首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Induced pluripotent stem (iPS) cells established by introduction of the transgenes POU5F1 (also known as Oct3/4), SOX2, KLF4 and c-MYC have competence similar to embryonic stem (ES) cells. iPS cells generated from cynomolgus monkey somatic cells by using genes taken from the same species would be a particularly important resource, since various biomedical investigations, including studies on the safety and efficacy of drugs, medical technology development, and research resource development, have been performed using cynomolgus monkeys. In addition, the use of xenogeneic genes would cause complicating matters such as immune responses when they are expressed. In this study, therefore, we established iPS cells by infecting cells from the fetal liver and newborn skin with amphotropic retroviral vectors containing cDNAs for the cynomolgus monkey genes of POU5F1, SOX2, KLF4 and c-MYC. Flat colonies consisting of cells with large nuclei, similar to those in other primate ES cell lines, appeared and were stably maintained. These cell lines had normal chromosome numbers, expressed pluripotency markers and formed teratomas. We thus generated cynomolgus monkey iPS cell lines without the introduction of ecotropic retroviral receptors or other additional transgenes by using the four allogeneic transgenes. This may enable detailed analysis of the mechanisms underlying the reprogramming. In conclusion, we showed that iPS cells could be derived from cynomolgus monkey somatic cells. To the best of our knowledge, this is the first report on iPS cell lines established from cynomolgus monkey somatic cells by using genes from the same species.  相似文献   

2.
Three recent papers, published almost simultaneously by different groups, have described the generation of induced pluripotent stem (iPS) cells from the pig, a species whose size, anatomy, and physiology render them attractive as clinical models for the human. The approach used in each case was to infect somatic cells with integrating retroviral vectors designed to express four reprogramming genes (POU5F1, SOX2, cMYC and KLF4). The cell lines generated met the standard criteria for pluripotency, including the ability to differentiate along multiple tissue lineages. In most respects, the porcine iPS cells more resembled human embryonic stem cells and human iPS cells than their murine equivalents. Provided such porcine iPS cells can be “personalized” to specific pigs and then coaxed to differentiate along specific lineages, it should be possible to use such animals to test transplantation therapies with iPS cells for safety and efficacy before the procedures are applied to human patients.  相似文献   

3.
4.
5.
6.
Millions of people world over suffer visual disability due to retinal dystrophies which can be age-related or a genetic disorder resulting in gradual degeneration of the retinal pigmented epithelial (RPE) cells and photoreceptors. Therefore, cell replacement therapy offers a great promise in treating such diseases. Since the adult retina does not harbour any stem cells, alternative stem cell sources like the embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) offer a great promise for generating different cell types of the retina. Here, we report the derivation of four iPSC lines from mouse embryonic fibroblasts (MEFs) using a cocktail of recombinant retroviruses carrying the genes for Oct4, Sox2, Klf4 and cMyc. The iPS clone MEF-4F3 was further characterized for stemness marker expression and stable reprogramming by immunocytochemistry, FACS and RT-PCR analysis. Methylation analysis of the nanog promoter confirmed the reprogrammed epigenetic state. Pluripotency was confirmed by embryoid body (EB) formation and lineage-specific marker expression. Also, upon retinal differentiation, patches of pigmented cells with typical cobble-stone phenotype similar to RPE cells are generated within 6 weeks and they expressed ZO-1 (tight junction protein), RPE65 and bestrophin (mature RPE markers) and showed phagocytic activity by the uptake of fluorescent latex beads.  相似文献   

7.
小鼠的成纤维细胞通过转染四种转录因子(Oct3/4、Sox2、c-Myc和K1F4)可以被诱导转变成类似胚胎干细胞的多能性干细胞,称之为诱导型多能干细胞(induced pluripotent stem cell,iPS),这种多能干细胞在细胞形态、增殖速率、致瘤性、基因表达以及形成嵌合小鼠的能力上与胚胎干细胞有许多相似之处,将来可能成为胚胎干细胞在临床应用中的替代。本文综述了iPS相关的几种转录因子,及其在重编程过程中的作用以及iPS的发展前景。  相似文献   

8.
9.

Background

Application of induced pluripotent stem (iPS) cells in regenerative medicine will bypass ethical issues associated with use of embryonic stem cells. In addition, patient-specific IPS cells can be useful to elucidate the pathophysiology of genetic disorders, drug screening, and tailor-made medicine. However, in order to apply iPS cells to mitotic tissue, induction of tissue stem cells that give rise to progeny of the target organ is required.

Methodology/Principal Findings

We induced stratified epithelial cells from mouse iPS cells by co-culture with PA6 feeder cells (SDIA-method) with use of BMP4. Clusters of cells positive for the differentiation markers KRT1 or KRT12 were observed in KRT14-positive colonies. We successfully cloned KRT14 and p63 double-positive stratified epithelial progenitor cells from iPS-derived epithelial cells, which formed stratified epithelial sheets consisting of five- to six-polarized epithelial cells in vitro. When these clonal cells were cultured on denuded mouse corneas, a robust stratified epithelial layer was observed with physiological cell polarity including high levels of E-cadherin, p63 and K15 expression in the basal layer and ZO-1 in the superficial layer, recapitulating the apico-basal polarity of the epithelium in vivo.

Conclusions/Significance

These results suggest that KRT14 and p63 double-positive epithelial progenitor cells can be cloned from iPS cells in order to produce polarized multilayer epithelial cell sheets.  相似文献   

10.
宋红卫  安铁洙  朴善花  王春生 《遗传》2014,36(5):431-438
诱导多能干细胞(Induced pluripotent stem cell, iPS)技术提供了将终末分化的细胞逆转为多潜能干细胞的可能, 在干细胞基础理论研究和再生医学中具有重要意义。然而, 目前体细胞诱导重编程方法效率极低, 常发生不完全的重编程。研究表明, 在不完全重编程的细胞中存在体细胞的表观遗传记忆, 而DNA甲基化作为相对长期和稳定的表观遗传修饰, 是影响重编程效率和iPS细胞分化能力的重要因素之一。哺乳动物DNA甲基化是指胞嘧啶第五位碳原子上的甲基化修饰, 常发生于CpG位点。DNA甲基化能够调节体细胞特异基因和多能性基因的表达, 因此其在哺乳动物基因调控、胚胎发育和细胞重编程过程中发挥着重要作用。此外, 异常DNA甲基化可能导致iPS细胞基因印记的异常和X染色体的失活。文章重点围绕DNA甲基化的机制、分布特点、及其在体细胞诱导重编程中的作用进行了综述。  相似文献   

11.
12.
Induced pluripotent stem (iPS) cell technology demonstrates that somatic cells can be reprogrammed to a pluripotent state by over-expressing four reprogramming factors. This technology has created an interest in deriving iPS cells from domesticated animals such as pigs, sheep and cattle. Moloney murine leukemia retrovirus vectors have been widely used to generate and study mouse iPS cells. However, this retrovirus system infects only mouse and rat cells, which limits its use in establishing iPS cells from other mammals. In our study, we demonstrate a novel retrovirus strategy to efficiently generate porcine iPS cells from embryonic fibroblasts. We transfected four human reprogramming factors (Oct4, Sox2, Klf4 and Myc) into fibroblasts in one step by using a VSV-G envelope-coated pantropic retrovirus that was easily packaged by GP2-293 cells. We established six embryonic stem (ES)-like cell lines in human ES cell medium supplemented with bFGF. Colonies showed a similar morphology to human ES cells with a high nuclei-cytoplasm ratio and phase-bright flat colonies. Porcine iPS cells could form embryoid bodies in vitro and differentiate into the three germ layers in vivo by forming teratomas in immunodeficient mice.  相似文献   

13.
It is known that differentiated cells can be reprogrammed to an undifferentiated state in oocyte cytoplasm after nuclear transfer. Recently, some reports suggested that Xenopus egg extracts have the ability to reprogram mammalian somatic cells. Reprogramming events of mammalian cells after Xenopus egg extract treatment and after cell culture of extract-treated cells have not been elucidated. In this experiment, we examined reprogramming events in reversibly permeabilized or nonpermeabilized porcine fibroblast cells after Xenopus egg extract treatment. The Xenopus egg-specific histone B4 was assembled on porcine chromatin and nuclear lamin LIII was incorporated into nuclei. Deacetylation of histone H3 at lysine 9 in extract-treated cells was detected in nonpermeabilized cells, suggesting that a part of reprogramming may be induced even in nonpermeabilized cells. Following culture of extract-treated cells, the cells began to express the pluripotent marker genes such as POU5F1 (OCT4) and SOX2 and to form colonies. Reactivation of the OCT4 gene in extract-treated cells was also confirmed in bovine fibroblasts transformed with an OCT4-EGFP construct. These results suggest that nuclei of mammalian cells can be partially reprogrammed to an embryonic state by Xenopus egg extracts and the remodeled cells partly dedifferentiate after cell culture. A system using egg extracts may be useful for understanding the mechanisms and processes of dedifferentiation and reprogramming of mammalian somatic cells after nuclear transfer.  相似文献   

14.
Background and objective: Hyperglycemia leads to adaptive cell responses in part due to hyperosmolarity. In endothelial and epithelial cells, hyperosmolarity induces aquaporin-1 (AQP1) which plays a role in cytoskeletal remodeling, cell proliferation and migration. Whether such impairments also occur in human induced pluripotent stem cells (iPS) is not known. We therefore investigated whether high glucose-induced hyperosmolarity impacts proliferation, migration, expression of pluripotency markers and actin skeleton remodeling in iPS cells in an AQP1-dependent manner. Methods and results: Human iPS cells were generated from skin fibroblasts by lentiviral transduction of four reprogramming factors (Oct4, Sox2, Klf4, c-Myc). After reprogramming, iPS cells were characterized by their adaptive responses to high glucose-induced hyperosmolarity by incubation with 5.5 mmol/L glucose, high glucose (HG) at 30.5 mM, or with the hyperosmolar control mannitol (HM). Exposure to either HG or HM increased the expression of AQP1. AQP1 co-immunoprecipitated with β-catenin. HG and HM induced the expression of β-catenin. Under these conditions, iPS cells showed increased ratios of F-actin to G-actin and formed increased tubing networks. Inhibition of AQP1 with small interfering RNA (siRNA) reverted the inducing effects of HG and HM. Conclusions: High glucose enhances human iPS cell proliferation and cytoskeletal remodeling due to hyperosmolarity-induced upregulation of AQP1.  相似文献   

15.
Induced pluripotency is a new approach to produce embryonic stem-like cells from somatic cells that provides a unique means to understand both pluripotency and lineage assignment. To investigate whether this technology could be applied to endangered species, where the limited availability of gametes makes production and research on embryonic stem cells difficult, we attempted generation of induced pluripotent stem (iPS) cells from snow leopard (Panthera uncia) fibroblasts by retroviral transfection with Moloney-based retroviral vectors (pMXs) encoding four factors (OCT4, SOX2, KLF4 and cMYC). This resulted in the formation of small colonies of cells, which could not be maintained beyond four passages (P4). However, addition of NANOG, to the transfection cocktail produced stable iPS cell colonies, which formed as early as D3. Colonies of cells were selected at D5 and expanded in vitro. The resulting cell line was positive for alkaline phosphatase (AP), OCT4, NANOG, and Stage-Specific embryonic Antigen-4 (SSEA-4) at P14. RT-PCR also confirmed that endogenous OCT4 and NANOG were expressed by snow leopard iPS cells from P4. All five human transgenes were transcribed at P4, but OCT4, SOX2 and NANOG transgenes were silenced as early as P14; therefore, reprogramming of the endogenous pluripotent genes had occurred. When injected into immune-deficient mice, snow leopard iPS cells formed teratomas containing tissues representative of the three germ layers. In conclusion, this was apparently the first derivation of iPS cells from the endangered snow leopard and the first report on induced pluripotency in felid species. Addition of NANOG to the reprogramming cocktail was essential for derivation of iPS lines in this felid. The iPS cells provided a unique source of pluripotent cells with utility in conservation through cryopreservation of genetics, as a source of reprogrammed donor cells for nuclear transfer or for directed differentiation to gametes in the future.  相似文献   

16.
17.
18.
19.
Mechanical stimulation has been shown to regulate the proliferation and differentiation of stem cells. However, the effects of the mechanical stress on the stemness or related molecular mechanisms have not been well determined. Pluripotent stem cells such as embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are used as good materials for cell transplantation therapy and research of mammalian development, since they can self-renew infinitely and differentiate into various cell lineages. Here we demonstrated that the mechanical stimulation to human iPS cells altered alignment of actin fibers and expressions of the pluripotent related genes Nanog, POU5f1 and Sox2. In the mechanically stimulated iPS cells, small GTPase Rho was activated and interestingly, AKT phosphorylation was decreased. Inhibition of Rho-associated kinase ROCK recovered the AKT phosphorylation and the gene expressions. These results clearly suggested that the Rho/ROCK is a potent primary effector of mechanical stress in the pluripotent stem cells and it participates to pluripotency-related signaling cascades as an upper stream regulator.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号