首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Splicing is a cellular mechanism, which dictates eukaryotic gene expression by removing the noncoding introns and ligating the coding exons in the form of a messenger RNA molecule. Alternative splicing (AS) adds a major level of complexity to this mechanism and thus to the regulation of gene expression. This widespread cellular phenomenon generates multiple messenger RNA isoforms from a single gene, by utilizing alternative splice sites and promoting different exon-intron inclusions and exclusions. AS greatly increases the coding potential of eukaryotic genomes and hence contributes to the diversity of eukaryotic proteomes. Mutations that lead to disruptions of either constitutive splicing or AS cause several diseases, among which are myotonic dystrophy and cystic fibrosis. Aberrant splicing is also well established in cancer states. Identification of rare novel mutations associated with splice-site recognition, and splicing regulation in general, could provide further insight into genetic mechanisms of rare diseases. Here, disease relevance of aberrant splicing is reviewed, and the new methodological approach of starting from disease phenotype, employing exome sequencing and identifying rare mutations affecting splicing regulation is described. Exome sequencing has emerged as a reliable method for finding sequence variations associated with various disease states. To date, genetic studies using exome sequencing to find disease-causing mutations have focused on the discovery of nonsynonymous single nucleotide polymorphisms that alter amino acids or introduce early stop codons, or on the use of exome sequencing as a means to genotype known single nucleotide polymorphisms. The involvement of splicing mutations in inherited diseases has received little attention and thus likely occurs more frequently than currently estimated. Studies of exome sequencing followed by molecular and bioinformatic analyses have great potential to reveal the high impact of splicing mutations underlying human disease.  相似文献   

2.
3.
4.
Ribozymes are RNA molecules capable of associating with other RNA molecules through base-pairing and catalyzing various reactions involving phosphate group transfer. Of particular interest to us is the well known ribozyme from Tetrahymena thermophila capable of catalyzing RNA splicing in eukaryotic systems, chiefly because of its potential use as a gene therapy agent. In this article we review the progress made towards visualizing the RNA splicing mediated by the Tetrahymena ribozyme in single living mammalian cells with the beta-lactamase reporter system and highlight the development made in imaging RNA splicing with the luciferase reporter system in living animals.  相似文献   

5.
The identification of a causal mutation is essential for molecular diagnosis and clinical management of many genetic disorders. However, even if next-generation exome sequencing has greatly improved the detection of nucleotide changes, the biological interpretation of most exonic variants remains challenging. Moreover, particular attention is typically given to protein-coding changes often neglecting the potential impact of exonic variants on RNA splicing. Here, we used the exon 10 of MLH1, a gene implicated in hereditary cancer, as a model system to assess the prevalence of RNA splicing mutations among all single-nucleotide variants identified in a given exon. We performed comprehensive minigene assays and analyzed patient’s RNA when available. Our study revealed a staggering number of splicing mutations in MLH1 exon 10 (77% of the 22 analyzed variants), including mutations directly affecting splice sites and, particularly, mutations altering potential splicing regulatory elements (ESRs). We then used this thoroughly characterized dataset, together with experimental data derived from previous studies on BRCA1, BRCA2, CFTR and NF1, to evaluate the predictive power of 3 in silico approaches recently described as promising tools for pinpointing ESR-mutations. Our results indicate that ΔtESRseq and ΔHZEI-based approaches not only discriminate which variants affect splicing, but also predict the direction and severity of the induced splicing defects. In contrast, the ΔΨ-based approach did not show a compelling predictive power. Our data indicates that exonic splicing mutations are more prevalent than currently appreciated and that they can now be predicted by using bioinformatics methods. These findings have implications for all genetically-caused diseases.  相似文献   

6.
7.
Zhao X  Rush M  Schwartz S 《Journal of virology》2004,78(20):10888-10905
We have previously identified cis-acting RNA sequences in the human papillomavirus type 16 (HPV-16) L1 coding region which inhibit expression of L1 from eukaryotic expression plasmids. Here we have determined the function of one of these RNA elements, and we provide evidence that this RNA element is a splicing silencer which suppresses the use of the 3' splice site located immediately upstream of the L1 AUG. We also show that this splice site is inefficiently utilized as a result of a suboptimal polypyrimidine tract. Introduction of point mutations in the L1 coding region that altered the RNA sequence without affecting the L1 protein sequence resulted in the inactivation of the splicing silencer and induced splicing to the L1 3' splice site. These mutations also prevented the interaction of the RNA silencer with a 35-kDa cellular protein identified here as hnRNP A1. The splicing silencer in L1 inhibits splicing in vitro, and splicing can be restored by the addition of RNAs containing an hnRNP A1 binding site to the reaction, demonstrating that hnRNP A1 inhibits splicing of the late HPV-16 mRNAs through the splicing silencer sequence. While we show that one role of the splicing silencer is to determine the ratio between partially spliced L2/L1 mRNAs and spliced L1 mRNAs, we also demonstrate that it inhibits splicing from the major 5' splice site in the early region to the L1 3' splice site, thereby playing an essential role in preventing late gene expression at an early stage of the viral life cycle. We speculate that the activity of the splicing silencer and possibly the concentration of hnRNP A1 in the HPV-16-infected cell determines the ability of the virus to establish a persistent infection which remains undetected by the host immune surveillance.  相似文献   

8.
Alternative splicing is used by metazoans to increase protein diversity and to alter gene expression during development. However, few factors that control splice site choice in vivo have been identified. Here we describe a factor, Half pint (Hfp), that regulates RNA splicing in Drosophila. Females harboring hypomorphic mutations in hfp lay short eggs and show defects in germline mitosis, nuclear morphology, and RNA localization during oogenesis. We find that hfp encodes the Drosophila ortholog of human PUF60 and functions in both constitutive and alternative splicing in vivo. In particular, hfp mutants display striking defects in the developmentally regulated splicing of ovarian tumor (otu). Furthermore, transgenic expression of the missing otu splice form can rescue the ovarian phenotypes of hfp.  相似文献   

9.
Red recombination using PCR-amplified selectable markers is a well-established technique for mutagenesis of large DNA molecules in Escherichia coli. The system has limited efficacy and versatility, however, for markerless modifications including point mutations, deletions, and particularly insertions of longer sequences. Here we describe a procedure that combines Red recombination and cleavage with the homing endonuclease I-SceI to allow highly efficient, PCR-based DNA engineering without retention of unwanted foreign sequences. We applied the method to modification of bacterial artificial chromosome (BAC) constructs harboring an infectious herpesvirus clone to demonstrate the potential of the mutagenesis technique, which was used for the insertion of long sequences such as coding regions or promoters, introduction of point mutations, scarless deletions, and insertion of short sequences such as an epitope tag. The system proved to be highly reliable and efficient and can be adapted for a variety of different modifications of BAC clones, which are fundamental tools for applications as diverse as the generation of transgenic animals and the construction of gene therapy or vaccine vectors.  相似文献   

10.
11.
12.
13.
Conditional gene silencing in mammalian cells, via the controlled expression of short hairpin RNAs (shRNAs), is an effective method for studying gene function, particularly if the gene is essential for cell survival or development. Here we describe a simple and rapid protocol for the generation of tetracycline (Tet)-inducible vectors that express shRNAs in a time- and dosage-dependent manner. Tet-operator (TetO) sequences responsive to occupation by the Tet-repressor (TetR) were inserted at alternative positions within the wild-type H1 promoter and cloned into a eukaryotic expression vector. Additional cloning sites downstream of the promoter enable the insertion of shRNA sequences. This Tet-inducible shRNA expression system can be used for both transient and stable RNA interference (RNAi) approaches to control gene function in a spatiotemporal fashion. The entire protocol (preparation of constructs, generation of stable cell lines and functional analysis) can be completed in 3 months.  相似文献   

14.
15.
The objective of the present study is to establish a minigene model for studying pre-mRNA alternative splicing. To prepare the minigene DNA constructs, with human or mouse genomic DNA as templates, GluR-B, FGF-2R and Zis “minigene” fragments were amplified using PCR and cloned to the eukaryotic expression vectors. The three constructed minigenes and the expression vectors of Tra2β1 and Zis2 were co-transfected in Hela cells. RT-PCR analysis was performed to semi-quantitatively determine the spliced products from the minigenes. The results demonstrated that the constructed minigenes are useful in studying the pre-mRNA alternative splicing in cultured cells. With the established Zis minigene, we for the first time found that Zis2 isoform regulates the alternative splicing of Zis minigene.  相似文献   

16.
Regulation of Rous sarcoma virus RNA splicing and stability.   总被引:40,自引:10,他引:30       下载免费PDF全文
  相似文献   

17.
18.
Nucleocytoplasmic transport of mRNA is essential for eukaryotic gene expression. However, how mRNA is exported from the nucleus is mostly unknown. To elucidate the mechanisms of mRNA transport, we took a genetic approach to identify genes, the products of which play a role in that process. From about 1000 temperature -sensitive (ts- or cs-) mutants, we identified five ts- mutants that are defective in poly(A)+ RNA transport by using a situ hybridization with an oligo(dT)50 as a probe. These mutants accumulate poly(A)+ RNA in the nuclei when shifted to a nonpermissive temperature. All five mutations are tightly linked to the ts- growth defects, are recessive, and fall into four different groups designated as ptr 1-4 (poly(A)+ RNA transport). Interestingly, each group of mutants has a differential localization pattern of poly(A)+ RNA in the nuclei at the nonpermissive temperature, suggesting that they have defects at different steps of the mRNA transport pathway. Localization of a nucleoplasmin-green fluorescent protein fusion suggests that ptr2 and ptr3 have defects also in nuclear protein import. Among the isolated mutants, only ptr2 showed a defect in pre-mRNA splicing. We cloned the ptr2+ and ptr3+ genes and found that they encode Schizosaccharomyces pombe homologues of the mammalian RCC1, a guanine nucleotide exchange factor for RAN/TC4, and the ubiquitin-activating enzyme E1 involved in ubiquitin conjugation, respectively. The ptr3+ gene is essential for cell viability, and Ptr3p tagged with green fluorescent protein was localized in both the nucleus and the cytoplasm. This is the first report suggesting that the ubiquitin system plays a role in mRNA export.  相似文献   

19.
Zhang Z  Krainer AR 《Molecular cell》2004,16(4):597-607
Nonsense mutations influence several aspects of gene expression, including mRNA stability and splicing fidelity, but the mechanism by which premature termination codons (PTCs) can apparently affect splice-site selection remains elusive. We used a model human beta-globin gene with duplicated 5' splice sites (5'ss) and found that PTCs inserted between the two 5'ss do not directly influence splicing in this system. Instead, their apparent effect on 5'ss selection in vivo is an indirect result of nonsense-mediated mRNA decay (NMD), as conditions that eliminated NMD also abrogated the effect on splicing. Remarkably, we found an unexpected function of SR proteins in targeting several mRNAs with PTCs to the NMD pathway. Overexpression of various SR proteins strongly enhanced NMD, and this effect required an RS domain. Our data argue against a universal role of PTCs in regulating pre-mRNA splicing and reveal an additional function of SR proteins in eukaryotic gene expression.  相似文献   

20.
The tau gene encodes a microtubule-associated protein that is critical for neuronal survival and function. Splicing defects in the human tau gene lead to frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17), an autosomal dominant neurodegenerative disorder. Genetic mutations associated with FTDP-17 often affect tau exon 10 alternative splicing. To investigate mechanisms regulating tau exon 10 alternative splicing, we have developed a green fluorescent protein reporter for tau exon 10 skipping and an expression cloning strategy to identify splicing regulators. A role for SRp54 (also named SFRS11) as a tau exon 10 splicing repressor has been uncovered using this strategy. The overexpression of SRp54 suppresses tau exon 10 inclusion. RNA interference-mediated knock-down of SRp54 increases exon 10 inclusion. SRp54 interacts with a purine-rich element in exon 10 and antagonizes Tra2beta, an SR-domain-containing protein that enhances exon 10 inclusion. Deletion of this exonic element eliminates the activity of SRp54 in suppressing exon 10 inclusion. Our data support a role of SRp54 in regulating tau exon 10 splicing. These experiments also establish a generally useful approach for identifying trans-acting regulators of alternative splicing by expression cloning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号