首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Amino acid sequence analysis has established that the homologous pairing protein of Ustilago maydis, known previously in the literature as rec1, is encoded by REC2, a gene essential for recombinational repair and meiosis with regional homology to Escherichia coli RecA. The 70-kDa rec1 protein is most likely a proteolytic degradation product of REC2, which has a predicted mass of 84 kDa but which runs anomalously during sodium dodecyl sulfate-gel electrophoresis with an apparent mass of 110 kDa. To facilitate purification of the protein product, the REC2 gene was overexpressed from a vector that fused a hexahistidine leader sequence onto the amino terminus, enabling isolation of the REC2 protein on an immobilized metal affinity column. The purified protein exhibits ATP-dependent DNA renaturation and DNA-dependent ATPase activities, which were reactions characteristic of the protein as purified from cell extracts of U. maydis. Homologous pairing activity was established in an assay that measures recognition via non-Watson-Crick bonds between identical DNA strands. A size threshold of about 50 bp was found to govern pairing between linear duplex molecules and homologous single-stranded circles. Joint molecule formation with duplex DNA well under the size threshold was efficiently catalyzed when one strand of the duplex was composed of RNA. Linear duplex molecules with hairpin caps also formed joint molecules when as few as three RNA residues were present.  相似文献   

3.
Synapsis promoted by Ustilago rec1 protein   总被引:25,自引:0,他引:25  
E B Kmiec  W K Holloman 《Cell》1984,36(3):593-598
Ustilago rec 1 protein pairs homologous DNA molecules by promoting both synapsis and strand transfer. Complexes formed with rec 1 protein and a homologous combination of single-stranded and duplex DNA that appear to be synaptic structures can be detected by use of a nitrocellulose filter assay. The nascent heteroduplex formed during synapsis is a paranemic joint in which the single-stranded DNA pairs, but does not interwind, with its complement in the duplex molecule. Formation of the paranemic joint is accompanied by duplex unwinding and genesis of left-handed Z-DNA.  相似文献   

4.
In meiosis, homologous recombination preferentially occurs between homologous chromosomes rather than between sister chromatids, which is opposite to the bias of mitotic recombinational repair. The TBPIP/HOP2 protein is a factor that ensures the proper pairing of homologous chromosomes during meiosis. In the present study, we found that the purified mouse TBPIP/HOP2 protein stimulated homologous pairing catalyzed by the meiotic DMC1 recombinase in vitro. In contrast, TBPIP/HOP2 did not stimulate homologous pairing by RAD51, which is another homologous pairing protein acting in both meiotic and mitotic recombination. The positive effect of TBPIP/HOP2 in the DMC1-mediated homologous pairing was only observed when TBPIP/HOP2 first binds to double-stranded DNA, not to single-stranded DNA, before the initiation of the homologous pairing reaction. Deletion analyses revealed that the C-terminal basic region of TBPIP/HOP2 is required for efficient DNA binding and is also essential for its homologous pairing stimulation activity. Therefore, these results suggest that TBPIP/HOP2 directly binds to DNA and functions as an activator for DMC1 during the homologous pairing step in meiosis.  相似文献   

5.
When recA protein was preincubated with single-stranded DNA in the presence of an ATP-regenerating system prior to the addition of homologous duplex DNA, a slow presynaptic step was eliminated, and the subsequent homologous pairing was revealed as a reaction whose rate exceeds by 1 or 2 orders of magnitude the calculated rate of spontaneous renaturation in 0.15 M NaCl at Tm -25 degrees C. The pairing reaction displayed saturation kinetics with respect to both single-stranded and double-stranded DNA, indicating the existence of a rate-limiting enzyme-substrate complex. The signal observed in the assay of the pairing reaction was due to pairing at free homologous ends of the duplex DNA, as well as pairing in the middle of the duplex molecule, away from a free end. The apparent rate of pairing of circular single strands with linear duplex DNA was equal to the sum of the rates of pairing at sites located at either end of the duplex DNA or at interior sites, but the apparent rates attributable to ends were greater, and nicks also stimulated the apparent rate.  相似文献   

6.
RecA protein promotes homologous pairing by a reaction in which the protein first binds stoichiometrically to single-stranded DNA in a slow presyn-aptic step, and then conjoins single-stranded and duplex DNA, thereby forming a ternary complex. RecA protein did not pair molecules that shared only 30 bp homology, but, with full efficiency, it paired circular single-stranded and linear duplex molecules in which homology was limited to 151 bp at one end of the duplex DNA. The initial rate of the pairing reaction was directly related to the length of the heterologous part of the duplex DNA, which we varied from 0 to 3060 base pairs. Since interactions involving the heterologous part of a molecule speed the location of a small homologous region, we conclude that RecA protein promotes homologous alignment by a processive mechanism involving relative motion of conjoined molecules within the ternary complex.  相似文献   

7.
We studied the formation of linked circular DNA molecules promoted by the combined action of rec 1 protein and type I topoisomerase of Ustilago maydis. When ATP was added as cofactor to reactions containing rec 1 protein, pairs of homologous circular DNA molecules became linked after addition of topoisomerase. Closed circular duplex molecules could be joined at homologous sites with circular single-stranded molecules or with other circular duplex molecules, provided that homologous single-stranded DNA fragments or RNA polymerase and nucleoside triphosphates were also added. Complexes formed were topologically linked through regions of heteroduplex DNA. When the analog adenylyl-imidodiphosphate was substituted for ATP, nonhomologous pairs of circular DNA molecules became linked.  相似文献   

8.
We describe the partial purification and characterization of two different types of homologous DNA pairing activity from rat testis nuclear extracts. The activities are separated from each other by single-stranded DNA-cellulose affinity chromatography. One activity requires single-stranded DNA ends and promotes the homologous pairing of single-stranded DNA fragments with double-stranded circular DNA and has an apparent molecular mass of 100 kDa as determined by gel filtration chromatography. This pairing activity does not require the addition of exogenous ATP and is strongly Mg2+-dependent. The second pairing activity promotes strand-transfer between single-stranded circular DNA and homologous double-stranded DNA fragments and has an apparent molecular mass of 30 kDa as determined by gel filtration chromatography. This pairing activity also does not require ATP but, in contrast to the former, is Mg2+-independent.  相似文献   

9.
The RecA protein ofEscherichia coli catalyzes homologous pairing and strand exchange between a wide range of molecules showing nucleotide sequence complementarity, including a linear duplex and a single-stranded DNA molecule. We demonstrate that RecA can promote formation of joint molecules when the duplex contains an RNA/DNA hairpin and a single-stranded circle serves as the pairing partner. A chimeric RNA/DNA hairpin can be used to form stable joint molecules with as little as 15 bases of shared homology as long as the RNA stretch contains complementarity to the circle. The joint molecule bears some resemblance to a triple helical structure composed of RNA residues surrounded by two DNA strands which are in a parallel orientation. Evidence is presented that supports the notion that short stretches of RNA can be used in homologous pairing reactions at lengths below that required for DNA-DNA heteroduplex formation.  相似文献   

10.
The recA protein promotes the formation and processing of joint molecules of homologous double- and single-stranded DNAs in vitro. Under a set of specified conditions, we found that the substitution of a single amino acid in the recA protein (recA430 mutation) depresses its activity for the homologous pairing to about 1/100 of that by the wild type protein when compared by the rate for the first 2-3 min of the reaction, but that the mutation only slightly, if at all, affects its ability to bind progressively to double-stranded DNA to unwind the double helix ("processive unwinding"). This is in striking contrast to an anti-recA protein monoclonal IgG, ARM193, which severely inhibits the processive unwinding but not the homologous pairing, providing further support for our conclusion that the homologous pairing and processive unwinding are functionally independent of each other. Antibody ARM193 caused the breakdown of spontaneously formed filaments of the recA protein, but the recA430 mutation did not affect the self-polymerization of the protein. The recA430 protein was apparently proficient in the functional binding to a single-stranded DNA and in the hydrolysis of ATP. However, we found that under the above conditions the mutant protein was defective as to homology-independent conjunction of DNA molecules to form a "ternary complex" (of macromolecules). These results suggest that (i) only one DNA-binding site is sufficient for the recA protein to promote the processive unwinding (the ability of the protein to form spontaneous filaments is closely related to this process) and that (ii) two DNA-binding sites on each of the recA polypeptides or those composed of a dimer (or oligomer) of the polypeptide are required for the recA protein to promote both the conjunction of parental DNA molecules and the homologous pairing (the ability to form the spontaneous filaments is not essential to this process). (iii) The simultaneous inactivation of the activity to promote the homologous pairing and that to form the ternary complex by the single substitution of the amino acid provides a physical support for the conclusion that the ternary complex is an indispensable intermediate in the homologous pairing.  相似文献   

11.
Left-handed Z-DNA binds tightly to Ustilago rec1 protein. The binding reaction is strongly dependent on ATP, but complexes formed are rapidly dissociated by ADP. The parallel between the kinetics of Z-DNA binding and the synaptic pairing reaction leading to paranemic joint molecules suggests that formation of nascent heteroduplex structures in recombination is coupled with formation of left-handed Z-like DNA on the protein. Equilibrium and kinetic studies show that rec1 protein appears to have a strong Z-DNA binding site that binds Z-DNA 75 times tighter than the B form of the DNA. We propose that DNA with a structure approximated best by a left-handed Z-DNA conformation is a key intermediate in homologous pairing promoted by rec1 protein.  相似文献   

12.
RecA protein catalyzes homologous pairing of partially single-stranded duplex DNA and fully duplex DNA to form stable joint molecules. We constructed circular duplex DNA with various defined gap lengths and studied the pairing reaction between the gapped substrate with fully double-stranded DNA. The reaction required a stoichiometric amount of RecA protein, and the optimal reaction was achieved at a ratio of 1 RecA monomer per 4 base pairs. The length of the gap, ranging from 141 to 1158 nucleotides, had little effect on the efficiency of homologous pairing. By using a circular gapped duplex DNA prepared from the chimeric phage M13Gori1, we were able to show the formation of nonintertwined or paranemic joints in duplex regions between the gapped and fully duplex molecules. The formation of such paranemic joints occurred efficiently and included nearly all of the DNA in the reaction mixture. The reaction required negative superhelicity, and pairing was greatly reduced with linear or nicked circular DNA. We conclude that one functional role of the single-stranded gap is for facilitating the binding of RecA protein to the duplex region of the gapped DNA. Once the nucleoprotein filament is formed, homologous pairing between the gapped and fully duplex DNA can take place anywhere along the length of the nucleoprotein complex.  相似文献   

13.
An enzyme catalyzing homologous pairing of DNA chains has been extensively purified from mitotic yeast. The most highly purified fractions are enriched for a polypeptide with a molecular mass of approximately 120 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Protein-dependent pairing of single-stranded DNAs requires a divalent cation (Mg2+ or Ca2+) but proceeds rapidly in the absence of any nucleoside triphosphates. The kinetics of reassociation are extremely rapid, with more than 60% of the single-stranded DNA becoming resistant to S1 nuclease within 1 min at a ratio of 1 protein monomer/50 nucleotides. The results of enzyme titration and DNA challenge experiments suggest that this protein does not act catalytically during renaturation but is required stoichiometrically. The protein promotes formation of joint molecules between linear M13 replicative form DNA (form III) containing short single-stranded tails and homologous single-stranded M13 viral DNA. Removal of approximately 50 nucleotides from the ends of the linear duplex using either exonuclease III (5' ends) or T7 gene 6 exonuclease (3' ends) activates the duplex for extensive strand exchange. Electron microscopic analysis of product molecules suggests that the homologous circular DNA initially associates with the single-stranded tails of the duplexes, and the heteroduplex region is extended with displacement of the noncomplementary strand. The ability of this protein to pair and to promote strand transfer using either exonuclease III or T7 gene 6 exonuclease-treated duplex substrates suggests that this activity promotes heteroduplex extension in a nonpolar fashion. The biochemical properties of the transferase are consistent with a role for this protein in heteroduplex joint formation during mitotic recombination in Saccharomyces cerevisiae.  相似文献   

14.
The pairing of single- and double-stranded DNA molecules at homologous sequences promoted by recA and single-stranded DNA-binding proteins of Escherichia coli follows apparent first-order kinetics. The initial rate and first-order rate constant for the reaction are maximal at approximately 1 recA protein/3 and 1 single-stranded DNA-binding protein/8 nucleotides of single-stranded DNA. The initial rate increases with the concentration of duplex DNA; however, the rate constant is independent of duplex DNA concentration. Both the rate constant and extent of reaction increase linearly with increasing length of duplex DNA over the range 366 to 8623 base pairs. In contrast, the rate constant is independent of the size of the circular single-stranded DNA between 6,400 and 10,100 nucleotides. No significant effect on reaction rate is observed when a single-stranded DNA is paired with 477 base pairs of homologous duplex DNA joined to increasing lengths of heterologous DNA (627-2,367 base pairs). Similarly, heterologous T7 DNA has no effect on the rate of pairing. These findings support a mechanism in which a recA protein-single-stranded DNA complex interacts with the duplex DNA to produce an intermediate in which the two DNA molecules are aligned at homologous sequences. Conversion of the intermediate to a paranemic joint then occurs in a rate-determining unimolecular process.  相似文献   

15.
The Rad52 protein, which is unique to eukaryotes, plays important roles in the Rad51-dependent and the Rad51-independent pathways of DNA recombination. In the present study, we have biochemically characterized the homologous pairing activity of the HsRad52 protein (Homo sapiens Rad52) and found that the presynaptic complex formation with ssDNA is essential in its catalysis of homologous pairing. We have identified an N-terminal fragment (amino acid residues 1-237, HsRad52(1-237)) that is defective in binding to the human Rad51 protein, which catalyzed homologous pairing as efficiently as the wild type HsRad52. Electron microscopic visualization revealed that HsRad52 and HsRad52(1-237) both formed nucleoprotein filaments with single-stranded DNA. These lines of evidence suggest the role of HsRad52 in the homologous pairing step of the Rad51-independent recombination pathway. Our results reveal the striking similarity between HsRad52 and the Escherichia coli RecT protein, which functions in a RecA-independent recombination pathway.  相似文献   

16.
Rad51 protein forms nucleoprotein filaments on single-stranded DNA (ssDNA) and then pairs that DNA with the complementary strand of incoming duplex DNA. In apparent contrast with published results, we demonstrate that Rad51 protein promotes an extensive pairing of long homologous DNAs in the absence of replication protein A. This pairing exists only within the Rad51 filament; it was previously undetected because it is lost upon deproteinization. We further demonstrate that RPA has a critical postsynaptic role in DNA strand exchange, stabilizing the DNA pairing initiated by Rad51 protein. Stabilization of the Rad51-generated DNA pairing intermediates can be can occur either by binding the displaced strand with RPA or by degrading the same DNA strand using exonuclease VII. The optimal conditions for Rad51-mediated DNA strand exchange used here minimize the secondary structure in single-stranded DNA, minimizing the established presynaptic role of RPA in facilitating Rad51 filament formation. We verify that RPA has little effect on Rad51 filament formation under these conditions, assigning the dramatic stimulation of strand exchange nevertheless afforded by RPA to its postsynaptic function of removing the displaced DNA strand from Rad51 filaments.  相似文献   

17.
S A Chow  S K Chiu  B C Wong 《Biochimie》1991,73(2-3):157-161
RecA protein promotes homologous pairing and symmetrical strand exchange between partially single-stranded duplex DNA and fully duplex molecules. We constructed circular gapped DNA with a defined gap length and studied the pairing reaction between the gapped substrate and fully duplex DNA. RecA protein polymerizes onto the single-stranded and duplex regions of the gapped DNA to form a nucleoprotein filament. The formation of such filaments requires a stoichiometric amount of RecA protein. Both the rate and yield of joint molecule formation were reduced when the pairing reaction was carried out in the presence of a sub-saturating amount of RecA protein. The amount of RecA protein required for optimal pairing corresponds to the binding site size of RecA protein at saturation on duplex DNA. The result suggests that in the 4-stranded system the single-stranded as well as the duplex regions are involved in pairing. By using fully duplex DNA that shares different lengths and regions of homology with the gapped molecule, we directly showed that the duplex region of the gapped DNA increased both the rate and yield of joint molecule formation. The present study indicates that even though strand exchange in the 4-stranded system must require the presence of a single-stranded region, the pairing that occurs in duplex regions between DNA molecules is functionally significant and contributes to the overall activity of the gapped DNA.  相似文献   

18.
recA protein promotes homologous pairing and strand exchange by an ordered reaction in which the protein first polymerizes on single-stranded DNA. This presynaptic intermediate, which can be formed either in the presence or absence of Escherichia coli single-stranded binding protein (SSB), has been isolated by gel filtration and characterized. At saturation, purified complexes contained one molecule of recA protein per 3.6 nucleotide residues of single-stranded DNA. Complexes that had been formed in the presence of SSB contained up to one molecule of SSB per 15 nucleotide residues, but the content of SSB in different preparations of isolated complexes appeared to be inversely related to the content of recA protein. Even when they have lost as much as a third of their recA protein, presynaptic complexes can retain activity, because the formation of stable joint molecules depends principally on the binding of recA protein to the single-stranded DNA in the localized region that corresponds to the end of the duplex substrate.  相似文献   

19.
recA protein promotes the formation and processing of joint molecules of homologous double-stranded DNA and single-stranded DNA. We studied the effects of an anti-recA protein monoclonal IgG (ARM193) on two processes carried out by the recA protein. The homologous matching, i.e. pairing of double-stranded DNA and single-stranded DNA by forming intermolecular base-pairing at homologous regions was found to occur even in the presence of an excess amount of antibody ARM193. On the other hand, processive unwinding, i.e. the propagation of the unwinding of double-stranded DNA through a processive reaction of recA protein, which occurs even in the absence of single-stranded DNA, was found to be very sensitive to the inhibition by antibody ARM193. Therefore, we conclude that homologous matching and processive unwinding are independent of each other. Analysis of the effect of antibody ARM193 on the various activities of recA protein suggests that the entire reaction of the formation of joint molecules and their processing can be rationalized in terms of these two underlying processes, homologous matching and processive unwinding. This analysis also suggests that homologous matching seems to require only the binding itself of active units of recA protein to single-stranded DNA but not necessarily either the cooperativity of the protein or unwinding.  相似文献   

20.
We developed a quantitative assay ("homologous pairing gel assay") adequate for the purification of the activity promoting the formation of joint molecules, an intermediate of homologous recombination ("homologous pairing"). With this assay, one can measure the extent of homologous pairing between a single-stranded DNA and a strand of 3H-labeled double-stranded DNA by crude enzyme preparations. Since the total activity did not significantly change during the sporulation process, we tried to purify the activity from a whole cell extract of mitotic cells of a fission yeast, (Schizosaccharomyces pombe). Through quantitative assaying of a single fraction or of mixed fractions, we obtained three fractions, all of which were required for the maximum level of the ATP-independent homologous pairing: Fractions 65, 100, and 30. In Fractions 100 and 30, polypeptides of approximately 100 and approximately 30 kDa (the 100- and 30-kDa polypeptides), respectively, were the sole detectable components. Fraction 65 contained a polypeptide of approximately 65 kDa (the 65-kDa polypeptide) as the major component and also small amounts of the 30- and 100-kDa polypeptides. Fraction 65 by itself promoted homologous pairing, but the reaction was saturated at a level of approximately 20% of the maximum level achieved with the recA protein. Even when added in excess, Fraction 30 or 100 alone did not promote detectable homologous pairing. A mixture of Fractions 65 and 100 at a rather strict optimum ratio only promoted homologous pairing, the level being 50-70% that with the recA protein, suggesting a stoichiometric complex of these polypeptides as the active form. Fraction 30 alone did not enhance the reaction with Fraction 65, but stimulated homologous pairing promoted by the optimum mixture of Fractions 65 and 100 to the maximum level achieved with the recA protein. Therefore, the homologous pairing-promoting protein from the fission yeast is likely to be a multicomponent protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号