首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One hundred and ten markers were analysed for linkage in 218 F2 plants derived from two divergent cultivars (Védrantais and Songwhan Charmi) of Cucumis melo (L.). Thirty-four RFLPs, 64 RAPDs, one isozyme, four disease resistance markers and one morphological marker were used to construct a genetic map spanning 14 linkage groups covering 1390 cM of the melon genome. RAPD and RFLP markers detected similar polymorphism levels. RFLPs were largely due to base substitutions rather than insertion/deletions. Twelve percent of markers showed distorted segregation. Phenotypic markers consisted of two resistance genes against Fusarium wilt (Fom-1 and Fom-2), one gene (nsv) controlling the resistance to melon necrotic spot virus, one gene (Vat) conferring resistance to Aphis gossypii, and a recessive gene for carpel numbers (3 vs 5 carpels: p).  相似文献   

2.
Fusarium wilt, caused by Fusarium oxysporum Schlecht f. sp. melonis Snyder & Hans, is a worldwide soil-borne disease of melon (Cucumis melo L.). Resistance to races 0 and 1 of Fusarium wilt is conditioned by the dominant gene Fom-2. To facilitate marker-assisted backcrossing with selection for Fusarium wilt resistance, we developed cleaved amplified polymorphic sequences (CAPS) and restriction fragment length polymorphisms (RFLP) markers by converting RAPD markers E07 (a 1.25-kb band) and G17 (a 1.05-kb band), respectively. The RAPD-PCR polymorphic fragments from the susceptible line ’Vedrantais’ were cloned and sequenced in order to construct primers that would amplify only the target fragment. The derived primers, E07SCAR-1/E07SCAR-2 from E07 and G17SCAR-1/G17SCAR-2 from G17, yielded a single 1.25-kb fragment (designated SCE07) and a 1.05-kb fragment (designated SCG17) (the same as RAPD markers E07 and G17), respectively, from both resistant and susceptible melon lines, thus demonstrating locus-specific associated primers. Potential CAPS markers were first revealed by comparing sequence data between fragments amplified from resistant (PI 161375) and susceptible (’Vedrantais’) lines and were then confirmed by electrophoresis of restriction endonuclease digestion products. Twelve restriction endonucleases were evaluated for their potential use as CAPS markers within the SCE07 fragment. Three (BclI, MspI, and BssSI) yielded ideal CAPS markers and were subsequently subjected to extensive testing using an additional 88 diverse melon cultigens, 93 and 119 F2 individuals from crosses of ’Vedrantais’ x PI 161375 and ’Ananas Yokneam’×MR-1 respectively, and 17 families from a backcross BC1S1 population derived from the breeding line ’MD8654’ as a resistance source. BclI- and MspI-CAPS are susceptible-linked markers, whereas the BssSI-CAPS is a resistant-linked marker. The CAPS markers that resulted from double digestion by BclI and BssSI are co-dominant. Results from BclI- and MspI-CAPS showed over 90% accuracy in the melon cultigens, and nearly 100% accuracy in the F2 individuals and BC1S1 families tested. This is the first report of PCR-based CAPS markers linked to resistance/susceptibility for Fusarium wilt in melon. The RFLP markers resulting from probing with a clone-derived 1.05-kb SCG17 PCR fragment showed 85% correct matches to the disease phenotype. Both the CAPS and RFLP markers were co-dominant, easier to score, and more accurate and consistent in predicting the melon phenotype than the RAPD markers from which they were derived. Received: 28 July 1998 / Accepted: 7 December 1998  相似文献   

3.
Segregation of 692 polymorphic AFLPTM (amplified fragment length polymorphism) fragments was determined in an F2 of the interspecific cross A. roylei x A. cepa. Two different enzyme combinations were used, PstI/MseIand EcoRI/MseI; in the latter one extra selective nucleotide was added to the MseI primer. The map based on A. cepa markers consisted of eight linkage groups with 262 markers covering 694 cM of the expected 800 cM. The map based on A. roylei markers comprised 15 linkage groups with 243 markers and had a length of 626 cM. The two maps were not integrated, and 25% of the markers remained unlinked. One of the alliinase genes and a SCAR marker linked to the disease resistance gene to downy mildew are present on this map. Of the AFLP markers, 50—80% were polymorphic between A. cepa and A. roylei; the level of polymorphic markers between different A. cepa accessions was4-8%. Received: 28 August 1998 / Accepted: 31 March 1999  相似文献   

4.
Comparing AFLP, RAPD and RFLP markers for measuring genetic diversity in melon   总被引:14,自引:0,他引:14  
Three different types of molecular markers, RAPD, AFLP and RFLP were used to measure genetic diversity among six genotypes of Cucumis melo L. Each line represented a different melon genotype: Piel de Sapo, Ogen, PI161375, PI414723, Agrestis and C105. A number of polymorphic RAPD, AFLP and RFLP bands were scored on all materials and the genetic similarity measured. Clustering analysis performed with the three types of markers separated the genotypes into two main groups: (1) the sweet type, cultivated melons and (2) the exotic type, not cultivated melons. While the data obtained suggest that all three types of markers are equally informative, AFLPs showed the highest efficiency in detecting polymorphism. Received: 30 December 1999 / Accepted: 24 January 2000  相似文献   

5.
6.
利用 AFLP 技术对30个甜瓜材料进行多态性和聚类分析研究。从120对 MseI 和 PstI 引物中筛选出25对扩增效果好的引物,共扩增出262条多态性带。聚类分析结果新疆甜瓜中的夏甜瓜类型,新疆甜瓜中的冬甜瓜类型、美国粗皮甜瓜类型、日本甜瓜类型、梨瓜类型各聚为一组。上述材料的聚类分析结果与依据生态类型和地理起源的分类结果基本吻合,表明 AFLP 用于甜瓜种内不同材料间的遗传变异性分析是可行的。  相似文献   

7.
The extensive natural variation of Arabidopsis thaliana ecotypes is being increasingly exploited as a source of variants of genes which control (agronomically) important traits. We have subjected 19 different Arabidopsis thaliana ecotypes to an analysis using the anplified fragment length polymorphism (AFLP) technique in order to estimate their genetic diversity. The genetic diversity was estimated applying the method of Nei and Li (1979) and a modified version of it and using 471 informative polymorphisms. The data obtained revealed that within this small set of ecotypes a group of three ecotypes and a further single ecotype exhibit considerable genetic diversity in comparison to the others. These ecotypes clustered at positions significantly separated from the bulk of the ecotypes in the generated similarity plots. The analysis demonstrated the usefulness of the AFLP method for determinating intraspecies genetic diversity as exemplified with Arabidopsis thaliana ecotypes. Results are discussed and compared with data obtained with other methods. Received: 18 June 1999 / Accepted: 28 July 1999  相似文献   

8.
甜瓜苦味物质严重影响其口感和品质。本研究利用不苦的薄皮甜瓜品系C69和苦的薄皮甜瓜品系C14构建了一个包含100个单株的F2群体。首先利用2b-RAD测序构建一个遗传连锁图谱。其次,结合群体的苦味性状进行全基因组的QTL定位和关联分析。然后,利用2b-RAD测序特有的技术优势进行群体的获得与缺失变异(PAV)的挖掘。最后,利用亲本的重测序信息确定控制苦味性状的关键基因。结果发现,F1的果实表现出强烈的苦味,F2群体中苦与不苦的单株分别为81个和19个,符合3∶1的分离比(χ^2=1.92,P=0.1659),表型表明所用甜瓜材料的苦味主要是由一个显性的基因位点控制。利用477个SNP标记构建一张包含10个连锁群的连锁图谱,总长为337.79 cM,标记间平均间隔0.71 cM。全基因组QTL定位在8号连锁群(对应9号染色体),检测到一个解释表型变异为20%的甜瓜苦味QTL。全基因组关联分析检测到7个SNPs与苦味性状相关,全部位于9号染色体苦味QTL的基因组区域。通过PAV分型分析仅发现一个特有的大片段缺失(21707702~21743072 bp),位于QTL区域,且在所有的不苦株系中存在,而苦的株系中不存在。基于两个亲本材料的深度重测序信息,发现这个PAV的区域更大,约为62 Kb,共涉及到9个连续的基因(MELO3C005601、MELO3C005602、MELO3C005603、MELO3C005604、MELO3C005605、MELO3C005606、MELO3C005607、MELO3C005608和MELO3C005609),其中5个是细胞色素P450基因。构建的系统发育树表明,这5个细胞色素P450基因与参与葫芦素C/B/E合成的细胞色素P450基因簇CYP81Q58、CYP81Q59和CYP712D8在一个进化枝,可能行使类似的功能,为潜在的类似于黄瓜葫芦素C合成的基因簇的一部分。前人通过比较基因组学研究获得的2个控制葫芦素B合成的bHLH转录因子CmBr(MELO3C005610)和CmBt(MELO3C005611)同在9号染色体,与本研究检测到的PAV紧密挨在一起。我们的研究结果为后续不苦甜瓜的育种提供了新的理论支撑和分子辅助育种目标。  相似文献   

9.
A genetic linkage map of tef was constructed with amplified fragment length polymorphism (AFLP) markers using F5 recombinant inbred lines (RILs) derived by single seed descent from the intraspecific cross of ’Kaye Murri’×’Fesho’. A total of 192 EcoRI/MseI primer combinations were screened for parental polymorphism. Around three polymorphic fragments per primer combination were detected, indicating a low polymorphism level in tef. Fifty primer combinations were selected to assay the mapping population, and 226 loci segregated among 85 F5 RILs. Most AFLP loci behaved as dominant markers (presence or absence of a band), but about 15% of the loci were codominant. Significant deviations from the expected Mendelian segregation ratio were observed for 26 loci. The genetic linkage map comprised 211 markers assembled into 25 linkage groups and covered 2,149 cM of genome. AFLP is an efficient marker system for mapping plant species with low polymorphism such as tef. This is the first genetic linkage map constructed for tef. It will facilitate the mapping of genes controlling agronomically important traits and cultivar improvement in tef. Received: 27 April 1998 / Accepted: 4 January 1999  相似文献   

10.
 A genetic linkage map of Lens sp. was constructed with 177 markers (89 RAPD, 79 AFLP, six RFLP and three morphological markers) using 86 recombinant inbred lines (F6:8) obtained from a partially interspecific cross. The map covered 1073 cM of the lentil genome with an average distance of 6.0 cM between adjacent markers. Previously mapped RFLP markers were used as anchor probes. The morphological markers, pod indehiscence, seed-coat pattern and flower-color loci were mapped. Out of the total linked loci, 8.4% showed segregation distortion. More than one-fourth of the distorted loci were clustered in one linkage group. AFLP markers showed more segregation distortion than the RAPD markers. The AFLP and RAPD markers were intermingled and clustering of AFLPs was seldom observed. This is the most extensive genetic linkage map of lentil to-date. The marker density of this map could be used for the identification of markers linked to quantitative trait loci in this population. Received: 6 November 1997 / Accepted: 10 February 1998  相似文献   

11.
Sixty three cultigens from eight market types of the melon (Cucumis melo L. subsp. melo) groups Cantaloupensis and Inodorus were evaluated for ethylene production rate, shelf-life (postharvest decay), and RFLP polymorphisms. The ethylene production rates of melon fruits at maturity and (after) postharvest decay were measured on individual genotypes. The ethylene production rates of individual genotypes ranged from undetectable to 103 nl/g per h. The mean ethylene production rates of the eight market types, ranked from highest to lowest, were Eastern U.S. type, Charentais, Western U.S. type, Long Shelf-Life cantaloupes (LSL), Galia, Ananas, Honeydew, and Casaba. Ethylene production and postharvest decay rating were positively significantly correlated (r 2=0.87, P=0.05). Orange-fleshed melon fruits produced significantly (P=0.05) more ethylene than did green- or white-fleshed types. Melon fruits with a netted rind had significantly (P=0.05 for orange-flesh fruits and 0.01 for green- or white-flesh fruits) higher ethylene production than did smooth-type fruits. Using probes made from cDNAs encoding ACC oxidase (MEL1) or ACC synthase (MEACS1) genes, RFLPs were detected melon cultigens of the eight marker types showing varying ethylene production rates and different flesh colors. Low ethylene production and green- and white-flesh color were associated (r 2=0.91; P=0.05) with the presence of a putative RFLP-MEL1 allele A 0 (15-kb), whereas high ethylene production and orange-flesh color were associated with allele B 0 (8.5-kb) in the homozygous condition, after probing MEL1 with EcoRV-digested genomic DNA. Also, after probing MEACS1 with NdeI-digested genomic DNA, RFLP polymorphism revealed five fragments denoted as A, B, C, D and E, with molecular sizes of 5.2-, 4.2-, 3.8-, 3.0- and 1.0-kb, respectively. A two-fragment pattern, AB, and a three-fragment pattern, ACE, the two predominant RFLP patterns, were also associated with low and high ethylene production, respectively. The ACE fragment pattern was also associated with orange-flesh melons. Scoring of both probes allowed for the unique classification of most melon market types consistent with ethylene production and the postharvest decay phenotypes. Therefore, these RFLPs might have utility in marker-assisted selection for the development of melons with enhanced postharvest keeping ability. Received: 26 March 1998 / Accepted: 12 January 2000  相似文献   

12.
The levels and pattern of the genetic variation within and among natural populations of Huperzia serrata were investigated using amplified fragment length polymorphism markers. Seven primer combinations used in the study amplified 615 discernible bands with 532 (86.5%) being polymorphic, indicating a considerable high level of genetic diversity at the species level. AMOVA analysis revealed a low level of genetic differentiation among the ten populations. The UPGMA cluster of all samples showed that individuals from the same population occasionally failed to cluster in one distinct group. A Mantel test showed no significant correlation between genetic distance and geographical distance (r = 0.278, P = 0.891), suggesting that the gene flow was not restricted geographically. A number of factors that might affect the genetic profiles of H. serrata included clonal growth, selective effect of niche and outcrossing, as well as the effective wind-dispersal of spores.  相似文献   

13.
AFLP markers have been successfully employed for the development of a high-density linkage map of ryegrass (Lolium perenne L.) using a progeny set of 95 plants from a testcross involving a doubled-haploid tester. This genetic map covered 930 cM in seven linkage groups and was based on 463 amplified fragment length polymorphism (AFLP) markers using 17 primer pairs, three isozymes and five EST markers. The average density of markers was approximately 1 per 2.0 cM. However, strong clustering of AFLP markers was observed at putative centromeric regions. Around these regions, 272 markers covered about 137 cM whereas the remaining 199 markers covered approximately 793 cM. Most genetic distances between consecutive pairs of markers were smaller than 20 cM except for five gaps on groups A, C, D, F and G. A skeletal map with a uniform distribution of markers can be extracted from this high-density map, and can be applied to detect and map QTLs. We report here the application of AFLP markers to genome mapping, in Lolium as a prelude to quantitative trait locus (QTL) identification for diverse agronomic traits in ryegrass and for marker-assisted plant breeding. Received: 4 November 1998 / Accepted:15 March 1999  相似文献   

14.
RFLP-based genetic map of rye, developed previously using a cross of lines DS2×RXL10 (F2 generation), was extended with 69 RAPD and 12 isozyme markers. The actual map contains 282 markers dispersed on all seven chromosomes and spans a distance of 1,140 cM. The efficiency of mapping RAPD markers was close to ten loci per 100-screened arbitrary primers. A strong selection of polymorphic, intensive and reproducible fragments was necessary to reveal individual marker loci that could be assigned to rye chromosomes. Newly mapped markers cover a substantial part of the rye genome and constitute a valuable tool suitable for map saturation, marker-aided selection and phenetic studies. A specific nomenclature for the RAPD loci mapped on individual rye chromosomes, which could be helpful in managing of accumulating data, is proposed. Received: 8 May 2000 / Accepted: 17 October 2000  相似文献   

15.
G. Agar  J. Halasz 《Plant biosystems》2013,147(2):347-352
Abstract

Rubus is a large genus of flowering plants in the rose family, Rosaceae, subfamily Rosoideae. The blackberries, as well as various other Rubus species with mounding or rambling growth habits, are often called brambles. Little information is available on the genetic diversity of wild-grown blackberries. The objective of this study was to determine the genetic relationships among nine promising (high-yield capacity, free of pest and diseases, better fruit traits) wild blackberry (Rubus caucasicus L.) selections and the well-known cultivar, “Chester” by using amplified fragment length polymorphism (AFLP) markers. Genotypes were evaluated with three selective primer-enzyme combinations, producing a total of 223 AFLP fragments with 53% polymorphism ratio. Clustering of genotypes using unweighted pair-group method of arithmetic average cluster analysis clearly separated groups of wild blackberry genotypes while the variety “Chester” was clustered independently. Wild selections represented a distinct germplasm source on the basis of the estimated genetic distance among them. Genetic diversity data from this study will be helpful in using and exploiting the wild genetic material for breeding purposes as well as for further research.  相似文献   

16.
 Amplified fragment length polymorphisms (AFLP) were used to rapidly generate a dense linkage map for pinyon pine (Pinus edulis). The map population consisted of 40 megagametophytes derived from one tree at Sunset Crater, Arizona. A total of 78 primer combinations, each with three to five selective nucleotides, amplified 542 polymorphic markers. Of these, 33 markers showed significant deviation from the expected Mendelian genotypic segregation ratio of 1 : 1, and 164 showed complete linkage with another marker. This resulted in 338 unique markers mapping to 25 linkage groups, each of which ranged from 2 to 22 markers, averaging 80 centiMorgans (cM) in size and covering 2,012 cM (2,200 cM with the inclusion of 25 cM for each of 7 unlinked markers). Pairwise linkage values gave a genome size estimate of 2,390 cM, suggesting comprehensive coverage of the genome. A search for subsets of primer combinations giving the best map coverage found 10 primer combinations which together marked 72% of the linkage map to within 10 cM; an additional 10 primer combinations increased this percentage to 85%. Our map represents an initial step towards the identification of quantitative trait loci associated with pest resistance and water stress in pinyons and will further allow us to examine introgression rates between P. edulis and P. californiarum. Received: 14 October 1997 / Accepted: 29 April 1998  相似文献   

17.
 Weedy rice (Oryza sativa L.) is an important resource for breeding and for studying the evolution of rice. The present study was carried out to identify the genetic basis of the weedy rices distributed in various countries of the world. One hundred and fifty two strains of weedy rice collected from Bangladesh, Brazil, Bhutan, China, India, Japan, Korea, Nepal, Thailand and the USA were tested for variations in six morpho-physiological characteristics and in 14 isozyme loci. Twenty six weedy strains selected from the above materials were assayed for the Est-10 locus, six RAPD loci of the nuclear genome, and one chloroplast locus. From the results of multivariate analysis based on the morpho-physiological characteristics and the isozymes, weedy rice strains were classified into indica and japonica types, and each type was further divided into forms resembling cultivated and wild rice. Thus, four groups designated as I, II, III and IV were identified. Weedy strains of group I (indica-type similar to cultivars) were distributed mostly in temperate countries, group II (indica-type similar to wild rice) in tropical countries, group III (japonica-type similar to cultivars) in Bhutan and Korea, group IV ( japonica-type similar to wild rice) in China and Korea. In group I, classified as indica, several strains showed japonica-specific RAPD markers, while some others had japonica cytoplasm with indica-specific RAPD markers in a heterozygous state at several loci. One weedy strain belonging to group II showed a wild rice-specific allele at the Est-10 locus. However, in groups III and IV, no variation was ound either for the markers on Est-10 or for the RAPD loci tested. Judging from this study, weedy rice of group I might have originated at least partly from gene flow between indica and japonica, whereas that of group II most probably originated from gene flow between wild and cultivated indica rice. Weedy rice of group III is thought to have originated from old rice cultivars which had reverted to a weedy form, and that of group IV from gene flow between japonica cultivars and wild rice having japonica backgrounds. Received: 2 May 1996 / Accepted: 30 August 1996  相似文献   

18.
A genetic map of Maritime pine based on AFLP, RAPD and protein markers   总被引:12,自引:0,他引:12  
TheAFLP (amplified fragment length polymorphism) technique was adapted to carry out genetic analysis in maritime pine, a species characterized by a large genome size (24 pg/C). A genetic linkage map was constructed for one F1 individual based on 239 AFLP and 127 RAPD (randomly amplified polymorphic DNA) markers. Markers were scored on megagametophytes (1n) from 200 germinated F2 seedlings. Polymorphism rate, labour time and cost of both AFLP and RAPD techniques were compared. The AFLP technique was found to be twice as fast and three-times less costly per marker than the RAPD technique. Thirteen linkage groups were identified with a LOD score ≥6 covering 1873 cM, which provided 93.4% of genome coverage. Proteins were extracted from needles (2n) of the F2 progeny and revealed by 2-DE (two-dimensional electrophoresis). Thirty one segregating proteins were mapped using a QTL detection strategy based on the quantification of protein accumulation. Two framework maps of the same F1 individual are now available. The first map (Plomion et al. 1996) uses RAPD markers and the second map, presented in this study, uses mostly AFLP markers. Although the total genetic length of both maps was almost identical, differences among homologous groups were observed. Received: 11 February 1999 / Accepted: 29 April 1999  相似文献   

19.
Fusarium wilt caused by Fusarium oxysporum f.sp. melonis is one of the most devastating diseases in melon production worldwide. The most effective control measure available is the use of resistant varieties. Identifying molecular markers linked to resistance genes can serve as a valuable tool for the selection of resistant genotypes. Bulked segregant analysis was used to identify markers linked to the Fom-2 genes, which confers resistance to races 0 and 1 of the fungal pathogen. Pooled DNA from homozygous resistant or homozygous susceptible progeny of F2 cross between MR-1 and AY was screened using 240 PstI/MseI and 200 EcoRI/MseI primer combinations to identify AFLP markers linked to Fom-2. Fifteen markers potentially linked to Fom-2 were identified, all with EcoRI/MseI primer pairs. These were mapped relative to Fom-2 in a backcross (BC) population of 60 progeny derived from MR-1 × AY with AY as recurrent parent. Two AFLP markers (ACT/CAT1 and AAC/CAT1) flanked the gene at 1.7 and 3.3 cM, respectively. Moreover, AFLP marker AGG/CCC and the previously identified RAPD marker 596-1 cosegregated with Fom-2. These two dominant markers were converted to co-dominant markers by designing specific PCR primers that produced product length polymorphisms between the parents. A survey of 45 melon genotypes from diverse geographic origins with the co-dominant markers demonstrated a high correlation between fragment size and the resistance phenotype. These markers may therefore be useful in marker-assisted breeding programs.  相似文献   

20.
Amplified fragment length polymorphism (AFLP) is an efficient molecular technique for generating a large number of DNA-based genetic markers in Populus. We have constructed an integrated genetic map for a Populus backcross population derived from two selected P. deltoides clones using AFLP markers. A traditional strategy for genetic mapping in outcrossing species, such as forest trees, is based on two-way pseudo-testcross configurations of the markers (testcross markers) heterozygous in one parent and null in the other. By using the markers segregating in both parents (intercross markers) as bridges, the two parent-specific genetic maps can be aligned. In this study, we detected a number of non-parental heteroduplex markers resulting from the PCR amplification of two DNA segments that have a high degree of homology to one another but differ in their nucleotide sequences. These heteroduplex markers detected have served as bridges to generate an integrated map which includes 19 major linkage groups equal to the Populus haploid chromosome number and 24 minor groups. The 19 major linkage groups cover a total of 2,927 cM, with an average spacing between two markers of 23. 3 cM. The map developed in this study provides a first step in producing a highly saturated linkage map of the Populus deltoides genome. Received: 10 September 1999 / Accepted: 3 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号