences ineither net assimilation rate or specific leaf area. Higher accumulationof N in the plant, despite the same relative growth rate atnon-limiting N supplies, suggests that rye has a greater abilityto accumulate reserves of nitrogen. Rye had a higher specificroot length over a wide range of sub-optimal N rates than wheat,especially at extreme N deficiency (RN=0.03–0.06 d-1).Triticale had a similar specific root length as that of wheatbut had the ability to accumulate N to the same amount as ryeunder conditions of free N access. It is concluded that thebetter adaptation of rye to low N availability compared to wheatis related to higher specific root length in rye. Additionally,the greater ability to accumulate nitrogen under conditionsof free N access for rye and triticale compared to wheat maybe useful for subsequent N utilization during plant growth.In general, species differences are explained by growth componentsresponsible for nitrogen acquisition rather than carbon assimilation.Copyright 1999 Annals of Botany Company Growth analysis, nitrogen, nitrogen productivity, partitioning, specific root length, Secale cereale L.,Triticum aestivum L., X Triticosecale, winter rye, winter wheat, winter triticale.  相似文献   

16.
When measuring the potential difference between two regionsof an oat seedling the P.D. may change if a region of the tissuebetween the measuring contacts is surrounded by a mineral saltsolution. This change is shown to be equal to (E2E1)/(1+R2/R1)where E1 is the E.M.F. generated by the shunted tissue and R1its resistance, and E2 is the net E.M.F. generated at the shuntingsolution and the tissue interfaces and R2 the shunt resistance,expected to be proportional to the specific resistance of theshunting solution. However, in these experiments R2/R1 was closeto unity because of a large resistance from tissue to shuntingsolution and there was no relationship between the P.D. changeand the resistance of the shunt. Where the shunt was appliedbetween two dissimilar regions of the plant (coleoptile andprimary leaf) E2 changed with the concentration of the shuntingsolution, and hence the measured potential difference was changedby varied amounts. When the shunt was applied to a primary leafalone, E2 was independent of solution concentration, and thechange in P.D. was constant.  相似文献   

17.
A simple method called the open-vacuole (o.v.) method was developedto measure the vacuolar potential (Evo) and membrane resistance(Rm) of Characeae cells without inserting a microelectrode intothe vacuole. Values of Evo and Rm measured by this method arehigher than those measured by the microelectrode method. Usingthe o.v. method we can measure Evo and Rm exactly in cells withinternal media of extremely low ionic concentrations. In respect to Evo and Rm, the tonoplast is less sensitive thanthe plasmalemma to a change in ionic concentration. The existenceof a significant amount of Evo (–40 mV), even when boththe internal and external media are isotonic artificial pondwater with a high Ca2$content, may be accounted for by the differencein sensitivity to ionic species between these two membranes. Irrespective of the presence or absence of Ca2$in the vacuole,practically the same values of Evo and Rm were measured withthe open-vacuole method, when measurements were carried outwithin 20 min after the end of perfusion. The discrepanciesbetween the present and previous results (16) may be accountedfor by the difference in methods. 1Present address: Sanki Engineering Ltd., Nagaokakyo, Kyoto. (Received January 31, 1975; )  相似文献   

18.
利用新疆塔城1989~1996年8年的麦双尾蚜Diuraphis noxia (Mordvilko)发生程度与16个气象因子进行相关性分析,通过逐步回归筛选因子,确定麦双尾蚜发生量预测模型:logY=84100-0.1033RH5-0.0253R5,其中:Y为麦双尾蚜发生百株蚜量;RH5为5月份的相对湿度(%);R5为5月份的降水量(mm)。应用该模型预测1997~1998年麦双尾蚜的发生程度,与实际发生情况基本吻合。  相似文献   

19.
叶片的虫食主要发生在展叶期。虽然展叶期短暂, 它却可能是了解植食性昆虫和植物之间相互关系的关键。为了解栲树(Castanopsis fargesii)在展叶期叶片的虫食格局和展叶方式对叶片虫食的影响, 研究了栲树展叶期内的虫食动态变化, 结果表明: 栲树展叶的两个阶段(折叠期和打开期), 虫食叶片的格局存在较大的差异, 打开阶段的日虫食频度和日虫食率显著高于折叠阶段(F1, 32=8.97, p=0.005 4; F1, 32=12.38, p=0.001 4), 展叶期最终叶片虫食频度为50.72%, 叶片虫食率为8.25%。折叠期叶片主要受到低强度的虫食, 打开期叶片虫食则以较大强度的虫食为主。展叶期叶片的虫食主要发生在夜间, 夜间虫食率显著高于日间虫食率(t=2.51, p=0.017), 变化趋势与日虫食率一致。栲树叶片在展叶的两个阶段可能采用了不同的防御对策。  相似文献   

20.
It has been predicted that the concentration of CO2in the aircould double during the 21st century. Though it is recognizedthat CO2-doubling could increase yield through its effects onplant photosynthesis and stomatal behaviour, it is unclear whetherCO2-doubling will change phasic development in wheat. A phytotronstudy was conducted with two contrasting cultivars of wheat,Condor (spring) and Cappelle Desprez (winter), to determinewhether development is affected by a season-long exposure to360 and 720 ppmv CO2. Plants were vernalized for 50 d (8/4 °C,8 h photoperiod) before their exposure to the CO2treatments. There were significant differences between cultivars in theduration of different phenophases as well as in the final numberof leaves. However, CO2concentration had no effect in eithercultivar on the duration of the early developmental phase toterminal spikelet initiation, or on the final number of leaves,though CO2-doubling did slightly increase the later phase fromterminal spikelet initiation to heading in Cappelle Desprez.Condor and Cappelle Desprez also differed markedly in the dynamicsof leaf appearance. While the former had a constant rate ofleaf appearance throughout development, the latter had a fastrate initially (between leaves 1 and 7), similar to that ofCondor, which was followed by a slower rate after the appearanceof leaf 7. Overall, CO2-doubling did not significantly affectthe rates of leaf appearance nor the shape of the relationship.Phyllochron for the first seven leaves was the same for bothCO2concentrations. However, the change in phyllochron associatedwith CO2-doubling for leaves 7–12 in Cappelle Desprez,although quite small (4%), accounts for part of the slightlyincreased duration of the phase from terminal spikelet initiationto heading under high CO2concentration in that cultivar. Weconclude that CO2concentration does not influence developmentin wheat to a degree relevant to agronomy. Carbon dioxide; climatic change; development; leaf number; phyllochron  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号