首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein nucleases and RNA enzymes depend on divalent metal ions to catalyze the rapid hydrolysis of phosphate diester linkages of nucleic acids during DNA replication, DNA repair, RNA processing, and RNA degradation. These enzymes are widely proposed to catalyze phosphate diester hydrolysis using a "two-metal-ion mechanism." Yet, analyses of flap endonuclease (FEN) family members, which occur in all domains of life and act in DNA replication and repair, exemplify controversies regarding the classical two-metal-ion mechanism for phosphate diester hydrolysis. Whereas substrate-free structures of FENs identify two active site metal ions, their typical separation of > 4 A appears incompatible with this mechanism. To clarify the roles played by FEN metal ions, we report here a detailed evaluation of the magnesium ion response of T5FEN. Kinetic investigations reveal that overall the T5FEN-catalyzed reaction requires at least three magnesium ions, implying that an additional metal ion is bound. The presence of at least two ions bound with differing affinity is required to catalyze phosphate diester hydrolysis. Analysis of the inhibition of reactions by calcium ions is consistent with a requirement for two viable cofactors (Mg2+ or Mn2+). The apparent substrate association constant is maximized by binding two magnesium ions. This may reflect a metal-dependent unpairing of duplex substrate required to position the scissile phosphate in contact with metal ion(s). The combined results suggest that T5FEN primarily uses a two-metal-ion mechanism for chemical catalysis, but that its overall metallobiochemistry is more complex and requires three ions.  相似文献   

2.
The number of metal ions required for phosphoryl transfer in restriction endonucleases is still an unresolved question in molecular biology. The two Ca(2+) and Mn(2+) ions observed in the pre- and post-reactive complexes of BamHI conform to the classical two-metal ion choreography. We probed the Mg(2+) cofactor positions at the active site of BamHI by molecular dynamics simulations with one and two metal ions present and identified several catalytically relevant sites. These can mark the pathway of a single ion during catalysis, suggesting its critical role, while a regulatory function is proposed for a possible second ion.  相似文献   

3.
Flap endonucleases (FENs) have essential roles in DNA processing. They catalyze exonucleolytic and structure-specific endonucleolytic DNA cleavage reactions. Divalent metal ions are essential cofactors in both reactions. The crystal structure of FEN shows that the protein has two conserved metal-binding sites. Mutations in site I caused complete loss of catalytic activity. Mutation of crucial aspartates in site II abolished exonuclease action, but caused enzymes to retain structure-specific (flap endonuclease) activity. Isothermal titration calorimetry revealed that site I has a 30-fold higher affinity for cofactor than site II. Structure-specific endonuclease activity requires binding of a single metal ion in the high-affinity site, whereas exonuclease activity requires that both the high- and low-affinity sites be occupied by divalent cofactor. The data suggest that a novel two-metal mechanism operates in the FEN-catalyzed exonucleolytic reaction. These results raise the possibility that local concentrations of free cofactor could influence the endo- or exonucleolytic pathway in vivo.  相似文献   

4.
Borjigin M  Arenaz P  Stec B 《FEBS letters》2012,586(3):242-247
The APE1, an important mammalian AP endonuclease, is an essential enzyme in the base excision DNA repair pathway (BER). The number of metal ions involved directly in the catalysis remains controversial. Here we describe the metal ion titration experiments that demonstrate the requirement for two metal ions for the endonuclease activity of the Chinese hamster APE1. The titration with the non-activating metal ion La(3+) showed a biphasic behavior with activating and inhibitory effects of La(3+) in the range of 0-100 μM in the presence of 5 mM Mg(2+). Modeling of the enzyme-substrate/product complexes provided insight into the endonuclease activity and elucidated the nature of the crystal structures. Accordingly, we proposed a reaction scheme for the two-metal ion assisted catalysis of chAPE1 endonuclease activity.  相似文献   

5.
beta-Glucosyltransferase (BGT) is a DNA-modifying enzyme encoded by bacteriophage T4 that transfers glucose from uridine diphosphoglucose to 5-hydroxymethyl cytosine bases of phage T4 DNA. We report six X-ray structures of the substrate-free and the UDP-bound enzyme. Four also contain metal ions which activate the enzyme, including Mg(2+) in forms 1 and 2 and Mn(2+) or Ca(2+). The substrate-free BGT structure differs by a domain movement from one previously determined in another space group. Further domain movements are seen in the complex with UDP and the four UDP-metal complexes. Mg(2+), Mn(2+) and Ca(2+) bind near the beta-phosphate of the nucleotide, but they occupy slightly different positions and have different ligands depending on the metal and the crystal form. Whilst the metal site observed in these complexes with the product UDP is not compatible with a role in activating glucose transfer, it approximates the position of the positive charge in the oxocarbonium ion thought to form on the glucose moiety of the substrate during catalysis.  相似文献   

6.
Feng H  Dong L  Cao W 《Biochemistry》2006,45(34):10251-10259
The enzyme endonuclease V initiates repair of deaminated DNA bases by making an endonucleolytic incision on the 3' side one nucleotide from a base lesion. In this study, we have used site-directed mutagenesis to characterize the role of the highly conserved residues D43, E89, D110, and H214 in Thermotoga maritima endonuclease V catalysis. DNA cleavage and Mn(2+)-rescue analysis suggest that amino acid substitutions at D43 impede the enzymatic activity severely while mutations at E89 and D110 may be tolerated. Mutations at H214 yield enzyme that maintains significant DNA cleavage activity. The H214D mutant exhibits little change in substrate specificity or DNA cleavage kinetics, suggesting the exchangeability between His and Asp at this site. DNA binding analysis implicates the involvement of the four residues in metal binding. Mn(2+)-mediated cleavage of inosine-containing DNA is stimulated by the addition of Ca(2+), a metal ion that does not support catalysis. The effects of Mn(2+) on Mg(2+)-mediated DNA cleavage show a complexed initial stimulatory and later inhibitory pattern. The data obtained from the dual metal ion analyses lead to the notion that two metal ions are involved in endonuclease V-mediated catalysis. A catalytic and regulatory two-metal model is proposed.  相似文献   

7.
The enzymatic transfer of the sugar mannose from activated sugar donors is central to the synthesis of a wide range of biologically significant polysaccharides and glycoconjugates. In addition to their importance in cellular biology, mannosyltransferases also provide model systems with which to study catalytic mechanisms of glycosyl transfer. Mannosylglycerate synthase (MGS) catalyzes the synthesis of α-mannosyl-D-glycerate using GDP-mannose as the preferred donor species, a reaction that occurs with a net retention of anomeric configuration. Past work has shown that the Rhodothermus marinus MGS, classified as a GT78 glycosyltransferase, displays a GT-A fold and performs catalysis in a metal ion-dependent manner. MGS shows very unusual metal ion dependences with Mg(2+) and Ca(2+) and, to a lesser extent, Mn(2+), Ni(2+), and Co(2+), thus facilitating catalysis. Here, we probe these dependences through kinetic and calorimetric analyses of wild-type and site-directed variants of the enzyme. Mutation of residues that interact with the guanine base of GDP are correlated with a higher k(cat) value, whereas substitution of His-217, a key component of the metal coordination site, results in a change in metal specificity to Mn(2+). Structural analyses of MGS complexes not only provide insight into metal coordination but also how lactate can function as an alternative acceptor to glycerate. These studies highlight the role of flexible loops in the active center and the subsequent coordination of the divalent metal ion as key factors in MGS catalysis and metal ion dependence. Furthermore, Tyr-220, located on a flexible loop whose conformation is likely influenced by metal binding, also plays a critical role in substrate binding.  相似文献   

8.
Nowotny M  Yang W 《The EMBO journal》2006,25(9):1924-1933
In two-metal catalysis, metal ion A has been proposed to activate the nucleophile and metal ion B to stabilize the transition state. We recently reported crystal structures of RNase H-RNA/DNA substrate complexes obtained at 1.5-2.2 Angstroms. We have now determined and report here structures of reaction intermediate and product complexes of RNase H at 1.65-1.85 Angstroms. The movement of the two metal ions suggests how they may facilitate RNA hydrolysis during the catalytic process. Firstly, metal ion A may assist nucleophilic attack by moving towards metal ion B and bringing the nucleophile close to the scissile phosphate. Secondly, metal ion B transforms from an irregular coordination in the substrate complex to a more regular geometry in the product complex. The exquisite sensitivity of Mg(2+) to the coordination environment likely destabilizes the enzyme-substrate complex and reduces the energy barrier to form product. Lastly, product release probably requires dissociation of metal ion A, which is inhibited by either high concentrations of divalent cations or mutation of an assisting protein residue.  相似文献   

9.
Lai B  Li Y  Cao A  Lai L 《Biochemistry》2003,42(3):785-791
RNase H degrades the RNA moiety in DNA:RNA hybrid in a divalent metal ion dependent manner. It is essential to understand the role of metal ion in enzymatic mechanism. One of the key points in this study is how many metal ions are involved in the enzyme catalysis. Accordingly, either one-metal binding mechanism or two-metal binding mechanism is proposed. We have studied the thermodynamic properties of four metal ions (Mg(2+), Mn(2+), Ca(2+), and Ba(2+)) binding to Methanococcus jannaschii RNase HII using isothermal titration calorimetry. All of the four metal ions were found to bind Mj RNase HII with 1:1 stoichiometry in the absence of substrate. Together with enzymatic activity assay data, we propose that only one metal ion binding to the enzyme in catalytic process. We also studied the pH dependence of metal binding and enzyme activity and found that at pH 6.5, Mg(2+) did not bind to the enzyme without the substrate but still activated the enzyme to about 2% of its maximum activity (in 10 mM Mn(2+) at pH 8). This implies that the substrate may also be incorporated in metal ion binding and help to position the metal ion. To find which acidic residues correspond to metal ion binding, we also studied the binding thermodynamics and enzymatic activity assay of four mutants: D7N, E8Q, D112N, and D149N in the presence of Mn(2+). The thermodynamic parameters are least affected for the D149N mutant, which has a very low enzymatic activity. This indicates that Asp149 is essential for the enzymatic activity. On the basis of all these observations, we suggest a metal binding model in which D7, E8, and D112 bind the metal ion and D149 activates a water molecule to attack the P-O bond in the RNA chain of the substrate.  相似文献   

10.
Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) catalyses CO(2) assimilation in biology. A prerequisite for catalysis is an activation process, whereby an active site lysine is selectively carbamylated. The carbamyl group is then stablised by a metal ion, which in vivo is Mg(2+). Other divalent metal ions can replace Mg(2+) as activators in vitro, but the nature of the metal ion strongly influences the catalytic activity of the enzyme and has a differential effect on the ratio of the carboxylation reaction and the competing oxygenation reaction. Biochemical studies show that calcium promotes carbamylation but not catalysis. To investigate the role of the metal in catalysis, we have determined two structures of the enzyme complexed with Ca(2+) and the transition state analogue 2-carboxy-D-arbinitol-1,5-bisphosphate (2CABP). One of the complexes was prepared by soaking 2CABP into crystals of the enzyme-Ca(2+)-product complex, while the other was obtained by cocrystallising the enzyme with calcium and 2CABP under activating conditions. The two crystals belong to different space groups, and one was merohedrally twinned. Both complexes show very similar three-dimensional features. The enzyme is carbamylated at Lys201, and requisite loops close over the bound ligands in the active site, shielding them from the solvent in a manner similar to the corresponding complex with Mg(2+). However, there are subtle differences that could explain the particular role of Ca(2+) in these processes. The larger radius of the calcium ion and its reduced Lewis-acid character causes a significant increase in the required proton hop distance between the C3 proton and the carbamate on Lys201 in the calcium complex. This alone could explain the inability of calcium to sustain catalysis in Rubisco. Similar effects are also expected on subsequent proton transfer steps in the catalytic cycle. Here we also discuss the effect of metal substitution on the dynamics of the ligands around the metal ion.  相似文献   

11.
Kravchuk AV  Zhao L  Bruzik KS  Tsai MD 《Biochemistry》2003,42(8):2422-2430
Eukaryotic phosphatidylinositol-specific phospholipase Cs (PI-PLCs) utilize calcium as a cofactor during catalysis, whereas prokaryotic PI-PLCs use a spatially conserved guanidinium group from Arg69. In this study, we aimed to construct a metal-dependent mutant of a bacterial PI-PLC and characterize the catalytic role of the metal ion, seeking an enhanced understanding of the functional differences between these two positively charged moieties. The following results indicate that a bona fide catalytic metal binding site was created by the single arginine-to-aspartate mutation at position 69: (1) The R69D mutant was activated by Ca(2+), and the activation was specific for R69D, not for other mutants at this position. (2) Titration of R69D with Ca(2+), monitored by (15)N-(1)H HSQC (heteronuclear single quantum coherence) NMR, showed that addition of Ca(2+) to R69D restores the environment of the catalytic site analogous to that attained by the WT enzyme. (3) Upon Ca(2+) activation, the thio effect of the S(P)-isomer of the phosphorothioate analogue (k(O)/k(Sp) = 4.4 x 10(5)) approached a value similar to that of the WT enzyme, suggesting a structural and functional similarity between the two positively charged moieties (Arg69 and Asp69-Ca(2+)). The R(P)-thio effect (k(O)/k(Rp) = 9.4) is smaller than that of the WT enzyme by a factor of 5. Consequently, R69D-Ca(2+) displays higher stereoselectivity (k(Rp)/k(Sp) = 47,000) than WT (k(Rp)/k(Sp) = 7600). (4) Results from additional mutagenesis analyses suggest that the Ca(2+) binding site is comprised of side chains from Asp33, Asp67, Asp69, and Glu117. Our studies provide new insight into the mechanism of metal-dependent and metal-independent PI-PLCs.  相似文献   

12.
All pyrroloquinoline quinone (PQQ)-containing dehydrogenases whose structures are known contain Ca(2+) bonded to the PQQ at the active site. However, membrane glucose dehydrogenase (GDH) requires reconstitution with PQQ and Mg(2+) ions (but not Ca(2+)) for activity. To address the question of whether the Mg(2+) replaces the usual active site Ca(2+) in this enzyme, mutant GDHs were produced in which residues proposed to be involved in binding metal ion were modified (D354N-GDH and N355D-GDH and D354N-GDH/N355D-GDH). The most remarkable observation was that reconstitution with PQQ of the mutant enzymes was not supported by Mg(2+) ions as in the wild-type GDH, but it could be supported by Ca(2+), Sr(2+) or Ba(2+) ions. This was competitively inhibited by Mg(2+). This result, together with studies on the kinetics of the modified enzymes have led to the conclusion that, although a Ca(2+) ion is able to form part of the active site of the genetically modified GDH, as in all other PQQ-containing quinoproteins, a Mg(2+) ion surprisingly replaces Ca(2+) in the active site of the wild-type GDH.  相似文献   

13.
Effect of Mg(2+), Ca(2+), Ni(2+) and Cd(2+) ions on parameters of DNA helix-coil transition in sodium cacodylate (pH 6.5), Tris (pH 8.5) and sodium tetraborate (pH 9.0) buffers have been studied by differential UV-visible spectroscopy and by thermal denaturation. Anomalous behavior of the melting temperature T(m) and the melting interval ΔT in the presence of MgCl(2) was observed in Tris, but not in cacodylate or tetraborate buffers. Changes in the buffer type and pH did not influence T(m) and ΔT dependence on Ca(2+) and Cd(2+) concentrations. Decrease of the T(m) and ΔT of DNA in the presence of Ni(2+) and Cd(2+) was caused by preferential ion interaction with N7 of guanine. This type of interaction was also found for Mg(2+) in Tris buffer. The anomalous decrease in the T(m) and ΔT values was connected to formation of complexes between metal ions and Tris molecules. Transition of DNA single-stranded regions into a compact form with the effective radius of the particles of 300±100 ? was induced by Mg(2+) ions in Tris buffer.  相似文献   

14.
Lee LV  Poyner RR  Vu MV  Cleland WW 《Biochemistry》2000,39(16):4821-4830
H97N, H95N, and Y229F mutants of L-ribulose-5-phosphate 4-epimerase had 10, 1, and 0.1%, respectively, of the activity of the wild-type (WT) enzyme when activated by Zn(2+), the physiological activator. Co(2+) and Mn(2+) replaced Zn(2+) in Y229F and WT enzymes, although less effectively with the His mutants, while Mg(2+) was a poorly bound, weak activator. None of the other eight tyrosines mutated to phenylalanine caused a major loss of activity. The near-UV CD spectra of all enzymes were nearly identical in the absence of metal ions and substrate, and addition of substrate without metal ion showed no effect. When both substrate and Zn(2+) were present, however, the positive band at 266 nm increased while the negative one at 290 nm decreased in ellipticity. The changes for the WT and Y229F enzymes were greater than for the two His mutants. With Co(2+) as the metal ion, the CD and absorption spectra in the visible region were different, showing little ellipticity in the absence of substrate and a weak absorption band at 508 nm. With substrate present, however, an intense absorption band at 555 nm (epsilon = 150-175) with a negative molar ellipticity approaching 2000 deg cm(2) dmol(-1) appears with WT and Y229F enzymes. With the His mutants, the changes induced by substrate were smaller, with negative ellipticity only half as great. The WT, Y229F, H95N, and H97N enzymes all catalyze a slow aldol condensation of dihydroxyacetone and glycolaldehyde phosphate with an initial k(cat) of 1.6 x 10(-3) s(-1). The initial rate slowed most rapidly with WT and H97N enzymes, which have the highest affinity for the ketopentose phosphates formed in the condensation. The EPR spectrum of enzyme with Mn(2+) exhibited a drastic decrease upon substrate addition, and by using H(2)(17)O, it was determined that there were three waters in the coordination sphere of Mn(2+) in the absence of substrate. These data suggest that (1) the substrate coordinates to the enzyme-bound metal ion, (2) His95 and His97 are likely metal ion ligands, and (3) Tyr229 is not a metal ion ligand, but may play another role in catalysis, possibly as an acid-base catalyst.  相似文献   

15.
Zheng L  Li M  Shan J  Krishnamoorthi R  Shen B 《Biochemistry》2002,41(32):10323-10331
Removal of flap DNA intermediates in DNA replication and repair by flap endonuclease-1 (FEN-1) is essential for mammalian genome integrity. Divalent metal ions, Mg(2+) or Mn(2+), are required for the active center of FEN-1 nucleases. However, it remains unclear as to how Mg(2+) stimulates enzymatic activity. In the present study, we systemically characterize the interaction between Mg(2+) and murine FEN-1 (mFEN-1). We demonstrate that Mg(2+) stimulates mFEN-1 activity at physiological levels but inhibits the activity at concentrations higher than 20 mM. Our data suggest that mFEN-1 exists as a metalloenzyme in physiological conditions and that each enzyme molecule binds two Mg(2+) ions. Binding of Mg(2+) to the M1 binding site coordinated by the D86 residue cluster enhances mFEN-1's capability of substrate binding, while binding of the metal to the M2 binding site coordinated by the D181 residue cluster induces conformational changes. Both of these steps are needed for catalysis. Weak, nonspecific Mg(2+) binding is likely responsible for the enzyme inhibition at high concentrations of the cation. Taken together, our results suggest distinct roles for two Mg(2+) binding sites in the regulation of mFEN-1 nuclease activities in a mode different from the "two-metal mechanism".  相似文献   

16.
The catalytic properties of DNA gyrase, an A 2B 2 complex, are modulated by the presence of divalent metal ions. Using circular dichroism, protein melting experiments and enzyme activity assays, we investigated the correlation between the A 2B 2 conformation, the nature of the metal ion cofactor and the enzyme activity in the presence and absence of DNA substrate. At room temperature, DNA gyrase structure is not appreciably affected by Ca (2+) or Mg (2+) but is modified by Mn (2+). In addition, metal ions strongly affect the enzyme's thermal transitions, rendering the A 2B 2 structure more flexible. Using the B subunit, we were able to identify two distinct complexes with manganese ions. The first one exhibits a 1:1 stoichiometry and is not affected by the presence of DNA. The second complex is associated with a large protein structural modification that can be remarkably modulated by addition of the DNA substrate. This behavior is conserved in the reconstituted protein. Studies with two GyrB mutants indicate that Mn (2+) interference with the TOPRIM region modulates gyrase supercoiling activity. In particular, considering the need for two divalent metal ions for an efficient catalytic cleavage of the phosphodiester bond, our data suggest that residue D500 participates in the first complexation event (DNA-independent), whereas residue D498 is involved mainly in the second process. In conclusion, a combination of the ion features (ionic size, electronegativity, coordination sphere) operating at the level of the catalytic region and of the ion-driven modifications in overall enzyme structure and flexibility contribute to the mechanism of gyrase activity. An effectual role for DNA recruiting the second catalytic metal ion is envisaged.  相似文献   

17.
Boeggeman E  Qasba PK 《Glycobiology》2002,12(7):395-407
The catalytic domain of bovine beta1,4-galactosyltransferase (beta4Gal-T1) has been shown to have two metal binding sites, each with a distinct binding affinity. Site I binds Mn(2+) with high affinity and does not bind Ca(2+), whereas site II binds a variety of metal ions, including Ca(2+). The catalytic region of beta4Gal-T1 has DXD motifs, associated with metal binding in glycosyltransferases, in two separate sequences: D(242)YDYNCFVFSDVD(254) (region I) and W(312)GWGGEDDD(320) (region II). Recently, the crystal structure of beta4Gal-T1 bound with UDP, Mn(2+), and alpha-lactalbumin was determined in our laboratory. It shows that in the primary metal binding site of beta4Gal-T1, the Mn(2+) ion, is coordinated to five ligands, two supplied by the phosphates of the sugar nucleotide and the other three by Asp254, His347, and Met344. The residue Asp254 in the D(252)VD(254) sequence in region I is the only residue that is coordinated to the Mn(2+) ion. Region II forms a loop structure and contains the E(317)DDD(320) sequence in which residues Asp318 and Asp319 are directly involved in GlcNAc binding. This study, using site-directed mutagenesis, kinetic, and binding affinity analysis, shows that Asp254 and His347 are strong metal ligands, whereas Met344, which coordinates less strongly, can be substituted by alanine or glutamine. Specifically, substitution of Met344 to Gln has a less severe effect on the catalysis driven by Co(2+). Glu317 and Asp320 mutants, when partially activated by Mn(2+) binding to the primary site, can be further activated by Co(2+) or inhibited by Ca(2+), an effect that is the opposite of what is observed with the wild-type enzyme.  相似文献   

18.
Flap endonucleases (FENs), essential for DNA replication and repair, recognize and remove RNA or DNA 5'-flaps. Related to FEN specificity for substrates with free 5'-ends, but controversial, is the role of the helical arch observed in varying conformations in substrate-free FEN structures. Conflicting models suggest either 5'-flaps thread through the arch, which when structured can only accommodate single-stranded (ss) DNA, or the arch acts as a clamp. Here we show that free 5'-termini are selected using a disorder-thread-order mechanism. Adding short duplexes to 5'-flaps or 3'-streptavidin does not markedly impair the FEN reaction. In contrast, reactions of 5'-streptavidin substrates are drastically slowed. However, when added to premixed FEN and 5'-biotinylated substrate, streptavidin is not inhibitory and complexes persist after challenge with unlabelled competitor substrate, regardless of flap length or the presence of a short duplex. Cross-linked flap duplexes that cannot thread through the structured arch react at modestly reduced rate, ruling out mechanisms involving resolution of secondary structure. Combined results explain how FEN avoids cutting template DNA between Okazaki fragments and link local FEN folding to catalysis and specificity: the arch is disordered when flaps are threaded to confer specificity for free 5'-ends, with subsequent ordering of the arch to catalyze hydrolysis.  相似文献   

19.
Thermodynamics of binding of divalent metal ions including Ca(2+) , Mg(2+) , Ba(2+) , and Cd(2+) to Ca-free horseradish peroxidase (HRP) enzyme was investigated using UV/VIS spectrophotometry and molecular-mechanic (MM) calculations. According to the obtained binding and thermodynamic parameters, trend of the relative binding affinities of these divalent metal cations was found to be: Ca(2+) >Cd(2+) >Mg(2+) >Ba(2+) . Binding analysis based on Scatchard and Hill models showed positive cooperativity effect between the two distal and proximal binding sites. Furthermore, kinetics of binding and reconstitution process was examined (using relaxation-time method) for binding of Ca(2+) (as the typical metal ion) to Ca-free HRP, which was found a second-order type having a two-step mechanism involving fast formation of Ca-free HRP/1?Ca(2+) as the kinetic intermediate in step 1. Finally, by means of MM calculations, the comparative stability energies were evaluated for binding of M(2+) metal cations to Ca-free HRP. Based on MM calculations, preferential binding of Ca(2+) ion was occurred on distal and proximal binding sites of Ca-free HRP associated with higher stability energies (E(total) ). Indeed, among the divalent metal ions, Ca(2+) with the highest binding affinity (maximum value of K(bin) and minimum value of ΔG$\rm{{_{bin}^{0}}}$), maximum value of exothermic binding enthalpy, and stability energies stabilizes the HRP structure along with an optimized catalytic activity.  相似文献   

20.
Horton NC  Perona JJ 《Biochemistry》2004,43(22):6841-6857
Four crystal structures of EcoRV endonuclease mutants K92A and K38A provide new insight into the mechanism of DNA bending and the structural basis for metal-dependent phosphodiester bond cleavage. The removal of a key active site positive charge in the uncleaved K92A-DNA-M(2+) substrate complex results in binding of a sodium ion in the position of the amine nitrogen, suggesting a key role for a positive charge at this position in stabilizing the sharp DNA bend prior to cleavage. By contrast, two structures of K38A cocrystallized with DNA and Mn(2+) ions in different lattice environments reveal cleaved product complexes featuring a common, novel conformation of the scissile phosphate group as compared to all previous EcoRV structures. In these structures, the released 5'-phosphate and 3'-OH groups remain in close juxtaposition with each other and with two Mn(2+) ions that bridge the conserved active site carboxylates. The scissile phosphates are found midway between their positions in the prereactive substrate and postreactive product complexes of the wild-type enzyme. Mn(2+) ions occupy two of the three sites previously described in the prereactive complexes and are plausibly positioned to generate the nucleophilic hydroxide ion, to compensate for the incipient additional negative charge in the transition state, and to ionize a second water for protonation of the 3'-oxyanion. Reconciliation of these findings with earlier X-ray and fluorescence studies suggests a novel mechanism in which a single initially bound metal ion in a third distinct site undergoes a shift in position together with movement of the scissile phosphate deeper into the active site cleft. This reconfigures the local environment to permit binding of the second metal ion followed by movement toward the pentacovalent transition state. The new mechanism suggested here embodies key features of previously proposed two- and three-metal catalytic models, and offers a view of the stereochemical pathway that integrates much of the copious structural and functional data that are available from exhaustive studies in many laboratories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号