首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ovarian follicular atresia represents a selection process that ensures the release of only healthy and viable oocytes during ovulation. The transition from preantral to early antral stage is the penultimate stage of development in terms of gonadotropin dependence and follicle destiny (survival/growth vs. atresia). We have examined whether and how oocyte-derived growth differentiation factor 9 (GDF-9) and FSH regulate follicular development and atresia during the preantral to early antral transition, by a novel combination of in vitro gene manipulation (i.e. intraoocyte injection of GDF-9 antisense oligos) and preantral follicle culture. Injection of GDF-9 antisense suppressed basal and FSH-induced preantral follicle growth in vitro, whereas addition of GDF-9 enhanced basal and FSH-induced follicular development. GDF-9 antisense activated caspase-3 and induced apoptosis in cultured preantral follicles, a response attenuated by exogenous GDF-9. GDF-9 increased phospho-Akt content in granulosa cells of early antral follicles. Although granulosa cell apoptosis induced by ceramide was attenuated by the presence of GDF-9, this protective effect of GDF-9 was prevented by the phosphatidylinositol 3-kinase inhibitor LY294002 and a dominant negative form of Akt. Injection of GDF-9 antisense decreased FSH receptor mRNA levels in cultured follicles, a response preventable by the presence of exogenous GDF-9. The data suggest that GDF-9 is antiapoptotic in preantral follicles and protects granulosa cells from undergoing apoptosis via activation of the phosphatidylinositol 3-kinase/Akt pathway. An adequate level of GDF-9 is required for follicular FSH receptor mRNA expression. GDF-9 promotes follicular survival and growth during the preantral to early antral transition by suppressing granulosa cell apoptosis and follicular atresia.  相似文献   

2.
In addition to pituitary gonadotropins and paracrine factors, ovarian follicle development is also modulated by oocyte factors capable of stimulating granulosa cell proliferation but suppressing their differentiation. The nature of these oocyte factors is unclear. Because growth differentiation factor-9 (GDF-9) enhanced preantral follicle growth and was detected in the oocytes of early antral and preovulatory follicles, we hypothesized that this oocyte hormone could regulate the proliferation and differentiation of granulosa cells from these advanced follicles. Treatment with recombinant GDF-9, but not FSH, stimulated thymidine incorporation into cultured granulosa cells from both early antral and preovulatory follicles, accompanied by increases in granulosa cell number. Although GDF-9 treatment alone stimulated basal steroidogenesis in granulosa cells, cotreatment with GDF-9 suppressed FSH-stimulated progesterone and estradiol production. In addition, GDF-9 cotreatment attentuated FSH-induced LH receptor formation. The inhibitory effects of GDF-9 on FSH-induced granulosa cell differentiation were accompanied by decreases in the FSH-induced cAMP production. These data suggested that GDF-9 is a proliferation factor for granulosa cells from early antral and preovulatory follicles but suppresses FSH-induced differentiation of the same cells. Thus, oocyte-derived GDF-9 could account, at least partially, for the oocyte factor(s) previously reported to control cumulus and granulosa cell differentiation.  相似文献   

3.
Less than 1% of ovarian follicles ever mature to ovulation. The remainder undergo atretic degeneration via apoptosis during development. Though the regulation of antral and preovulatory survival has been studied for many years, very little is known about the regulation of survival and development of preantral follicles. This review discusses recent findings regarding preantral follicle development with emphasis on the regulation of preantral follicle apoptosis.  相似文献   

4.
5.
《Theriogenology》1986,25(6):795-808
The total ovarian follicular populations were determined in ewes at Day 140 of pregnancy and at Day 5 postpartum. The right and left ovaries of five pregnant and five non-suckling ewes of the Préalpes-du-Sud breed were used in this study. All the ovaries were serially sectioned at a thickness of 7 μm, and every section was examined microscopically.The mean numbers of preantral follicles per ovary increased (P<0.005) at Day 5 postapartum as compared to Day 140 of pregnancy. The distribution of preantral non-atretic follicles into different size classes clearly showed a sharp increase in the mean number of follicles per size class at Day 5 postpartum, especially those leaving the reserve of primordial follicles.No difference was detected between both groups of ewes in the mean number of antral follicles. The diameter of the largest antral follicle at Day 140 of pregnancy does not exceed 1.5 mm. However, at Day 5 postpartum, a population of large follicles ≥ 1.5 mm was observed, reaching 2–4 mm in diameter.We conclude that although the pattern of normal follicular development is inhibited during late pregnancy, the ovary at this time is not quiescent, and ovarian follicular development starts well before parturition. The increasing number of preantral follicles, as well as the enlargement of antral follicle diameter observed at Day 5 postpartum, may be correlated with increasing secretion of FSH after lambing.  相似文献   

6.
The mechanical method to isolate preantral follicle has been reported for many years. However, the culture systems in vitro are still unstable. The aim of this study was to analyze the effect of the culture system of mice preantral follicles on the follicular development in vitro. The results showed that the 96-well plate system was the most effective method for mice follicle development in vitro (volume change: 51.71%; survival rate: 89%, at day 4). Follicle-stimulating hormone (FSH) and Thyroid hormone (TH) are important for normal follicular development and dysregulation of hormones are related with impaired follicular development. To determine the effect of hormone on preantral follicular development, we cultured follicle with hormones in the 96-well plate culture system and found that FSH significantly increased preantral follicular growth on day 4. The FSH-induced growth action was markedly enhanced by T3 although T3 was ineffective alone. We also demonstrated by QRT-PCR that T3 significantly enhanced FSH-induced up-regulation of Xiap mRNA level. Meanwhile, Bad, cell death inducer, was markedly down-regulated by the combination of hormones. Moreover, QRT-PCR results were also consistent with protein regulation which detected by Western Blotting analysis. Taken together, the findings of the present study demonstrate that 96-well plate system is an effective method for preantral follicle development in vitro. Moreover, these results provide insights on the role of thyroid hormone in increasing FSH-induced preantral follicular development, which mediated by up-regulating Xiap and down-regulating Bad.  相似文献   

7.
The developmental requirements of ovarian follicles are dependent on the maturation stage of the follicle; in particular, elegant studies with genetic models have indicated that FSH is required for antral, but not preantral, follicle growth and maturation. To elucidate further the role of FSH and other regulatory molecules in preantral follicle development, in vitro culture systems are needed. We employed a biomaterials-based approach to follicle culture, in which follicles were encapsulated within matrices that were tailored to the specific developmental needs of the follicle. This three-dimensional system was used to examine the impact of increasing doses of FSH on follicle development for two-layered secondary (100-130 microm; two layers of granulosa cells surrounding the oocyte) and multilayered secondary (150-180 microm, several layers of granulosa cells surrounding the oocyte) follicles isolated from mice. Two-layered secondary follicles were FSH responsive when cultured in alginate-collagen I matrices, exhibiting FSH dose-dependent increases in follicle growth, lactate production, and steroid secretion. Multilayered secondary follicles were FSH dependent, with follicle survival, growth, steroid secretion, metabolism, and oocyte maturation all regulated by FSH. However, doses greater than 25 mIU/ml of FSH negatively impacted multilayered secondary follicle development (reduced follicle survival). The present results indicate that the hormonal and environmental needs of the follicular complex change during the maturation process. The culture system can be adapted to each stage of development, which will be especially critical for translation to human follicles that have a longer developmental period.  相似文献   

8.
9.
Adult cyclic hamsters were used to study the effects of interleukin-1 alpha (IL-1 alpha) on in vitro steroidogenesis in preovulatory follicles. IL-1 alpha increased progesterone secretion by preovulatory follicles during a 24-h incubation in RPMI-1640 medium containing hCG (100 mIU/ml) (progesterone levels: 17.5 +/- 2.2 vs. 10.6 +/- 1.9 ng/follicle/ml, p less than 0.05). IL-1 alpha alone had no effect on follicular steroidogenesis. The source of increased progesterone secretion was the thecae (9.8 +/- 1.0 vs. 5.8 +/- 0.4 ng/2 thecae/ml, p less than 0.01) and not the granulosa cells (6.6 +/- 0.2 vs. 6.8 +/- 0.5 ng/20,000 viable granulosa cells/ml). IL-1 alpha also stimulated production of testosterone in thecae of preovulatory follicles. The follicular progesterone increase was dependent on the time of incubation and dose of IL-1 alpha. IL-1 alpha at 5-50 U/ml maximally stimulated progesterone production in the preovulatory follicles, and no significant effect of IL-1 alpha was observed until the 12th hour of incubation. The effects of IL-1 alpha on in vitro steroidogenesis in preantral follicles, experimentally induced atretic preovulatory follicles, and newly formed corpora lutea were examined. IL-1 alpha in the presence of hCG also significantly increased progesterone secretion by atretic preovulatory follicles. In the incubation of preantral follicles or newly formed corpora lutea, however, IL-1 alpha did not alter steroidogenesis. These results indicate that IL-1 alpha stimulates progesterone secretion by preovulatory follicles and that the target tissue for this effect is the thecal layer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Ovarian tissue collected by biopsy procedures allows the performance of many studies with clinical applications in the field of female fertility preservation. The aim of the present study was to investigate the influence of reproductive phase (anestrous vs. diestrous) and ovarian structures (antral follicles and corpus luteum) on the quality, class distribution, number, and density of preantral follicles, and stromal cell density. Ovarian fragments were harvested by biopsy pick-up procedures from mares and submitted to histological analysis. The mean preantral follicle and ovarian stromal cell densities were greater in the diestrous phase and a positive correlation of stromal cell density with the number and density of preantral follicles was observed. The mean area (mm2) of ovarian structures increased in the diestrous phase and had positive correlations with number of preantral follicles, follicle density, and stromal cell density. Biopsy fragments collected from ovaries containing an active corpus luteum had a higher follicle density, stromal cell density, and proportion of normal preantral follicles. In conclusion, our results showed: (1) the diestrous phase influenced positively the preantral follicle quality, class distribution, and follicle and stromal cell densities; (2) the area of ovarian structures was positively correlated with the follicle and stromal cell densities; and (3) the presence of an active corpus luteum had a positive effect on the quality of preantral follicles, and follicle and stromal densities. Therefore, herein we demonstrate that the presence of key ovarian structures favors the harvest of ovarian fragments containing an appropriate number of healthy preantral follicles.  相似文献   

11.
As a fundamental aging mechanism, cellular senescence causes chronic inflammation via the senescence-associated secretory phenotype (SASP). Theca-interstitial cells are an essential but little-studied component of follicle development in the ovarian microenvironment. In the present study, we observed significant cellular senescence in theca-interstitial cells and secretion of chemokine (C-C motif) ligand 5 (CCL5) by these cells during aging. Furthermore, we aimed to investigate whether and how senescence-associated secretory phenotype (SASP)-associated CCL5 may be involved in follicle development. Increased levels of CCL5 in the microenvironment of follicles attenuated preantral follicle growth, survival, and estradiol secretion. Oocyte maturation and the expression of zona pellucida 3 and differentiation factor 9 (GDF9) were also inhibited by CCL5. Granulosa cell apoptosis in follicles was promoted by CCL5, accompanied by the phosphorylation of nuclear factor-κB by CCL5 and inhibition of the PI3K/AKT pathway. These results suggest that SASP-associated CCL5 produced by senescent theca-interstitial cells may impair follicle development and maturation during ovarian aging by promoting granulosa cell apoptosis.  相似文献   

12.
An enzymatic method was developed to collect intact follicles at different stages of development from cyclic hamsters to study ovarian folliculogenesis under various circumstances. Ovaries from 6 adult hamsters on each day of the cycle (Day 1 = ovulation) were collected, corpora lutea and large preantral and antral follicles were dissected, and follicles saved. Minced ovaries were then incubated with a mixture of collagenase, DNAse and pronase at 37 degrees C for 20 min to disperse intact follicles. Histological studies with 2191 isolated follicles revealed 10 different stages of follicular development (depending on the number of granulosa cell layers surrounding the oocyte and development of the antrum). Of the total follicular population, 14% showed signs of atresia, with 50% of those having 1-3 layers of granulosa cells (Stages 1-3); a second peak of 18% was observed in antral follicles (Stages 8-10). No signs of thecal cells were evident until the follicles reached Stage 6 (7-8 layers of granulosa cells), which possibly accounts for reduced atresia in this class and beyond. Ultrastructural study revealed that there were no signs of morphological damage to the basement membrane or to other subcellular organelles in the small preantral follicles. The presence of subnuclear lipid droplets in follicles with 3 layers of granulosa cells provided evidence for potential steroidogenesis by small follicles. The number of Stage 1-10 follicles was remarkably constant throughout the estrous cycle (460 +/- 34 per animal on Day 1 vs. 492 +/- 66 on Day 4). The usefulness of this method in analyzing follicular kinetics is illustrated in experiments involving hypophysectomy and the effects of unilateral ovariectomy. This procedure offers an improved method to study the factors responsible for the growth and the differentiation of small preantral follicles in the mammalian ovary.  相似文献   

13.
In the ovarian follicle, anti-Müllerian hormone (Amh) mRNA is expressed in granulosa cells from primary to preovulatory stages but becomes restricted to cumulus cells following antrum formation. Anti-Müllerian hormone regulates follicle development by attenuating the effects of follicle stimulating hormone on follicle growth and inhibiting primordial follicle recruitment. To examine the role of the oocyte in regulating granulosa cell Amh expression in the mouse, isolated oocytes and granulosa cells were co-cultured and Amh mRNA levels were analysed by real-time RT-PCR. Expression in freshly isolated granulosa cells increased with preantral follicle development but was low in the cumulus and virtually absent in the mural granulosa cells of preovulatory follicles. When preantral granulosa cells were co-cultured with oocytes from early preantral, late preantral or preovulatory follicles, and when oocytes from preovulatory follicles were co-cultured with cumulus granulosa cells, Amh expression was increased at least 2-fold compared with granulosa cells cultured alone. With oocytes from preantral but not preovulatory follicles, this was a short-range effect only observed with granulosa cells in close apposition to oocytes. We conclude that stage-specific oocyte regulation of Amh expression may play a role in intra- and inter-follicular coordination of follicle development.  相似文献   

14.
The aim of the present study was to assess the role of follicle stimulating hormone (FSH), epidermal growth factor (EGF) or a combination of EGF and FSH on the in vitro growth of porcine preantral follicles, estradiol secretion, antrum formation, oocyte maturation and subsequent embryonic development. Porcine preantral follicles were cultured for 3 days in the absence or in the presence of FSH or EGF. Oocytes from these follicles were then matured, fertilized in vitro and embryos were cultured. Estradiol secretion and histological analysis of cultured follicles were also carried out. The results showed that when FSH, or a combination of EGF and FSH, was added to the culture medium, most of preantral follicles grew to antral follicles with high estradiol secretion and the oocytes from these antral follicles could mature, fertilize and develop to the blastocyst stage. Without FSH, or a combination of EGF and FSH, preantral follicles were unable to develop to the antral stage. Histology demonstrated that the resulting follicles were nonantral, estradiol production was reduced and none of their oocytes matured after in vitro maturation. The results indicate the essential role of FSH in promoting in vitro growth of porcine preantral follicle, estradiol secretion, antrum formation, oocyte maturation and subsequent embryonic development. EGF with FSH treatment of porcine preantral follicles improves the quality of oocytes, shown by a higher frequency of embryonic development.  相似文献   

15.
16.
Studies in both mammalian and nonmammalian ovarian model systems have demonstrated that activation of the mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) signaling pathways modulates steroid biosynthesis during follicle development, yet the collective evidence for facilitory versus inhibitory roles of these pathways is inconsistent. The present studies in the hen ovary describe the changing role of MAPK and PKC signaling in the regulation of steroidogenic acute regulatory protein (STAR) expression and progesterone production in undifferentiated granulosa cells collected from prehierarchal follicles prior to follicle selection versus differentiated granulosa from preovulatory follicles subsequent to selection. Treatment of undifferentiated granulosa cells with a selective epidermal growth factor receptor (EGFR) and ERBB4 receptor tyrosine kinase inhibitor (AG1478) both augments FSH receptor (Fshr) mRNA expression and initiates progesterone production. Conversely, selective inhibitors of both EGFR/ERBB4 and MAPK activity attenuate steroidogenesis in differentiated granulosa cells subsequent to follicle selection. In addition, inhibition of PKC signaling with GF109203X augments FSH-induced Fshr mRNA plus STAR protein expression and initiates progesterone synthesis in undifferentiated granulosa cells, but inhibits both gonadotropin-induced STAR expression and progesterone production in differentiated granulosa. Granulosa cells from the most recently selected (9- to 12-mm) follicle represent a stage of transition as inhibition of MAPK signaling promotes, while inhibition of PKC signaling blocks gonadotropin-induced progesterone production. Collectively, these data describe stage-of-development-related changes in cell signaling whereby the differentiation-inhibiting actions of MAPK and PKC signaling in prehierarchal follicle granulosa cells undergo a transition at the time of follicle selection to become obligatory for gonadotropin-stimulated progesterone production in differentiated granulosa from preovulatory follicles.  相似文献   

17.
Our objective was to study the direct action of a GnRH-I agonist, leuprolide acetate (LA), on ovarian steroidogenesis in preovulatory follicles obtained from equine chorionic gonadotropin (eCG)-treated rats. Previously, we have demonstrated an inhibitory effect of LA on steroidogenesis and follicular development. In this study, we tested the hypothesis that gonadotropin-releasing hormone (GnRH) exerts its negative effect on follicular development by inhibiting thecal cytochrome P-450 C17 (P450C17) alpha-hydroxylase expression and, consequently, androgen synthesis. Studies were carried out in prepubertal female rats injected with either eCG (control) or eCG plus LA (LA) and killed at different time points. Immunohistochemical studies indicated that LA induced steroidogenic acute regulatory protein (StAR) expression mainly in theca cells of preantral and antral follicles. In addition, serum progesterone levels increased significantly (P < 0.05), whereas those of androsterone decreased (P < 0.05) after 8 h of LA treatment. This inhibition caused by LA seemed to be a consequence of the decreased expression of follicular P450C17 alpha-hydroxylase, as demonstrated by Western blot and RT-PCR techniques. In vitro studies using follicles isolated from 48-h-eCG-treated rats and cultured with LA showed a significant (P < 0.05) inhibition of FSH-induced androsterone follicular content as well as P450C17 alpha-hydroxylase protein levels, as determined by Western analysis. However, LA increased StAR protein expression in these follicles without significant changes in P450scc enzyme levels. Taking all these findings into account, we suggest that GnRH-I exerts a direct inhibitory action on gonadotropin-induced follicular development by decreasing the temporal expression of the P450C17 enzyme and, consequently, androgen production, thus reducing the supply of estrogens available to developing follicles.  相似文献   

18.
Women are born with a finite population of ovarian follicles, which are slowly depleted during their reproductive years until reproductive failure (menopause) occurs. The rate of loss of primordial follicles is determined by genetic and environmental influences, but certain toxic exposures can accelerate this process. Ionizing radiation reduces preantral follicle numbers in rodents and humans in a dose-dependent manner. Cigarette smoking is linked to menopause occurring 1-4 yr earlier than with nonsmokers, and components of smoke, polycyclic aromatic hydrocarbons, can cause follicle depletion in rodents or in ovaries in vitro. Chemotherapeutic agents, such as alkylating drugs and cisplatin, also cause loss of preantral ovarian follicles. Effects depend on dose, type, and reactivity of the drug, and the age of the individual. Evidence suggests DNA damage may underlie follicle loss induced by one common alkylating drug, cyclophosphamide. Occupational exposures have also been linked to ovarian damage. In an industrial setting, 2-bromopropane caused infertility in men and women, and it can induce ovarian follicle depletion in rats. Solvents, such as butadiene, 4-vinylcyclohexene, and their diepoxides, can also cause specific preantral follicle depletion. The mechanism(s) underlying effects of the latter compound may involve alterations in apoptosis, survival factors such as KIT/Kit Ligand, and/or the cellular signaling that maintains primordial follicle dormancy. Estrogenic endocrine disruptors may alter follicle formation/development and impair fertility or normal development of offspring. Thus, specific exposures are known or suspected of detrimentally impacting preantral ovarian follicles, leading to early ovarian failure.  相似文献   

19.
Aromatase inhibitors in ovarian stimulation   总被引:1,自引:0,他引:1  
The selective estrogen receptor modulator, clomiphene citrate (CC), has been the principal drug used for induction of ovulation in women with polycystic ovarian syndrome (PCOS). CC is associated with adverse side effects and low pregnancy rates attributed to long-lasting estrogen receptor depletion. Anastrozole and letrozole are potent, non-steroidal, reversible aromatase inhibitors, developed for postmenopausal breast cancer therapy. We hypothesized that aromatase inhibitors could mimic the action of CC in reducing estrogen negative feedback on follicle stimulating hormone (FSH) secretion, without depleting estrogen receptors. In a series of preliminary studies, we reported the success of aromatase inhibition in inducing ovulation in anovulatory women with PCOS. Moreover, we showed that concomitant use of aromatase inhibitors resulted in a significant reduction of the FSH dose needed for controlled ovarian hyperstimulation. We suggest that aromatase inhibitors act through an increase in endogenous gonadotropin secretion as well as through increased intraovarian androgen levels that may increase ovarian FSH receptors. Recently, we demonstrated the safety of aromatase inhibitors in pregnancy outcome studies examining spontaneous pregnancy loss, multiple pregnancy rates and congenital anomalies compared to a control group of infertility patients treated with CC.  相似文献   

20.
The gonadotropin-primed immature rat has become the most common model for the study of follicular development and ovulation. In this study, prepubertal female rats, 23 and 24 days old, were injected s. c. with 5 IU eCG, and ovaries were collected for topical autoradiography of FSH and hCG receptors at 48 or 24 h post-eCG, respectively (i.e., Day 25). In a baseline group, on Day 25 (before eCG), even the smallest preantral follicles with 1 layer of granulosa cells (GCs; primary follicles) possessed FSH receptors, but hCG receptors were found only on the theca of follicles with 2 or more layers of GCs. Human CG receptors were especially prominent in the interstitium that intimately surrounds preantral follicles without any distinction between theca and interstitial cells. There was a discrete theca surrounding antral follicles. Occasionally antral follicles had hCG receptors in the interstitium, but the adjacent theca was negative, suggesting that these follicles might be destined for atresia. By 24 h post-eCG, a now-discrete theca layer with hCG receptors surrounded all preantral follicles except for the primary follicles, which never responded to eCG. The interstitium was hypertrophied and epithelioid, as was the theca surrounding nonatretic preantral and antral follicles. Increased mitotic activity characterized the growing preantral follicle, and for the first time, FSH binding in GCs of antral follicles was greater than in the preantral population. By 48 h post-eCG, the primary follicles were still unresponsive to eCG. FSH receptors were even more pronounced in the GCs of large antral follicles, although hCG receptors were present in the GCs of only one third of the antral follicles, reflecting the small dose of eCG administered. By 48 h post-eCG, receptors in the interstitium were barely detectable. Using this model, the following study considers the functional in vitro changes in steroidogenesis in follicles from the smallest preantral follicles to the largest antral follicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号