首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The production of mice with genetic alterations in glycosyltransferases has highlighted the need to isolate and study complex mixtures of the major classes of oligosaccharides (glycans) from intact tissues. We have found that nano-NMR spectroscopy of whole mixtures of N- and O-glycans can complement HPLC profiling methods for elucidating structural details. Working toward obtaining such glycan mixtures from mouse tissues, we decided to develop an approach to isolate not only N- and O-glycans, but also to separate out glycosphingolipids, glycosaminoglycans and glycosylphosphatidylinositol anchors. We describe here a comprehensive Glycan Isolation Protocol that is based primarily upon the physicochemical characteristics of the molecules, and requires only commonly available reagents and equipment. Using radiolabeled internal tracers, we show that recovery of each major class of glycans is as good or better than with conventional approaches for isolating individual classes, and that cross-contamination is minimal. The recovered glycans are of sufficient purity to provide a "glycoprofile" of a cell type or tissue. We applied this approach to compare the N- and O-glycans from wild type mouse tissues with those from mice genetically deficient in glycosyltransferases. N- and O-glycan mixtures from organs of mice deficient in ST6Gal-I (CMP-Sia:Galbeta1-4GlcNAc alpha2-6 sialyltransferase) were studied by the nano-NMR spectroscopy approach, showing no detectable alpha2-6-linked sialic acids. Thus, ST6Gal-I is likely responsible for generating most or all of these residues in normal mice. Similar studies indicate that this linkage is very rare in ganglioside glycans, even in wild-type tissues. In mice deficient in GalNAcT-8 (UDP-GalNAc:polypeptide O-Ser/Thr GalNAc transferase 8), HPLC profiling indicates that O-glycans persist in the thymus in large amounts, without a major change in overall profile, suggesting that other enzymes can synthesize the GalNAc-O-Ser/Thr linkage in this tissue. These results demonstrate the applicability of nano-NMR spectroscopy to complex glycan mixtures, as well as the versatility of the Glycan Isolation Protocol, which makes possible the concurrent examination of multiple glycan classes from intact vertebrate tissues.  相似文献   

2.
We studied the variations in N‐linked glycosylation of human IgG molecules derived from 105 different stable cell lines each expressing one of the six different antibodies. Antibody expression was based on glutamine synthetase selection technology in suspension growing CHO‐K1SV cells. The glycans detected on the Fc fragment were mainly of the core‐fucosylated complex type containing zero or one galactose and little to no sialic acid. The glycosylation was highly consistent for the same cell line when grown multiple times, indicating the robustness of the production and glycan analysis procedure. However, a twofold to threefold difference was observed in the level of galactosylation and/or non‐core‐fucosylation between the 105 different cell lines, suggesting clone‐to‐clone variation. These differences may change the Fc‐mediated effector functions by such antibodies. Large variation was also observed in the oligomannose‐5 glycan content, which, when present, may lead to undesired rapid clearance of the antibody in vivo. Statistically significant differences were noticed between the various glycan parameters for the six different antibodies, indicating that the variable domains and/or light chain isotype influence Fc glycosylation. The glycosylation altered when batch production in shaker was changed to fed‐batch production in bioreactor, but was consistent again when the process was scaled from 400 to 5,000 L. Taken together, the observed clone‐to‐clone glycosylation variation but batch‐to‐batch consistency provides a rationale for selection of optimal production cell lines for large‐scale manufacturing of biopharmaceutical human IgG. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

3.
The N-linked glycosylation of recombinant human CD59, expressed in Chinese hamster ovary (CHO) cells with and without a membrane anchor, was compared to examine the effect of the anchor on glycan processing. N-Linked glycans were released with peptide-N-glycosidase F (PNGase F) within gel from SDS-PAGE-isolated soluble and glycosylphosphatidylinositol (GPI)-anchored human CD59 expressed in CHO cells. The anchored form contained core-fucosylated neutral and sialylated bi-, tri-, and tetraantennary glycans with up to four N-acetyllactosamine extensions. Exoglycosidase digestions and analysis by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry were used to define the relative amounts of the bi-, tri-, and tetraantennary glycans and to investigate the distribution of N-acetyllactosamine extensions between their antennae. Biantennary structures accounted for about 60% of the glycans, 30% of the triantennary structures, and about 10% of the tetraantennary structures. For tri- and tetraantennary glycans, those with extended antennae were found to be more abundant than those without extensions. The soluble form of CD59, expressed in CHO cells without the GPI anchor signal sequence, consisted almost entirely (97%) of biantennary glycans, of which 81% were unmodified, 17% contained one N-acetyllactosamine extension, and 2% contained two extensions. No compounds with longer extensions were found. A MALDI spectrum of the intact glycoprotein showed a distribution of glycans that matched those released with PNGase F. In addition, the protein was substituted with several small glycans, such as HexNAc, HexNAc-->Fuc, and HexNAc-->HexNAc, probably as the result of degradation of the mature N-linked glycans. The results show that the presence of the anchor increases the extent of glycan processing, possibly as the result of longer exposure to the glycosyltransferases or to a closer proximity of the protein to these enzymes.  相似文献   

4.
CD44 and sulfation have both been implicated in leukocyte adhesion. In monocytes, the inflammatory cytokine tumor necrosis factor alpha (TNF-alpha) stimulates CD44 sulfation, and this correlates with the induction of CD44-mediated adhesion events. However, little is known about the sulfation of CD44 or its induction by inflammatory cytokines. We determined that TNF-alpha induces the carbohydrate sulfation of CD44. CD44 was established as a major sulfated cell surface protein on myeloid cells. In the SR91 myeloid cell line, the majority of CD44 sulfation was attributed to the glycosaminoglycan chondroitin sulfate. However, TNF-alpha stimulation increased CD44 sulfation two- to threefold, largely attributed to the increased sulfation of N- and O-linked glycans on CD44. Therefore, TNF-alpha induced a decrease in the percentage of CD44 sulfation due to chondroitin sulfate and an increase due to N- and O-linked sulfation. Furthermore, TNF-alpha induced the expression of 6-sulfo N-acetyl lactosamine (LacNAc)/Lewis x on these cells, which was detected by a monoclonal antibody after neuraminidase treatment. This 6-sulfo LacNAc/Lewis x epitope was induced on N-linked and (to a lesser extent) on O-linked glycans present on CD44. This demonstrates that CD44 is modified by sulfated carbohydrates in myeloid cells and that TNF-alpha modifies both the type and amount of carbohydrate sulfation occurring on CD44. In addition, it demonstrates that TNF-alpha can induce the expression of 6-sulfo N-acetyl glucosamine on both N- and O-linked glycans of CD44 in myeloid cells.  相似文献   

5.
Glycans play major roles in living organisms. Thus, essential information is required on diverse glycans, their location, and moieties in proteins, as well as for technology in a high-throughput manner, for improving functional glycomics. In the present study, we describe a new approach involving a 2-D array, which has the potential to fulfill both requirements. The first dimension of the array is composed of various lectins immobilized to a MALDI plate. The second dimension consists of initial proteolysis, then sequential exoglycosidase digestion using highly specific enzymes. The products of such digestions are peptide/glycopeptide mixtures conjugating different glycan fragments from which the exoglycosidase has removed specific terminal residues. Consequently, a series of spectra are obtained when lectin-attached products are analyzed by MALDI-TOF MS. By using well-known glycoproteins and NKp46D2-Ig, a recombinant fusion natural killer receptor with unknown glycans produced in CHO cells, we proved the usefulness of the method, demonstrating rapid and simultaneous determination of N- and O-glycan sequences, their glycan moieties, and subtypes on each of the determined glycosylation sites. This strategy provides a tool that can rapidly explore glycan structures and might contribute to a better understanding of process- and disease-related glycoproteins.  相似文献   

6.
Sialylated glycans serve as cell surface attachment factors for a broad range of pathogens. We report an atypical example, where desialylation increases cell surface binding and infectivity of adeno-associated virus (AAV) serotype 9, a human parvovirus isolate. Enzymatic removal of sialic acid, but not heparan sulfate or chondroitin sulfate, increased AAV9 transduction regardless of cell type. Viral binding and transduction assays on mutant Chinese hamster ovary (CHO) cell lines defective in various stages of glycan chain synthesis revealed a potential role for core glycan residues under sialic acid in AAV9 transduction. Treatment with chemical inhibitors of glycosylation and competitive inhibition studies with different lectins suggest that N-linked glycans with terminal galactosyl residues facilitate cell surface binding and transduction by AAV9. In corollary, resialylation of galactosylated glycans on the sialic acid-deficient CHO Lec2 cell line with different sialyltransferases partially blocked AAV9 transduction. Quantitative analysis of AAV9 binding to parental, sialidase-treated or sialic acid-deficient mutant CHO cells revealed a 3-15-fold increase in relative binding potential of AAV9 particles upon desialylation. Finally, pretreatment of well differentiated human airway epithelial cultures and intranasal instillation of recombinant sialidase in murine airways enhanced transduction efficiency of AAV9 by >1 order of magnitude. Taken together, the studies described herein provide a molecular basis for low infectivity of AAV9 in vitro and a biochemical strategy to enhance gene transfer by AAV9 vectors in general.  相似文献   

7.
8.
《Journal of Proteomics》2010,73(1):123-133
β2-glycoprotein I (β2GPI) is a five-domain protein associated with the antiphospholipid syndrome (APS), however, its normal biological function is yet to be defined. β2GPI is N-glycosylated at several asparagine residues and the glycan moiety conjugated to residue 143 has been proposed to interact with the Gly40–Arg43 motif of β2GPI. The Gly40–Arg43 motif has also been proposed to serve as the epitope for the anti-β2GPI autoantibody associated with APS. We hypothesized that the structure or composition of the glycan at Asn-143 might be associated with the APS symptom by shielding or exposing the Gly40–Arg43 motif towards the anti-β2GPI autoantibody. To test this hypothesis we used mass spectrometry (MS) for comparative glycopeptide profiling of human β2GPI obtained from blood serum from four healthy test subjects and six APS patients. It revealed significant differences in the extent of sialylation and branching of glycans at Asn-143. Biantennary glycans were more abundant than triantennary glycans at Asn-143 in both healthy subjects and patients. In APS patient samples we observed a decrease in sialylated triantennary glycans and an increase in sialylated biantennary glycan structures, as compared to controls. These data indicate that some APS patients have β2GPI molecules with a reduced number of negatively charged sialic acid units in the glycan structure at Asn-143. This alteration of the electrostatic properties of the glycan moiety may attenuate the intramolecular interactions with the positively charged Gly40–Arg43 motif of β2GPI and, in turn, leads to conformational instability and exposure of the disease-related linear epitope Gly40–Arg43 to the circulating autoantibody. Thus, our study suggests a link between site-specific glycan profiles of β2GPI and the pathology of antiphospholipid syndrome.  相似文献   

9.
A number of mammalian cell surface proteins are anchored by glycoinositol phospholipid (GPI) structures that are preassembled and transferred to them in the endoplasmic reticulum. The GPIs in these proteins contain linear ethanolamine (EthN)-phosphate (P)-6ManManManGlcN core glycan sequences bearing an additional EthN-P attached to the Man residue (Man 1) proximal to GlcN. The biochemical precursors of mammalian GPI anchor structures are incompletely characterized. In this study, putative [3H]Man-labeled GPI precursors were obtained by in vitro GDP-[3H] Man labeling of HeLa cell microsomes and by in vivo [3H]Man labeling of class B and F Thy-1 negative murine lymphoma mutants known to accumulate incomplete GPIs. The high performance liquid chromatography-purified in vitro and accumulated in vivo GPI products were structurally analyzed by nitrous acid deamination, hydrofluoric acid, trifluoroacetic acid hydrolysis, biosynthetic labeling, and exoglycosidase treatment. The data were consistent with a biosynthetic scheme in which Man and EthN-P are added stepwise to the developing glycan. Several additional points were demonstrated: 1) putative mammalian GPI precursors contain incomplete core glycans corresponding to those in previously characterized trypanosome GPI precursors. 2) The proximal EthN-P found in mature mammalian GPI anchor structures is added to Man 1 prior to incorporation of Man 2 and Man 3. 3) Glycans in the incomplete GPIs that accumulate in classes B and F lymphoma mutants consist of Man2- and Man3GlcN in which EthN-P is linked to Man 1. 4) Distal EthN-P linked to the 6-position of Man, characteristic of the complete GPI core, is found both in a subsequent GPI species with the glycan sequence EthN-P-6ManMan(EthN-P----)ManGlcN and in a more polar GPI product.  相似文献   

10.
Galectins are implicated in a large variety of biological functions, many of which depend on their carbohydrate-binding ability. Fifteen members of the family have been identified in vertebrates based on binding to galactose (Gal) that is mediated by one or two, evolutionarily conserved, carbohydrate-recognition domains (CRDs). Variations in glycan structures expressed on glycoconjugates at the cell surface may, therefore, affect galectin binding and functions. To identify roles for different glycans in the binding of the three types of mammalian galectins to cells, we performed fluorescence cytometry at 4 degrees C with recombinant rat galectin-1, human galectin-3, and three forms of human galectin-8, to Chinese hamster ovary (CHO) cells and 12 different CHO glycosylation mutants. All galectin species bound to parent CHO cells and binding was inhibited >90% by 0.2 M lactose. Galectin-8 isoforms with either a long or a short inter-CRD linker bound similarly to CHO cells. However, a truncated form of galectin-8 containing only the N-terminal CRD bound only weakly to CHO cells and the C-terminal galectin-8 CRD exhibited extremely low binding. Binding of the galectins to the different CHO glycosylation mutants revealed that complex N-glycans are the major ligands for each galectin except the N-terminal CRD of galectins-8, and also identified some fine differences in glycan recognition. Interestingly, increased binding of galectin-1 at 4 degrees C correlated with increased propidium iodide (PI) uptake, whereas galectin-3 or -8 binding did not induce permeability to PI. The CHO glycosylation mutants with various repertoires of cell surface glycans are a useful tool for investigating galectin-cell interactions as they present complex and simple glycans in a natural mixture of multivalent protein and lipid glycoconjugates anchored in a cell membrane.  相似文献   

11.
β2-glycoprotein I (β2GPI) is a five-domain protein associated with the antiphospholipid syndrome (APS), however, its normal biological function is yet to be defined. β2GPI is N-glycosylated at several asparagine residues and the glycan moiety conjugated to residue 143 has been proposed to interact with the Gly40–Arg43 motif of β2GPI. The Gly40–Arg43 motif has also been proposed to serve as the epitope for the anti-β2GPI autoantibody associated with APS. We hypothesized that the structure or composition of the glycan at Asn-143 might be associated with the APS symptom by shielding or exposing the Gly40–Arg43 motif towards the anti-β2GPI autoantibody. To test this hypothesis we used mass spectrometry (MS) for comparative glycopeptide profiling of human β2GPI obtained from blood serum from four healthy test subjects and six APS patients. It revealed significant differences in the extent of sialylation and branching of glycans at Asn-143. Biantennary glycans were more abundant than triantennary glycans at Asn-143 in both healthy subjects and patients. In APS patient samples we observed a decrease in sialylated triantennary glycans and an increase in sialylated biantennary glycan structures, as compared to controls. These data indicate that some APS patients have β2GPI molecules with a reduced number of negatively charged sialic acid units in the glycan structure at Asn-143. This alteration of the electrostatic properties of the glycan moiety may attenuate the intramolecular interactions with the positively charged Gly40–Arg43 motif of β2GPI and, in turn, leads to conformational instability and exposure of the disease-related linear epitope Gly40–Arg43 to the circulating autoantibody. Thus, our study suggests a link between site-specific glycan profiles of β2GPI and the pathology of antiphospholipid syndrome.  相似文献   

12.
The N-linked glycans of recombinant leishmanolysin (GP63) expressed as a glycosylphosphatidylinositol (GPI)-anchored membrane protein or modified for secretion in Chinese hamster ovary (CHO) cells were analyzed by fast atom bombardment-mass spectrometry (FAB-MS). The glycans isolated from both membrane and secreted protein were predominantly complex biantennary structures. However other aspects of the glycan profiles showed striking differences. The degree of sialylation of the membrane form was greatly reduced and the core fucosylation of biantennary structures was increased compared to the secreted form. Glycans isolated from membrane expressed protein also contained a higher proportion of lactosamine repeats. Residence times in the secretory pathway were similar for both secreted and membrane protein. Glycosylation differences may therefore be due to differences in protein conformation and accessibility to glycosyltransferases or glycosidases. These differences in glycosylation represent an important factor when considering modifying membrane expressed proteins for secreted production.  相似文献   

13.
The detailed structures of N- glycans derived from bile salt-stimulated lipase (BSSL) found in human milk were determined by combining exoglycosidase digestion with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The N- glycan structures were conclusively determined in terms of complexity and degree of fucosylation. Ion-exchange chromatography with pulsed amperometric detection, together with mass-spectral analysis of the esterified N- glycans, indicated the presence of monosialylated structures. The molecular mass profile of esterified N- glycans present in BSSL further permitted the more detailed studies through collision-induced dissociation (CID) and sequential exoglycosidase cleavages. The N- glycan structures were elucidated to be complex/dibranched, fucosylated/complex/dibranched, monosialylated/complex/dibranched, and monosialylated/fucosylated/dibranched entities.  相似文献   

14.
《MABS-AUSTIN》2013,5(3):320-334
The development and production of recombinant monoclonal antibodies is well established. Although most of these are IgGs, there is also great interest in producing recombinant IgAs since this isotype plays a critical role in providing immunologic protection at mucosal surfaces. The choice of expression system for production of recombinant antibodies is crucial because they are glycoproteins containing at least one N-linked carbohydrate. These glycans have been shown to contribute to the stability, pharmacokinetics and biologic function of antibodies. We have produced recombinant human IgA1 and all three allotypes of IgA2 in murine myeloma and CHO cell lines to systematically characterize and compare the N-linked glycans. Recombinant IgAs produced in murine myelomas differ significantly from IgA found in humans in that they contain the highly immunogenic Galα(1,3)Gal epitope and N-glycolylneuraminic acid residues, indicating that murine myeloma is not the optimal expression system for the production of human IgA. In contrast, IgAs produced in CHO cells contained glycans that were more similar to those found on human IgA. Expression of IgA1 and IgA2 in Lec2 and Lec8 cell lines that are defective in glycan processing resulted in a less complex pool of N-glycans. In addition, the level of sialylation of rIgAs produced in murine and CHO cells was significantly lower than that previously reported for serum IgA1. These data underscore the importance of choosing the appropriate cell line for the production of glycoproteins with therapeutic potential.  相似文献   

15.
Large-scale transient expression in mammalian cells is a rapid protein production technology often used to shorten overall timelines for biotherapeutics drug discovery. In this study we demonstrate transient expression in a Chinese hamster ovary (CHO) host (ExpiCHO-S™) cell line capable of achieving high recombinant antibody expression titers, comparable to levels obtained using human embryonic kidney (HEK) 293 cells. For some antibodies, ExpiCHO-S™ cells generated protein materials with better titers and improved protein quality characteristics (i.e., less aggregation) than those from HEK293. Green fluorescent protein imaging data indicated that ExpiCHO-S™ displayed a delayed but prolonged transient protein expression process compared to HEK293. When therapeutic glycoproteins containing non-Fc N-linked glycans were expressed in transient ExpiCHO-S™, the glycan pattern was unexpectedly found to have few sialylated N-glycans, in contrast to glycans produced within a stable CHO expression system. To improve N-glycan sialylation in transient ExpiCHO-S™, we co-transfected galactosyltransferase and sialyltransferase genes along with the target genes, as well as supplemented the culture medium with glycan precursors. The authors have demonstrated that co-transfection of glycosyltransferases combined with medium addition of galactose and uridine led to increased sialylation content of N-glycans during transient ExpiCHO-S™ expression. These results have provided a scientific basis for developing a future transient CHO system with N-glycan compositions that are similar to those profiles obtained from stable CHO protein production systems. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2724, 2019  相似文献   

16.
The effects of different culture conditions, suspension and microcarrier culture and temperature reduction on the structures of N-linked glycans attached to secreted human placental alkaline phosphatase (SEAP) were investigated for CHO cells grown in a controlled bioreactor. Both mass spectrometry and anion-exchange chromatography were used to probe the N-linked glycan structures and distribution. Complex-type glycans were the dominant structures with small amounts of high mannose glycans observed in suspension and reduced temperature cultures. Biantennary glycans were the most common structures detected by mass spectrometry, but triantennary and tetraantennary forms were also detected. The amount of sialic acid present was relatively low, approximately 0.4 mol sialic acid/mol SEAP for suspension cultures. Microcarrier cultures exhibited a decrease in productivity compared with suspension culture due to a decrease in both maximum viable cell density (15-20%) and specific productivity (30-50%). In contrast, a biphasic suspension culture in which the temperature was reduced at the beginning of the stationary phase from 37 to 33 degrees C, showed a 7% increase in maximum viable cell density, a 62% increase in integrated viable cell density, and a 133% increase in specific productivity, leading to greater than threefold increase in total productivity. Both microcarrier and reduced temperature cultures showed increased sialylation and decreased fucosylation when compared to suspension culture. Our results highlight the importance of glycoform analysis after process modification as even subtle changes (e.g., changing from one microcarrier to another) may affect glycan distributions.  相似文献   

17.
The oligosaccharides of microsomal beta-glucuronidase were analysed by gel permeation and weak anion exchange chromatography following hydrazine release. N-linked glycans, constituted 80% of the total glycan pool and were mainly of the tri- and biantennary complex type with or without core and arm fucose. The major oligosaccharide, that comprised 30.6% of all the species analysed, was structurally identified by reagent array analysis method and found to be a triantennary complex structure, Galbeta1,4GlcNAcbeta1,2Manalpha1,6(3)(Galbeta1,4GlcNAcbeta1,4(Galbeta1,4GlcNAcbeta1,2) Manalpha1,3(6))Manbeta1,4GlcNAcbeta1,4 GlcNAc. O-Linked glycans comprised 20% of the total glycan pool, the major species being Galbeta1,3GalNAc. All of the N- and O-linked glycans were charged. Most of the negative charge was due to sialic acid (85.0%) with the remainder being phosphate present as phosphomonoesters (7.3%) and phosphodiesters (5%). This is the first report of O-linked carbohydrate chains in microsomal beta-glucuronidase. The presence of O-linked glycans and branched N-linked glycans in a microsomal enzyme, in relation to the current view of glycosyltransferase compartmentalization in the Golgi is discussed.  相似文献   

18.
N-glycosylation is a complex post-translational modification with potential effects on the efficacy and safety of therapeutic proteins and known influence on the effector function of biopharmaceutical monoclonal antibodies (mAbs). Comprehensive characterization of N-glycosylation is therefore important in biopharmaceutical development. In early development, e.g. during pool or clone selection, however, only minute protein amounts of multiple samples are available for analytics. High sensitivity and high throughput methods are thus needed. An approach based on 96-well plate sample preparation and nanoLC-MS of 2- anthranilic acid or 2-aminobenzoic acid (AA) labeled N-glycans for the characterization of biopharmaceuticals in early development is reported here. With this approach, 192 samples can be processed simultaneously from complex matrices (e.g., cell culture supernatant) to purified 2-AA glycans, which are then analyzed by reversed phase nanoLC-MS. Attomolar sensitivity has been achieved by use of nanoelectrospray ionization, resulting in detailed glycan maps of mAbs and fusion proteins that are exemplarily shown in this work. Reproducibility, robustness and linearity of the approach are demonstrated, making use in a routine manner during pool or clone selection possible. Other potential fields of application, such as glycan biomarker discovery from serum samples, are also presented.  相似文献   

19.
The current interest in applying systems biology approaches to studying an organism's form or function promises to reveal further insights into the role of glycosylation in cells and whole organisms. This has prompted the development of a rapid, sensitive method of profiling the glycan component of both glycosphingolipids and glycoproteins from a single sample. Here we report a new mass spectrometric screening strategy for characterizing glycosphingolipid-derived oligosaccharides, which can be integrated into an existing highly sensitive glycoprotein glycomics strategy. Using ceramide glycanase to release the glycans from glycosphingolipids, this method provides a reliable profile of the glycosphingolipid-derived glycans present in a sample and has revealed new glycan structures. Glycoproteins are also efficiently recovered using this method, allowing the subsequent analysis of glycoprotein-derived glycans by mass spectrometry. The high sensitivity of this glycomic screening method allowed us to directly characterize the sialyl Le(x) epitope from mouse brain for the first time, where it was observed on an O-mannose structure. Thus, we present a mass spectrometric method that allows glycomic screening of N- and O-glycans as well as glycosphingolipid-derived glycans from a single tissue.  相似文献   

20.
Peanut peroxidase has been diffracted. The location of its heme and calcium moieties have been shown and their role demonstrated. However, the structure and role of its glycans is only now being elucidated. The role of three N-linked complex glycans on cationic peroxidase (cPrx) of peanut (Arachis hypogaea L cv. Valencia), as expressed by prxPNC1 in transgenic tobacco, was analyzed by site-directed replacement of each of the three glycosylation sites, N-60, N-144, and N-185 with Q, individually. The mutant prxPNC1 cDNAs with a 3' histidine-tag were expressed in transgenic tobacco. The effect on the catalytic ability, thermal stability, and unfolding properties of the mutant peroxidases, isolated from the medium of transgenic tobacco cell suspension cultures were compared with those of the wild cPrx from peanut. It was found that the ablation of the glycans at N-60 and N-144 influences the full expression of the cPrx catalytic ability. The glycan at N-185 is important for the thermostability, as is the removal of the carbohydrate chain at N-185, resulting in rapid enzymatic decrease at temperatures of 50 degrees C. All three glycans appeared to influence the folding of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号