首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is now well accepted that oxysterols play important roles in the formation of atherosclerotic plaque, involving cytotoxic, pro-oxidant and proinflammatory processes. It has been recently suggested that tomato lycopene may act as a preventive agent in atherosclerosis, although the exact mechanism of such a protection is not clarified. The main aim of this study was to investigate whether lycopene is able to counteract oxysterol-induced proinflammatory cytokines cascade in human macrophages, limiting the formation of atherosclerotic plaque. Therefore, THP-1 macrophages were exposed to two different oxysterols, such as 7-keto-cholesterol (4-16 μM) and 25-hydroxycholesterol (2-4 μM), alone and in combination with lycopene (0.5-2 μM). Both oxysterols enhanced pro-inflammatory cytokine [interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor α) secretion and mRNA levels in a dose-dependent manner, although at different extent. These effects were associated with an increased reactive oxygen species (ROS) production through an enhanced expression of NAD(P)H oxidase. Moreover, a net increment of phosphorylation of extracellular regulated kinase 1/2, p-38 and Jun N-terminal kinase and of nuclear factor kB (NF-κB) nuclear binding was observed. Lycopene prevented oxysterol-induced increase in pro-inflammatory cytokine secretion and expression. Such an effect was accompanied by an inhibition of oxysterol-induced ROS production, mitogen-activated protein kinase phosphorylation and NF-κB activation. The inhibition of oxysterol-induced cytokine stimulation was also mimicked by the specific NF-κB inhibitor pyrrolidine dithiocarbamate. Moreover, the carotenoid increased peroxisome proliferator-activated receptor γ levels in THP-1 macrophages. Taken all together, these data bring new information on the anti-atherogenic properties of lycopene, and on its mechanisms of action in atherosclerosis prevention.  相似文献   

2.
The objective of the present study was to examine the expression of Toll-like receptors (TLRs) by mouse uterine epithelial cells and to determine if stimulation of the expressed TLR induces changes in cytokine and/or chemokine secretion. Using RT-PCR, the expression of TLRs 1-6 by mouse uterine epithelial cells was demonstrated, with TLRs 7-9 expressed only periodically. In the absence of pathogen-associated molecular patterns, polarized uterine epithelial cells constitutively secrete interleukin (IL) 1A, cysteine-cysteine ligand (CCL) 2, IL6, granulocyte-macrophage colony-stimulating factor 2 (CSF2), tumor necrosis factor A (TNFA), CSF3, and IL8 in vitro, with levels of cytokines/chemokines secreted into the apical compartment being significantly greater than those released into the basolateral compartment. When added to the apical surface for 48 h before analysis, the TLR2-agonist Pam3Cys-Ser-(Lys)4 and TLR1/6-agonist peptidoglycan increased epithelial cell apical secretion of IL1A, CCL2, and IL6 and apical/basolateral bidirectional secretion of CSF2, TNFA, CSF3, and IL8 when compared to controls. The TLR3-agonist poly (I:C) significantly increased bidirectional secretion of CCL2, IL6, TNFA, and CSF2 and basolateral secretion of CSF3. Lastly, the TLR4-agonist lipopolysaccharide increased bidirectional secretion CCL2, CSF2, TNFA, CSF3, and IL8 and apical secretion of IL6. These results indicate that mRNAs for Tlr1 through Tlr6 are expressed by uterine epithelial cells and that treatment with specific TLR agonists alters the expression of key chemokines and proinflammatory cytokines that contribute to the defense of the uterus against potential pathogens.  相似文献   

3.
Phytosterol supplements lower low-density lipoprotein (LDL) cholesterol, but accumulate in vascular lesions of patients and limit the anti-atherosclerotic effects of LDL lowering in apolipoprotein E (Apo E)-deficient mice, suggesting that the cholesterol-lowering benefit of phytosterol supplementation may not be fully realized. Individual phytosterols have cell-type specific effects that may be either beneficial or deleterious with respect to atherosclerosis, but little is known concerning their effects on macrophage function. The effects of phytosterols on ABCA1 and ABCG1 abundance, cholesterol efflux and inflammatory cytokine secretion were determined in cultured macrophage foam cells. Among the commonly consumed phytosterols, stigmasterol increased expression of ABCA1 and ABCG1 and increased efflux of cholesterol to apolipoprotein (Apo) AI and high-density lipoprotein (HDL). Campesterol and sitosterol had no effect on ABCA1 or ABCG1 levels. Sitosterol had no effect on cholesterol efflux to Apo AI or HDL, whereas campesterol had a modest but significant reduction in cholesterol efflux to HDL in THP-1 macrophages. Whereas stigmasterol blunted aggregated LDL (agLDL) induced increases in tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β secretion, sitosterol exacerbated these effects. The presence of campesterol had no effect on agLDL-induced inflammatory cytokine secretion from THP-1 macrophages. In conclusion, the presence of stigmasterol in modified lipoproteins promoted cholesterol efflux and suppressed inflammatory cytokine secretion in response to lipid loading in macrophage foam cells. While campesterol was largely inert, the presence of sitosterol increased the proinflammatory cytokine secretion.  相似文献   

4.
5.
The generation of oxidized phospholipids in lipoproteins has been linked to vascular inflammation in atherosclerotic lesions. Products of phospholipid oxidation increase endothelial activation; however, their effects on macrophages are poorly understood, and it is unclear whether these effects are regulated by the biochemical pathways that metabolize oxidized phospholipids. We found that incubation of 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC) with THP-1-derived macrophages upregulated the expression of cytokine genes, including granulocyte/macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor (TNF)-α, monocyte chemotactic protein 1 (MCP-1), interleukin (IL)-1β, IL-6, and IL-8. In these cells, reagent POVPC was either hydrolyzed to lyso-phosphatidylcholine (lyso-PC) or reduced to 1-palmitoyl-2-(5-hydroxy-valeroyl)-sn-glycero-3-phosphocholine (PHVPC). Treatment with the phospholipase A(2) (PLA(2)) inhibitor, pefabloc, decreased POVPC hydrolysis and increased PHVPC accumulation. Pefabloc also increased the induction of cytokine genes in POVPC-treated cells. In contrast, PHVPC accumulation and cytokine production were decreased upon treatment with the aldose reductase (AR) inhibitor, tolrestat. In comparison with POVPC, lyso-PC led to 2- to 3-fold greater and PHVPC 10- to 100-fold greater induction of cytokine genes. POVPC-induced cytokine gene induction was prevented in bone-marrow derived macrophages from AR-null mice. These results indicate that although hydrolysis is the major pathway of metabolism, reduction further increases the proinflammatory responses to POVPC. Thus, vascular inflammation in atherosclerotic lesions is likely to be regulated by metabolism of phospholipid aldehydes in macrophages.  相似文献   

6.
The hallmark of acute lung injury (ALI) is the influx of proinflammatory cytokines into lung tissue and alveolar permeability that ultimately leads to pulmonary edema. However, the mechanisms involved in inflammatory cytokine production and alveolar permeability are unclear. Recent studies suggest that excessive production of ceramide has clinical relevance as a mediator of pulmonary edema and ALI. Our earlier studies indicate that the activation of inflammasome promotes the processing and secretion of proinflammatory cytokines and causes alveolar permeability in ALI. However, the role of ceramide in inflammasome activation and the underlying mechanism in relation to alveolar permeability is not known. We hypothesized that ceramide activates the inflammasome and causes inflammatory cytokine production and alveolar epithelial permeability. To test this hypothesis, we analyzed the lung ceramide levels during hyperoxic ALI in mice. The effect of ceramide on activation of inflammasome and production of inflammatory cytokine was assessed in primary mouse alveolar macrophages and THP-1 cells. Alveolar transepithelial permeability was determined in alveolar epithelial type-II cells (AT-II) and THP-1 co-cultures. Our results reveal that ceramide causes inflammasome activation, induction of caspase-1, IL-1β cleavage, and release of proinflammatory cytokines. In addition, ceramide further induces alveolar epithelial permeability. Short-hairpin RNA silencing of inflammasome components abrogated ceramide-induced secretion of proinflammatory cytokines in vitro. Inflammasome silencing abolishes ceramide-induced alveolar epithelial permeability in AT-II. Collectively, our results demonstrate for the first time that ceramide-induced secretion of proinflammatory cytokines and alveolar epithelial permeability occurs though inflammasome activation.  相似文献   

7.
Serum amyloid A (SAA) is an acute-phase protein, the serum levels of which can increase up to 1000-fold during inflammation. SAA has a pathogenic role in amyloid A-type amyloidosis, and increased serum levels of SAA correlate with the risk for cardiovascular diseases. IL-1β is a key proinflammatory cytokine, and its secretion is strictly controlled by the inflammasomes. We studied the role of SAA in the regulation of IL-1β production and activation of the inflammasome cascade in human and mouse macrophages, as well as in THP-1 cells. SAA could provide a signal for the induction of pro-IL-1β expression and for inflammasome activation, resulting in secretion of mature IL-1β. Blocking TLR2 and TLR4 attenuated SAA-induced expression of IL1B, whereas inhibition of caspase-1 and the ATP receptor P2X(7) abrogated the release of mature IL-1β. NLRP3 inflammasome consists of the NLRP3 receptor and the adaptor protein apoptosis-associated speck-like protein containing CARD (a caspase-recruitment domain) (ASC). SAA-mediated IL-1β secretion was markedly reduced in ASC(-/-) macrophages, and silencing NLRP3 decreased IL-1β secretion, confirming NLRP3 as the SAA-responsive inflammasome. Inflammasome activation was dependent on cathepsin B activity, but it was not associated with lysosomal destabilization. SAA also induced secretion of cathepsin B and ASC. In conclusion, SAA can induce the expression of pro-IL-1β and activation of the NLRP3 inflammasome via P2X(7) receptor and a cathepsin B-sensitive pathway. Thus, during systemic inflammation, SAA may promote the production of IL-1β in tissues. Furthermore, the SAA-induced secretion of active cathepsin B may lead to extracellular processing of SAA and, thus, potentially to the development of amyloid A amyloidosis.  相似文献   

8.
Secretion of pro-inflammatory chemokines and cytokines by macrophages is a contributory factor in the pathogenesis of atherosclerosis. In this study, the effects of chylomicron remnants (CMR), the lipoproteins which transport dietary fat in the blood, on the production of pro-inflammatory chemokine and cytokine secretion by macrophages was investigated using CMR-like particles (CRLPs) together with THP-1 macrophages or primary human macrophages (HMDM). Incubation of CRLPs or oxidized CRLPs (oxCRLPs) with HMDM or THP-1 macrophages for up to 24h led to a marked decrease in the secretion of the pro-inflammatory chemokine monocyte chemoattractant protein-1 (MCP-1) and the pro-inflammatory cytokines tumour necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1β (-50-90%), but these effects were reduced or abolished when CRLPs protected from oxidation by incorporation of the antioxidant drug, probucol, (pCRLPs) were used. In macrophages transfected with siRNA targeted to the low density lipoprotein receptor (LDLr), neither CRLPs nor pCRLPs had any significant effect on chemokine/cytokine secretion, but in cells transfected with siRNA targeted to the LDLr-related protein 1 (LRP1) both types of particles inhibited secretion to a similar extent to that observed with CRLPs in mock transfected cells. These findings demonstrate that macrophage pro-inflammatory chemokine/cytokine secretion is down-regulated by CMR, and that these effects are positively related to the lipoprotein oxidative state. Furthermore, uptake via the LDLr is required for the down-regulation, while uptake via LRP1 does not bring about this effect. Thus, the receptor-mediated route of uptake of CMR plays a crucial role in modulating their effects on inflammatory processes in macrophages.  相似文献   

9.
Hepatitis C virus (HCV)-mediated chronic liver disease is a global health problem, and inflammation is believed to be an important player in disease pathogenesis. HCV infection often leads to severe fibrosis/cirrhosis and hepatocellular carcinoma, although the mechanisms for advancement of disease are not fully understood. The proinflammatory cytokines interleukin-1β (IL-1β) and IL-18 have critical roles in establishment of inflammation. In this study, we examined induction of IL-1β/IL-18 secretion following HCV infection. Our results demonstrated that monocyte-derived human macrophages (THP-1) incubated with cell culture-grown HCV enhance the secretion of IL-1β/IL-18 into culture supernatants. A similar cytokine release was also observed for peripheral blood mononuclear cell (PBMC)-derived primary human macrophages and Kupffer cells (liver-resident macrophages) upon incubation with HCV. THP-1 cells incubated with HCV led to caspase-1 activation and release of proinflammatory cytokines. Subsequent studies demonstrated that HCV induces pro-IL-1β and pro-IL-18 synthesis via the NF-κB signaling pathway in macrophages. Furthermore, introduction of HCV viroporin p7 RNA into THP-1 cells was sufficient to cause IL-1β secretion. Together, our results suggested that human macrophages exposed to HCV induce IL-1β and IL-18 secretion, which may play a role in hepatic inflammation.  相似文献   

10.
Interleukin (IL)-1beta is a proinflammatory cytokine that elicits the majority of its biological activity extracellularly, but the lack of a secretory signal sequence prevents its export via classic secretory pathways. Efficient externalization of IL-1beta in macrophages and monocytes can occur via stimulation of P2X7 nucleotide receptors with extracellular ATP. However, the exact mechanisms by which the activation of these nonselective cation channels facilitates secretion of IL-1beta remain unclear. Here we demonstrate a pivotal role for a sustained increase in cytosolic Ca2+ to potentiate secretion of IL-1beta via the P2X7 receptors. Using HEK-293 cells engineered to coexpress P2X7 receptors with mature IL-1beta (mIL-1beta), we show that activation of P2X7 receptors results in a rapid secretion of mIL-1beta by a process(es) that is dependent on influx of extracellular Ca2+ and a sustained rise in cytosolic Ca2+. Moreover, reduction in extracellular Ca2+ attenuates approximately 90% of P2X7 receptor-mediated IL-1beta secretion but has no effect on enzymatic processing of precursor IL-1beta (proIL-1beta) to mIL-1beta by caspase-1. Similar experiments with THP-1 human monocytes and Bac1.2F5 murine macrophages confirm the unique role of Ca2+ in P2X7 receptor-mediated secretion of IL-1beta. In addition, we report that cell surface expression of P2X7 receptors in the absence of external stimulation also results in enhanced release of IL-1beta and that this can be repressed by inhibitors of P2X7 receptors. We clarify an essential role for Ca2+ in ATP-induced IL-1beta secretion and indicate an additional role of P2X7 receptors as enhancers of the secretory apparatus by which IL-1beta is released.  相似文献   

11.
12.
Gingipains (HRgpA, RgpB and Kgp) are cysteine proteinases and virulence factors of Porphyromonas gingivalis , the major causative bacterium of periodontal disease. To study synergistic effects of gingipains and signalling via Toll-like receptors (TLRs) and NOD1/2, we investigated effects of a gingipain on the secretion of proinflammatory cytokines from monocytic THP-1 cells in the presence of pathogen-associated molecular patterns (PAMPs). Gingipains stimulated interleukin (IL)-8's secretion from THP-1 cells, which was completely inhibited by proteinase inhibitors of gingipain and increased in the presence of PAMPs. Synergistic effects of gingipains and PAMPs were also seen in the secretion of IL-6 and MCP-1 and reduced to about 50% the secretion of IL-8 from THP-1 cells treated with siRNA targeting either protease-activated receptor (PAR)-1, -2 or -3. PAR agonist peptides mimicked the synergistic effects of gingipains with PAMPs. These results indicate that gingipains stimulate the secretion of cytokines from monocytic cells through the activation of PARs with synergistic effects by PAMPs. This is the first report of synergism of signalling via PARs, and TLRs or NOD1/2. The host defence system against P. gingivalis may be triggered through the activation of PARs by gingipains and augmented by PAMPs from this pathogen via TLRs or NOD1/2.  相似文献   

13.
14.
Coordinated expression and upregulation of interleukin-1alpha, interleukin-1beta, tumor necrosis factor-alpha, interleukin-6, granulocyte-macrophage colony-stimulating factor, interleukin-8, monocyte chemotactic protein-1 (MCP-1) and epithelial cell derived neutrophil activator-78, with chemoattractant and proinflammatory properties of various cytokine families, were obtained in the intestinal epithelial cell line Int407 upon Vibrio cholerae infection. These proinflammatory cytokines also showed increased expression in T84 cells, except for interleukin-6, whereas a striking dissimilarity in cytokine expression was observed in Caco-2 cells. Gene expression studies of MCP-1, granulocyte-macrophage colony-stimulating factor, interleukin-1alpha, interleukin-6 and the anti-inflammatory cytokine transforming growth factor-beta in Int407 cells with V. cholerae culture supernatant, cholera toxin, lipopolysaccharide and ctxA mutant demonstrated that, apart from cholera toxin and lipopolysaccharide, V. cholerae culture supernatant harbors strong inducer(s) of interleukin-6 and MCP-1 and moderate inducer(s) of interleukin-1alpha and granulocyte-macrophage colony-stimulating factor. Cholera toxin- or lipopolysaccharide-induced cytokine expression is facilitated by activation of nuclear factor-kappaB (p65 and p50) and cAMP response element-binding protein in Int407 cells. Studies with ctxA mutants of V. cholerae revealed that the mutant activates the p65 subunit of nuclear factor-kappaB and cAMP response element-binding protein, and as such the activation is mediated by cholera toxin-independent factors as well. We conclude that V. cholerae elicits a proinflammatory response in Int407 cells that is mediated by activation of nuclear factor-kappaB and cAMP response element-binding protein by cholera toxin, lipopolysaccharide and/or other secreted products of V. cholerae.  相似文献   

15.
ObjectiveAdipose tissue inflammation with immune cell recruitment plays a key role in obesity-induced insulin resistance (IR). Long-chain (LC) n-3 polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have anti-inflammatory potential; however, their individual effects on adipose IR are ill defined. We hypothesized that EPA and DHA may differentially affect macrophage-induced IR in adipocytes.MethodsJ774.2 macrophages pretreated with EPA or DHA (50 μM for 5 days) were stimulated with lipopolysaccharide (LPS, 100 ng/ml for 30 min–48 h). Cytokine secretion profiles and activation status of macrophages were assessed by enzyme-linked immunosorbent assay and flow cytometry. Pretreated macrophages were seeded onto transwell inserts and placed over 3T3-L1 adipocytes for 24–72 h; effects on adipocyte–macrophage cytokine cross-talk and insulin-stimulated 3H-glucose transport into adipocytes were monitored.ResultsDHA had more potent anti-inflammatory effects relative to EPA, with marked attenuation of LPS-induced nuclear factor (NF)κB activation and tumor necrosis factor (TNF)α secretion in macrophages. DHA specifically enhanced anti-inflammatory interleukin (IL)-10 secretion and reduced the expression of proinflammatory M1 (F4/80+/CD11+) macrophages. Co-culture of DHA-enriched macrophages with adipocytes attenuated IL-6 and TNFα secretion while enhancing IL-10 secretion. Conditioned media (CM) from DHA-enriched macrophages attenuated adipocyte NFκB activation. Adipocytes co-cultured with DHA-enriched macrophages maintained insulin sensitivity with enhanced insulin-stimulated 3H-glucose transport, GLUT4 translocation and preservation of insulin-receptor substrate-1 expression compared to co-culture with untreated macrophages. We confirmed that IL-10 expressed by DHA-enriched macrophages attenuates the CM-induced proinflammatory IR phenotype in adipocytes.ConclusionsWe demonstrate an attenuated proinflammatory phenotype of DHA-pretreated macrophages, which when co-cultured with adipocytes partially preserved insulin sensitivity.  相似文献   

16.
Macrophages accumulated in the arterial intima play an important role in the development of atherosclerosis by producing a large number of proinflammatory cytokines which accelerate the disease. Recent studies show that adipophilin might be involved in inflammatory processes in macrophages. In this study, we observe the effect of adipophilin on proinflammatory cytokine expression and secretion in THP-1 macrophages. SiRNA and adipophilin gene overexpression mediated by an pEGFP-C3 vector were used to observe the effect of adipophilin on proinflammatory cytokines in THP-1 macrophages in vitro. Realtime PCR and enzyme-linked immunosorbent assay (ELISA) were applied to detect the production of tumor necrosis factor α (TNF-α), monocyte chemoattractant protein 1 (MCP-1), and interleukin-6 (IL-6). It was found that acetylated low-density lipoprotein (AcLDL), pioglitazone [a peroxisome proliferator-activated receptor γ (PPARγ) agonist] increased adipophilin expression in macrophages, while glucose had no such affect. It was also shown that adipophilin augments TNF-α, MCP-1, and IL-6 expression in AcLDL induced macrophages. Our results suggest that adipophilin augment inflammation in macrophages, which might be one role of adipophilin in atherosclerosis.  相似文献   

17.
The hepatitis B virus (HBV) core Ag (HBcAg) serves as the structural subunit of the highly immunogenic capsid shell. HBcAg harbors a unique arginine-rich C terminus that was implicated in immune responses induced by the capsid. In this study, we examined the capacity of the HBV capsid to induce proinflammatory and regulatory cytokines in human THP-1 macrophages and the possible underlying mechanism. Full-length HBc capsids, but not HBc-144 capsids lacking the arginine-rich domain of HBcAg, efficiently bound differentiated THP-1 macrophages and strongly induced TNF-alpha, IL-6, and IL-12p40. Capsid binding to macrophages and cytokine induction were independent of the RNA associated with the arginine-rich domain. Soluble heparin and heparan sulfate but not chondroitin sulfates greatly diminished cytokine induction through inhibition of capsid binding to THP-1 macrophages. Furthermore, serine phosphorylation in the arginine-rich domain modulates capsid binding to macrophages and the cytokine response. Induction of cytokines by the capsid involved activation of NF-kappaB, ERK-1/2, and p38 MAPK and did not require endosomal acidification. Finally, NF-kappaB activation by the capsid in HEK 293 cells specifically required expression of TLR2 and was compromised by soluble heparin. Thus, cytokine induction by the HBV capsid in macrophages is facilitated by interaction of its arginine-rich domain with membrane heparan sulfate and involves signaling through TLR2.  相似文献   

18.
19.
Flagellin is the major protein component of the flagella from motile bacteria and was identified as the ligand for toll-like receptor (TLR)-5. Whereas its effects on epithelial cells have been studied in detail, activation of human peripheral blood mononuclear cells (PBMC) by flagellin is characterized only partially. By using the recombinant protein of Salmonella muenchen we confirm the proinflammatory nature of flagellin as detected by nuclear factor-kappaB activation and interleukin (IL)-8 production. Aim of the current study was to elucidate in PBMC effects of flagellin on IL-18 and Th1-like cytokine responses. We report that flagellin in pathophysiologically relevant concentrations augmented release of mature IL-18 by THP-1 monocytes, PBMC, and whole blood stimulated with nigericin or by ATP-mediated P2X7 purinergic receptor activation. Further key functions of the IL-18/IL-12/interferon-gamma (IFNgamma) pathway were upregulated by flagellin. Flagellin synergized with IL-12 for production of IFN-gamma and augmented secretion of interferon-inducible protein-10, a CXC-chemokine that is key to the generation of Th1-type responses. In contrast, neither IL-18-binding protein nor IL-4 was affected. Taken together, the present data demonstrate for the first time that flagellin at concentrations that are detectable in the blood compartment during sepsis efficiently enhances the IL-18/IL-12/IFNgamma pathway and thus Th1-like cytokine responses in PBMC.  相似文献   

20.
Macrolide antibiotics decrease proinflammatory cytokine production in airway cells from subjects with chronic airway inflammation. However, in subjects with chronic obstructive pulmonary disease, short-term azithromycin (AZM) therapy causes a transient early increase in the blood neutrophil oxidative burst followed by a decrease in inflammatory markers with longer administration. We studied the effects of clarithromycin (CAM) and AZM on proinflammatory cytokine production from normal human bronchial epithelial (NHBE) cells. CAM decreased IL-8 over the first 6 h and then significantly increased interleukin (IL)-8 at 12-72 h after exposure (P < 0.0001). AZM also increased IL-8 at 24 and 48 h, and CAM increased granulocyte-macrophage colony-stimulating factor at 48 h. In the presence of LPS, both CAM and AZM dose-dependently increased IL-8 secretion over 24 h, but after 5 days of exposure to 10 microg/ml CAM there is suppression of IL-8 (P < 0.001). PD-98059, an inhibitor of MAP kinase/ERK kinase, inhibited CAM-induced IL-8 (P < 0.0001) and GM-CSF (P < 0.01) release. The p38 MAP kinase inhibitor SB-203580 increased CAM-induced IL-8 release (P < 0.001), and the c-jun NH2-terminal kinase inhibitor SP-600125 had no effect on IL-8. At 120 min and 6 h, CAM increased phospho-ERK1/2 (pERK) but not phospho-p38 or phospho-JNK. Over the first 90 min, CAM at 10 microg/ml inhibited pERK and then increased pERK in parallel with measured IL-8 secretion. After daily CAM exposure for 5 days, both IL-8 and pERK returned to baseline. The p38 MAP kinase inhibitor, SB-203580 increased ERK phosphorylation and IL-8 secretion. These results suggest that macrolide antibiotics can differentially modulate proinflammatory cytokine secretion in NHBE cells, in part through ERK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号