首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The available reagents for the attachment of functional moieties to plasmid DNA are limiting. Most reagents bind plasmid DNA in a non-sequence- specific manner, with undefined stoichiometry, and affect DNA charge and delivery properties or involve chemical modifications that abolish gene expression. The design and ability of oligonucleotides (ODNs) containing locked nucleic acids (LNAs) to bind supercoiled, double-stranded plasmid DNA in a sequence-specific manner are described for the first time. The main mechanism for LNA ODNs binding plasmid DNA is demonstrated to be by strand displacement. LNA ODNs are more stably bound to plasmid DNA than similar peptide nucleic acid (PNA) ‘clamps’ for procedures such as particle-mediated DNA delivery (gene gun). It is shown that LNA ODNs remain associated with plasmid DNA after cationic lipid-mediated transfection into mammalian cells. LNA ODNs can bind to DNA in a sequence-specific manner so that binding does not interfere with plasmid conformation or gene expression. Attachment of CpG-based immune adjuvants to plasmid by ‘hybrid’ phosphorothioate–LNA ODNs induces tumour necrosis factor-α production in the macrophage cell line RAW264.7. This observation exemplifies an important new, controllable methodology for adding functionality to plasmids for gene delivery and DNA vaccination.  相似文献   

2.
Comparative whole-genome analyses have demonstrated that horizontal gene transfer (HGT) provides a significant contribution to prokaryotic genome innovation. The evolution of specific prokaryotes is therefore tightly linked to the environment in which they live and the communal pool of genes available within that environment. Here we use the term supergenome to describe the set of all genes that a prokaryotic ‘individual’ can draw on within a particular environmental setting. Conjugative plasmids can be considered particularly successful entities within the communal pool, which have enabled HGT over large taxonomic distances. These plasmids are collections of discrete regions of genes that function as ‘backbone modules’ to undertake different aspects of overall plasmid maintenance and propagation. Conjugative plasmids often carry suites of ‘accessory elements’ that contribute adaptive traits to the hosts and, potentially, other resident prokaryotes within specific environmental niches. Insight into the evolution of plasmid modules therefore contributes to our knowledge of gene dissemination and evolution within prokaryotic communities. This communal pool provides the prokaryotes with an important mechanistic framework for obtaining adaptability and functional diversity that alleviates the need for large genomes of specialized ‘private genes’.  相似文献   

3.
Serine integrases are emerging as one of the most powerful biological tools for synthetic biology. They have been widely used across genome engineering and genetic circuit design. However, developing serine integrase-based tools for directly/precisely manipulating synthetic biobricks is still missing. Here, we report SYMBIOSIS, a versatile method that can robustly manipulate DNA parts in vivo and in vitro. First, we propose a ‘keys match locks’ model to demonstrate that three orthogonal serine integrases are able to irreversibly and stably switch on seven synthetic biobricks with high accuracy in vivo. Then, we demonstrate that purified integrases can facilitate the assembly of ‘donor’ and ‘acceptor’ plasmids in vitro to construct composite plasmids. Finally, we use SYMBIOSIS to assemble different chromoprotein genes and create novel colored Escherichia coli. We anticipate that our SYMBIOSIS strategy will accelerate synthetic biobrick manipulation, genetic circuit design and multiple plasmid assembly for synthetic biology with broad potential applications.  相似文献   

4.
Plasmids are ubiquitous mobile elements that serve as a pool of many host beneficial traits such as antibiotic resistance in bacterial communities. To understand the importance of plasmids in horizontal gene transfer, we need to gain insight into the ‘evolutionary history’ of these plasmids, i.e. the range of hosts in which they have evolved. Since extensive data support the proposal that foreign DNA acquires the host's nucleotide composition during long-term residence, comparison of nucleotide composition of plasmids and chromosomes could shed light on a plasmid's evolutionary history. The average absolute dinucleotide relative abundance difference, termed δ-distance, has been commonly used to measure differences in dinucleotide composition, or ‘genomic signature’, between bacterial chromosomes and plasmids. Here, we introduce the Mahalanobis distance, which takes into account the variance–covariance structure of the chromosome signatures. We demonstrate that the Mahalanobis distance is better than the δ-distance at measuring genomic signature differences between plasmids and chromosomes of potential hosts. We illustrate the usefulness of this metric for proposing candidate long-term hosts for plasmids, focusing on the virulence plasmids pXO1 from Bacillus anthracis, and pO157 from Escherichia coli O157:H7, as well as the broad host range multi-drug resistance plasmid pB10 from an unknown host.  相似文献   

5.
Typical telomeres of linear chromosomes and plasmids of soil bacteria Streptomyces consist of tightly packed palindromic sequences with a terminal protein (‘TP’) covalently attached to the 5′ end of the DNA. Replication of these linear replicons is initiated internally and proceeds bidirectionally toward the telomeres, which leaves single-strand overhangs at the 3′ ends. These overhangs are filled by DNA synthesis using the TPs as the primers (‘end patching’). The gene encoding for typical TP, tpg, forms an operon with tap, encoding an essential telomere-associated protein, which binds TP and the secondary structures formed by the 3′ overhangs. Previously one of the two translesion synthesis DNA polymerases, DinB1 or DinB2, was proposed to catalyze the protein-primed synthesis. However, using an in vitro end-patching system, we discovered that Tpg and Tap alone could carry out the protein-primed synthesis to a length of 13 nt. Similarly, an ‘atypical’ terminal protein, Tpc, and its cognate telomere-associated protein, Tac, of SCP1 plasmid, were sufficient to achieve protein-primed synthesis in the absence of additional polymerase. These results indicate that these two telomere-associated proteins possess polymerase activities alone or in complex with the cognate TPs.  相似文献   

6.
XPC/Rad4 initiates eukaryotic nucleotide excision repair on structurally diverse helix-destabilizing/distorting DNA lesions by selectively ‘opening’ these sites while rapidly diffusing along undamaged DNA. Previous structural studies showed that Rad4, when tethered to DNA, could also open undamaged DNA, suggesting a ‘kinetic gating’ mechanism whereby lesion discrimination relied on efficient opening versus diffusion. However, solution studies in support of such a mechanism were lacking and how ‘opening’ is brought about remained unclear. Here, we present crystal structures and fluorescence-based conformational analyses on tethered complexes, showing that Rad4 can indeed ‘open’ undamaged DNA in solution and that such ‘opening’ can largely occur without one or the other of the β-hairpin motifs in the BHD2 or BHD3 domains. Notably, the Rad4-bound ‘open’ DNA adopts multiple conformations in solution notwithstanding the DNA’s original structure or the β-hairpins. Molecular dynamics simulations reveal compensatory roles of the β-hairpins, which may render robustness in dealing with and opening diverse lesions. Our study showcases how fluorescence-based studies can be used to obtain information complementary to ensemble structural studies. The tethering-facilitated DNA ‘opening’ of undamaged sites and the dynamic nature of ‘open’ DNA may shed light on how the protein functions within and beyond nucleotide excision repair in cells.  相似文献   

7.
8.
GNL3L is an evolutionarily conserved high molecular weight GTP binding nucleolar protein belonging to HSR1-MMR1 subfamily of GTPases. The present investigation reveals that GNL3L is a nucleo-cytoplasmic shuttling protein and its export from the nucleus is sensitive to Leptomycin B. Deletion mutagenesis reveals that the C-terminal domain (amino acids 501–582) is necessary and sufficient for the export of GNL3L from the nucleus and the exchange of hydrophobic residues (M567, L570 and 572) within the C-terminal domain impairs this process. Results from the protein-protein interaction analysis indicate that GNL3L interaction with CRM1 is critical for its export from the nucleus. Ectopic expression of GNL3L leads to lesser accumulation of cells in the ‘G2/M’ phase of cell cycle whereas depletion of endogenous GNL3L results in ‘G2/M’ arrest. Interestingly, cell cycle analysis followed by BrdU labeling assay indicates that significantly increased DNA synthesis occurs in cells expressing nuclear export defective mutant (GNL3L∆NES) compared to the wild type or nuclear import defective GNL3L. Furthermore, increased hyperphosphorylation of Rb at Serine 780 and the upregulation of E2F1, cyclins A2 and E1 upon ectopic expression of GNL3L∆NES results in faster ‘S’ phase progression. Collectively, the present study provides evidence that GNL3L is exported from the nucleus in CRM1 dependent manner and the nuclear localization of GNL3L is important to promote ‘S’ phase progression during cell proliferation.  相似文献   

9.
Hacker J  Carniel E 《EMBO reports》2001,2(5):376-381
The compositions of bacterial genomes can be changed rapidly and dramatically through a variety of processes including horizontal gene transfer. This form of change is key to bacterial evolution, as it leads to ‘evolution in quantum leaps’. Horizontal gene transfer entails the incorporation of genetic elements transferred from another organism—perhaps in an earlier generation—directly into the genome, where they form ‘genomic islands’, i.e. blocks of DNA with signatures of mobile genetic elements. Genomic islands whose functions increase bacterial fitness, either directly or indirectly, have most likely been positively selected and can be termed ‘fitness islands’. Fitness islands can be divided into several subtypes: ‘ecological islands’ in environmental bacteria and ‘saprophytic islands’, ‘symbiosis islands’ or ‘pathogenicity islands’ (PAIs) in microorganisms that interact with living hosts. Here we discuss ways in which PAIs contribute to the pathogenic potency of bacteria, and the idea that genetic entities similar to genomic islands may also be present in the genomes of eukaryotes.  相似文献   

10.
The mammalian high mobility group protein AT-hook 2 (HMGA2) houses three motifs that preferentially bind short stretches of AT-rich DNA regions. These DNA binding motifs, known as ‘AT-hooks’, are traditionally characterized as being unstructured. Upon binding to AT-rich DNA, they form ordered assemblies. It is this disordered-to-ordered transition that has implicated HMGA2 as a protein actively involved in many biological processes, with abnormal HMGA expression linked to a variety of health problems including diabetes, obesity, and oncogenesis. In the current work, the solution binding dynamics of the three ‘AT-hook’ peptides (ATHPs) with AT-rich DNA hairpin substrates were studied using DNA UV melting studies, fluorescence spectroscopy, native ion mobility spectrometry-mass spectrometry (IMS-MS), solution isothermal titration calorimetry (ITC) and molecular modeling. Results showed that the ATHPs bind to the DNA to form a single, 1:1 and 2:1, ‘key-locked’ conformational ensemble. The molecular models showed that 1:1 and 2:1 complex formation is driven by the capacity of the ATHPs to bind to the minor and major grooves of the AT-rich DNA oligomers. Complementary solution ITC results confirmed that the 2:1 stoichiometry of ATHP: DNA is originated under native conditions in solution.  相似文献   

11.
DNA ‘assembly’ from ‘building blocks’ remains a cornerstone in synthetic biology, whether it be for gene synthesis (∼1 kb), pathway engineering (∼10 kb) or synthetic genomes (>100 kb). Despite numerous advances in the techniques used for DNA assembly, verification of the assembly is still a necessity, which becomes cost-prohibitive and a logistical challenge with increasing scale. Here we describe for the first time a comprehensive, high-throughput solution for structural DNA assembly verification by restriction digest using exhaustive in silico enzyme screening, rolling circle amplification of plasmid DNA, capillary electrophoresis and automated digest pattern recognition. This low-cost and robust methodology has been successfully used to screen over 31 000 clones of DNA constructs at <$1 per sample.  相似文献   

12.
Transient protein expression using polyethyleneimine as a transfection agent is useful for the rapid production of small amounts of recombinant proteins. It is known that an increase in extracellular DNA concentration during transfection can lead to a nonlinear increase in intracellular DNA concentration. We present an approach that hypothesizes that this nonlinearity can be used to decrease the amount of plasmid required for productive transfections. Through addition of non coding ‘carrier’ DNA to increase total DNA concentration during transfection, we report a statistically significant increase in protein (IgG) expression per unit plasmid used for transfection. This approach could be useful to increase protein yields for large scale transfections under conditions where plasmid availability is limited.  相似文献   

13.
Envoplakin, periplakin and desmoplakin are cytoskeletal proteins that provide structural integrity within the skin and heart by resisting shear forces. Here we reveal the nature of unique hinges within their plakin domains that provides divergent degrees of flexibility between rigid long and short arms composed of spectrin repeats. The range of mobility of the two arms about the hinge is revealed by applying the ensemble optimization method to small-angle X-ray scattering data. Envoplakin and periplakin adopt ‘L’ shaped conformations exhibiting a ‘helicopter propeller’-like mobility about the hinge. By contrast desmoplakin exhibits essentially unrestricted mobility by ‘jack-knifing’ about the hinge. Thus the diversity of molecular jointing that can occur about plakin hinges includes ‘L’ shaped bends, ‘U’ turns and fully extended ‘I’ orientations between rigid blocks of spectrin repeats. This establishes specialised hinges in plakin domains as a key source of flexibility that may allow sweeping of cellular spaces during assembly of cellular structures and could impart adaptability, so preventing irreversible damage to desmosomes and the cell cytoskeleton upon exposure to mechanical stress.  相似文献   

14.
Extra-chromosomal genetic elements are important drivers of evolutionary transformations and ecological adaptations in prokaryotes with their evolutionary success often depending on their ‘utility’ to the host. Examples are plasmids encoding antibiotic resistance genes, which are known to proliferate in the presence of antibiotics. Plasmids carrying an essential host function are recognized as permanent residents in their host. Essential plasmids have been reported in several taxa where they often encode essential metabolic functions; nonetheless, their evolution remains poorly understood. Here we show that essential genes are rarely encoded on plasmids; evolving essential plasmids in Escherichia coli we further find that acquisition of an essential chromosomal gene by a plasmid can lead to plasmid extinction. A comparative genomics analysis of Escherichia isolates reveals few plasmid-encoded essential genes, yet these are often integrated into plasmid-related functions; an example is the GroEL/GroES chaperonin. Experimental evolution of a chaperonin-encoding plasmid shows that the acquisition of an essential gene reduces plasmid fitness regardless of the stability of plasmid inheritance. Our results suggest that essential plasmid emergence leads to a dose effect caused by gene redundancy. The detrimental effect of essential gene acquisition on plasmid inheritance constitutes a barrier for plasmid-mediated lateral gene transfer and supplies a mechanistic understanding for the rarity of essential genes in extra-chromosomal genetic elements.  相似文献   

15.
Padlock oligonucleotides as a tool for labeling superhelical DNA   总被引:2,自引:1,他引:1       下载免费PDF全文
Labeling of a covalently closed circular double-stranded DNA was achieved using a so-called ‘padlock oligonucleotide’. The oligonucleotide was targeted to a sequence which is present in the replication origin of phage f1 and thus in numerous commonly used plasmids. After winding around the double-stranded target DNA sequence by ligand-induced triple helix formation, a biotinylated oligonucleotide was circularized using T4 DNA ligase and in this way became catenated to the plasmid. A gel shift assay was developed to measure the extent of plasmid modification by the padlock oligonucleotide. A similar assay showed that a modified supercoiled plasmid was capable of binding one streptavidin molecule thanks to the biotinylated oligonucleotide and that this binding was quantitative. The catenated complex was visualized by electron and atomic force microscopies using streptavidin conjugates or single strand-binding proteins as protein tags for the padlock oligonucleotide. This method provides a versatile tool for plasmid functionalization which offers new perspectives in the physical study of supercoiled DNA and in the development of improved vectors for gene therapy.  相似文献   

16.
There are two ‘pathways’ of replication of λ plasmids in Escherichia coli. One pathway requires the assembly of a new replication complex before replication and the second pathway is based on the activity of the replication complex inherited by one of two daughter plasmid copies after a preceding replication round. Such a phenomenon was postulated to occur also in other replicons, including Saccharomyces cerevisiae autonomously replicating sequences. Here we investigated directionality of λ plasmid replication carried out by the heritable and newly assembled replication complexes. Using two-dimensional agarose gel electrophoresis and electron microscopy we demonstrated that in both normal growth conditions and during the relaxed response to amino acid starvation (when only replication carried out by the heritable complex is possible), bidirectionally and undirectionally replicating plasmid molecules occurred in host cells in roughly equal proportions. The results are compatible with the hypothesis that both complexes (heritable and newly assembled) are equivalent.  相似文献   

17.
Men age and die, while cells in their germline are programmed to be immortal. To elucidate how germ cells maintain viable DNA despite increasing parental age, we analysed DNA from 24 097 parents and their children, from Europe, the Middle East and Africa. We chose repetitive microsatellite DNA that mutates (unlike point mutations) only as a result of cellular replication, providing us with a natural ‘cell-cycle counter’. We observe, as expected, that the overall mutation rate for fathers is seven times higher than for mothers. Also as expected, mothers have a low and lifelong constant DNA mutation rate. Surprisingly, however, we discover that (i) teenage fathers already set out from a much higher mutation rate than teenage mothers (potentially equivalent to 77–196 male germline cell divisions by puberty); and (ii) ageing men maintain sperm DNA quality similar to that of teenagers, presumably by using fresh batches of stem cells known as ‘A-dark spermatogonia’.  相似文献   

18.
Homologous recombination provides an effective way to repair DNA double-strand breaks (DSBs) and is required for genetic recombination. During the process of homologous recombination, a heteroduplex DNA structure, or a ‘Holliday junction’ (HJ), is formed. The movement, or branch migration, of this junction is necessary for recombination to proceed correctly. In prokaryotes, the RecQ protein or the RuvA/RuvB protein complex can promote ATP-dependent branch migration of Holliday junctions. Much less is known about the processing of Holliday junctions in eukaryotes. Here, we identify RecQL1 as a predominant ATP-dependent, HJ branch migrator present in human nuclear extracts. A reduction in the level of RecQL1 induced by RNA interference in HeLa cells leads to an increase in sister chromatid exchange. We propose that RecQL1 is involved in the processing of Holliday junctions in human cells.  相似文献   

19.
Cellular asymmetry plays a major role in the ageing and evolution of multicellular organisms. However, it remains unknown how the cell distinguishes ‘old’ from ‘new’ and whether asymmetry is an attribute of highly specialized cells or a feature inherent in all cells. Here, we investigate the segregation of three asymmetric features: old and new DNA, the spindle pole body (SPB, the centrosome analogue) and the old and new cell ends, using a simple unicellular eukaryote, Schizosaccharomyces pombe. To our knowledge, this is the first study exploring three asymmetric features in the same cells. We show that of the three chromosomes of S. pombe, chromosome I containing the new parental strand, preferentially segregated to the cells inheriting the old cell end. Furthermore, the new SPB also preferentially segregated to the cells inheriting the old end. Our results suggest that the ability to distinguish ‘old’ from ‘new’ and to segregate DNA asymmetrically are inherent features even in simple unicellular eukaryotes.  相似文献   

20.
It is important to control CRISPR/Cas9 when sufficient editing is obtained. In the current study, rational engineering of guide RNAs (gRNAs) is performed to develop small-molecule-responsive CRISPR/Cas9. For our purpose, the sequence of gRNAs are modified to introduce ligand binding sites based on the rational design of ligand–RNA pairs. Using short target sequences, we demonstrate that the engineered RNA provides an excellent scaffold for binding small molecule ligands. Although the ‘stem–loop 1’ variants of gRNA induced variable cleavage activity for different target sequences, all ‘stem–loop 3’ variants are well tolerated for CRISPR/Cas9. We further demonstrate that this specific ligand–RNA interaction can be utilized for functional control of CRISPR/Cas9 in vitro and in human cells. Moreover, chemogenetic control of gene editing in human cells transfected with all-in-one plasmids encoding Cas9 and designer gRNAs is demonstrated. The strategy may become a general approach for generating switchable RNA or DNA for controlling other biological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号