首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
We describe a technique for monitoring the kinetics of sickle cell hemoglobin gelation by observing the change in the amplitude and linewidth of the water proton magnetic resonance. The resulting kinetic progress curves are very similar to those obtained by optical birefringence and turbidity methods. The curves consist of a delay, followed by a rapidly accelerating signal change which terminates quickly. From a study of the temperature dependence of the delay time, it is shown that all three techniques see the onset of gelation simultaneously. The origin of the change in physical properties upon gelation is briefly discussed in relation to the component steps of the reaction.  相似文献   

2.
The solubility equilibrium between monomer and polymer which has been shown to exist in deoxyhemoglobin S solutions is examined in solutions partially saturated with carbon monoxide. The total solubility is found to increase monotonically with increasing fractional saturation. At low fractional saturations the increase is nearly linear, amounting roughly to an increase of 0.01 g cm?3 in solubility for each 10% increase in fractional saturation. Linear dichroism measurements on the spontaneously aligned polymer phase are used to examine the composition of the polymer as a function of the fractional saturation of the corresponding solution phase. The dichroism experiments show that the polymer phase contains less than 5% of CO-liganded hemes even at supernatant fractional saturations in excess of 70%. The polymer selects against totally liganded hemoglobin molecules by a minimum factor of 65 and against singly liganded molecules by a factor of at least 2.5. Consequently, polymerized hemoglobin S has a ligand affinity which is significantly lower than that of monomeric hemoglobin S in the deoxy quaternary structure.The kinetics of the polymerization reaction in the presence of CO are similar to those observed in pure deoxyhemoglobin S solutions. The polymerization is preceded by a pronounced delay, the duration of which, td, is proportional roughly to the 30th power of the solubility. At low fractional saturations, this amounts to a tenfold increase in td for each 10% increase in the fractional saturation.These results show that the polymerization reaction is nearly specific for deoxyhemoglobin. Models for the dependence of the solubility and the polymer saturation on ligand partial pressure demonstrate the importance of solution phase non-ideality in determining the solubility of mixtures. The results require selection against partially liganded species which is significantly greater than is predicted by the two-state allosteric model. The data are compatible with either sequential or allosteric models in which the major polymerized component is the unliganded hemoglobin molecule.  相似文献   

3.
4.
The kinetics of deoxyhemoglobin S gelation have been investigated using photolytic dissociation of the carbon monoxide complex to initiate the process. Measurements over a wide range of times, 10(-3)-10(4) show that both the concentration dependence of the tenth-time (i.e., the time required to complete one-tenth the reaction) and the time dependence of the process decrease as gelation speeds up. In slowly gelling samples, where single domains of polymers are formed in the small sample volumes employed with this technique (1-2 x 10(-9) cm3), there is a marked increase in the variability of the tenth-times. These results are explained by a mechanism in which gelation is initiated by homogeneous nucleation of polymers in the bulk solution phase, followed by heterogeneous nucleation on the surface of existing polymers. At the lowest concentrations, homogeneous nucleation is so improbable that stochastic behavior is observed in the small sample volumes, and heterogeneous nucleation is the dominant pathway for polymer formation, thereby accounting for the high time dependence. At the highest concentrations homogeneous nucleation becomes much more probable, and the time dependence decreases. The decrease in concentration dependence of the tenth-time with increasing concentration results from a decrease in size of both the homogeneous and heterogeneous critical nuclei. The model rationalizes the major observations on the kinetics of gelation of deoxyhemoglobin S, and is readily testable by further experiments.  相似文献   

5.
This paper describes the thermodynamic behavior of gels of deoxyhemoglobin S. The solubility of the protein with respect to assembled hemoglobin fibers has been measured using a sedimentation technique. The solubility in 0.15 m-potassium phosphate buffer (pH 7.15) is found to decrease with increasing temperature, attain a minimum value of 0.16 g cm?3 at 37 °C, and then increase at higher temperatures. The amount of polymer present at various hemoglobin concentrations and temperatures is presented as part of a phase diagram that may be useful for the calibration of other measurement techniques. The effects of varying pH and urea concentration upon the solubility have also been studied.The heat absorption accompanying gelation has been measured by scanning calorimetry. Using sedimentation data on the amount of polymer formed, molar enthalpy changes are obtained. There is a large negative heat capacity change of ? 197 cal deg. mol?1 and ΔH = 0 near 37 °C. Calorimetric molar enthalpy changes are found to agree with those calculated from the temperature dependence of the solubility by the van't Hoff equation.Our previous two-phase, two-component thermodynamic model of gelation is extended to include the effects of solution non-ideality. A large contribution to the activity of the hemoglobin in the solution phase results from the geometric effect of excluded volume. Incorporating solution phase non-ideality permits the calculation of standard state thermodynamic quantities for the gelation process at 37 °C: ΔGO ? ?3 k cal mol?1, ΔHO ~ 0, ΔSO ~ 10 cal deg.?1 mol?1. The excluded volume effect is also capable of explaining observations of the minimum gelling concentrations of hemoglobin mixtures containing deoxyhemoglobin S without requiring copolymerization of the non-S hemoglobin.  相似文献   

6.
The dielectric constants of sickle cell hemoglobin were determined before and after gelation. The dielectric properties of oxy and deoxy sickle cell hemoglobin in solution are nearly identical to those of oxy and deoxy hemoglobin A. Only in the gel state did deoxy sickle cell hemoglobin display dielectric behavior different from that in solution. Upon gelation of deoxy sickle cell hemoglobin, the dielectric constant showed a marked decrease, and the relaxation frequency shifted towards higher frequencies. This result suggests that dielectric constant measurement can be used for the investigation of the kinetics of polymerization of sickle cell hemoglobin molecules. Despite the marked decrease in the dielectric constant, deoxy sickle cell hemoglobin still showed a well-defined dielectric dispersion even in the gel state. This indicates that individual molecules have considerable freedom of rotation in gels. It was observed that the dielectric properties of gelled deoxy sickle cell hemoglobin were affected by electrical fields at the level of 10 to 20 V/cm. This observation suggests that electrical fields of moderate strengths are able to perturb the gel structure if the system is near the transition region. The non-linear electrical behavior of gelled sickle cell hemoglobin will be discussed further in subsequent papers.  相似文献   

7.
The scaled particle theory for mixtures of hard spheres is used to calculate the effect of added proteins of varying size upon the solubility of sickle cell hemoglobin. For a given added weight, smaller macromolecules are more effective in lowering the solubility of sickle cell hemoglobin. Calculations based upon this model agree with many recently reported observations. The observed effect of the addition of myoglobin or hemoglobin α-chains on the minimum gelling concentration of sickle cell hemoglobin (Benesch et al.), however, is smaller than predicted. We suggest that this difference may arise from self-association of the added species.  相似文献   

8.
This paper outlines a theoretical formalism for describing the gelling behavior of sickle cell hemoglobin in mixtures with other hemoglobin and non-hemoglobin proteins. Experimental applications are reported for hybridized and unhybridized mixtures of HbS (sickle hemoglobin), HbA (adult hemoglobin), HbF (fetal hemoglobin), and HbC Harlem. The theory is a general one based on a modification of the sol—gel phase equilibrium equation to take into account the varying tendencies of different hemoglobin species to promote gelation, and specific hemoglobin interactions are encoded in gelling coefficients which quantify gelling capability. Gelling coefficients for the hemoglobin species dealt with here are evaluated by measuring incorporation into the polymer phase in S-A, S-F, and S-CH mixtures. Given this information, the theory is found to provide accurate prodictions for the equilibrium gelling behavior of the calibrating pairs themselves when they are hybridized or unhybridized, for gelation kinetics in diverse mixtures of these species taken two, three and four at a time, for the anomalous equilibrium and kinetic gelling behavior of A- CH mixtures, and it also accounts for a variety of results previously published by others. Apparently, given the gelling coefficients for any mutant hemoglobin, one can compute gelling behavior (equilibrium, kinetics, incorporation, etc.) in any specified mixture with any other known hemoglobin(s). The gelling coefficients for any mutant hemoglobin depend upon, and therefore provide information about, gel interactions at the mutant site. From the gelling coefficients one can also obtain the change in free energy of interaction in the gel due to the altered residue. Experimental approaches are described which allow an analysis for the gelling coefficients of any mutant hemoglobin to be performed in a few hours.  相似文献   

9.
Oxygen binding to sickle cell hemoglobin.   总被引:1,自引:0,他引:1  
The extent of oxygen binding and light scattering of concentrated solutions of hemoglobin S have been determined as a function of oxygen partial pressure using a thin film optical cell. Nearly reversible oxygen binding is observed as witnessed by the small hysteresis found between slow deoxygenation and reoxygenation runs. High co-operativity is noted from unusually large concentration-dependent Hill coefficients when aggregated hemoglobin S is present. The application of linkage theory with the inclusion of non-ideal solution properties permits a test of various simple models for oxygen binding to both the monomer (α2β2s) and polymer (aggregated) phase. It is concluded that oxygen binding to the polymer is either negligible or small under present experimental conditions. Phase diagrams of the solution concentration in equilibrium with polymer phase as a function of oxygen partial pressure are derived using best fit values of polymer parameters.  相似文献   

10.
S C Larson  G W Fisher  N T Ho  T J Shen  C Ho 《Biochemistry》1999,38(29):9549-9555
Three recombinant mutants of human fetal hemoglobin (Hb F) have been constructed to determine what effects specific amino acid residues in the gamma chain have on the biophysical and biochemical properties of the native protein molecule. Target residues in these recombinant fetal hemoglobins were replaced with the corresponding amino acids in the beta chain of human normal adult hemoglobin (Hb A). The recombinant mutants of Hb F included rHb F (gamma 112Thr --> Cys), rHb F (gamma 130Trp --> Tyr), and rHb F (gamma 112Thr --> Cys/gamma 130Trp --> Tyr). Specifically, the importance of gamma 112Thr and gamma 130Trp to the stability of Hb F against alkaline denaturation and in the interaction with sickle cell hemoglobin (Hb S) was investigated. Contrary to expectations, these rHbs were found to be as stable against alkaline denaturation as Hb F, suggesting that the amino acid residues mentioned above are not responsible for the stability of Hb F against the alkaline denaturation as compared to that of Hb A. Sub-zero isoelectric focusing (IEF) was employed to investigate the extent of hybrid formation in equilibrium mixtures of Hb S with these hemoglobins and with several other hemoglobins in the carbon monoxy form. Equimolar mixtures of Hb A and Hb S and of Hb A(2) and Hb S indicate that 48-49% of the Hb exists as the hybrid tetramer, which is in agreement with the expected binomial distribution. Similar mixtures of Hb F and Hb S contain only 44% hybrid tetramer. The results for two of our recombinant mutants of Hb F were identical to the results for mixtures of Hb F and Hb S, while the other mutant, rHb F (gamma 130Trp --> Tyr), produced 42% hybrid tetramer. The sub-zero IEF technique discussed here is more convenient than room-temperature IEF techniques, which require Hb mixtures in the deoxy state. These recombinant mutants of Hb F were further characterized by equilibrium oxygen binding studies, which indicated no significant differences from Hb F. While these mutants of Hb F did not have tetramer-dimer dissociation properties significantly altered from those of Hb F, future mutants of Hb F may yet prove useful to the development of a gene therapy for the treatment of patients with sickle cell anemia.  相似文献   

11.
Ten amino acids have been studied for their effects on the gelation of sickle hemoglobin using the recently developed assay of Hofrichter, Ross and Eaton. By monitoring kinetics and using high speed sedimentation, the rate and extent of gelation are directly measured. Of the amino acids tested, only phenylalanine significantly inhibited the gelation of sickle hemoglobin. The systematic study of the effects of additives, such as amino acids, on gelation serves as a basis for the study of potential non-covalent inhibitors of sickling.  相似文献   

12.
Thin ribbon-like crystals are intermediates in the formation of large crystals of deoxyhemoglobin S from many individual fibers. The thin crystals show foldedover regions when observed by electron microscopy. Some crystals are sufficiently long to have several folds each separated by a distance of about 4.4 μm, suggesting that the crystals are helical in solution. The thickness of the crystals varies from 500 to 900 Å as shown by heavy-metal shadowing and by measurements of the thickness at the crossover point where an edge-on view of the crystal is obtained.  相似文献   

13.
Sickle cell hemoglobin macrofibers are an important intermediate in the low pH crystallization pathway of deoxygenated hemoglobin S that link the fiber to the crystal. Macrofibers are a class of helical particles differing primarily in their diameters but are related by a common packing of their constituent subunits. We have performed three-dimensional reconstructions of three types of macrofibers. These reconstructions show that macrofibers are composed of rows of Wishner-Love double strands in an arrangement similar to that in the crystal. We have measured the orientation and co-ordinates of double strands in macrofibers using cross-correlation techniques. In this approach, the electron density projections of double strands calculated from the known high-resolution crystal structure are compared with regions along the length of the particles in which the distinct pattern of double strands in c-axis projection may be observed. Contrary to assertions by Makinen & Sigountos (1984), our results unambigously demonstrate that adjacent rows of double strands in macrofibers are oriented in an antiparallel manner, as in the Wishner-Love crystal. Adjacent rows of antiparallel double strands are displaced along the helical axis relative to their co-ordinates in the crystal. Electron density models of macrofibers based on the crystallographic structure of the sickle hemoglobin double strand are in good agreement with the projections of macrofibers observed in electron micrographs. We have studied the structure of a closely related crystallization intermediate, the sickle hemoglobin paracrystal. The arrangement of double strands in paracrystals is similar to that in Wishner-Love crystals, except that they are displaced along the a-axis of the crystal. Measurements of the double strand co-ordinates reveal that the distribution of strand positions is bimodal. These results further establish the close structural relationship between macrofibers and paracrystals as intermediates in the crystallization of deoxygenated sickle hemoglobin.  相似文献   

14.
15.
16.
M J Behe  W S Englander 《Biochemistry》1979,18(19):4196-4201
The ability of a variety of phenyl derivatives to inhibit sickle cell hemoglobin gelation was placed on a quantitative scale by parallel equilibrium and kinetic assays. Modifications of the phenyl ring studied include polar, nonpolar, and charged substituents, added aromatic rings, and loss of aromaticity. Other noncovalent inhibitors previously reported to have high potency were measured and placed on the same quantitative scale. Some phenyl derivatives were found to be as effective an any other known noncovalent antigelling agent. The phenyl compounds penetrate easily into red cells, and their potency is tolerant to chemical modification, which holds out the possibility of designing low-toxicity derivatives. On the negative side, the level of potency obtainable appears to be inadequate for clinical use. The best phenyl inhibitors display a functionally defined inhibitory constant (K1) of 75 mM, and it can be estimated that inhibitor concentrations over 20 mM would be necessary to obtain minimal clinically significant benefit. Furthermore, with the variety of modifications tested here, no impressive increase in activity could be achieved over that found in the simplest phenyl compounds.  相似文献   

17.
A growing body of experimental evidence suggests that the oxidative neurotoxicity of hemoglobin A may contribute to neuronal loss after CNS hemorrhage. Several hemoglobin variants, including hemoglobin S, are more potent oxidants in cell-free systems. However, despite the increased incidence of hemorrhagic stroke associated with sickle cell disease, little is known of the effect of hemoglobin S on cells of neural origin. In the present study, its toxicity was quantified and directly compared with that of hemoglobin A in murine cortical cell cultures. Reactive oxygen species production, as assessed by cellular fluorescence after treatment with dihydrorhodamine 123, was significantly increased by exposure to 10 μM hemoglobin S for 2-4 h. Neuronal death, as measured by propidium iodide staining and lactate dehydrogenase release, commenced at 4 h; for a 20-h exposure, the EC50 was approximately 0.71 μm. Glial cells were not injured. Cell death was completely blocked by iron chelation with deferoxamine or phenanthroline. Direct comparison of sister cultures exposed to either hemoglobin A or hemoglobin S revealed a similar amount of cell injury in both groups. A significant difference was consistently observed only after treatment with 1 μM hemoglobin for 20 h, which resulted in death of approximately one third more neurons with hemoglobin S than with hemoglobin A. The results of this study suggest that sickle cell hemoglobin is neurotoxic at physiologically relevant concentrations. This toxicity is iron-dependent, oxidative, and quantitatively similar to that produced by hemoglobin A.  相似文献   

18.
Sickle cell nitrosyl hemoglobin was examined for gelation by an ultracentrifugal method previously described (Briehl &; Ewert, 1973) and by birefringence. In the presence of inositol hexaphosphate gelation which exhibited the endothermic temperature dependence seen in gels of deoxyhemoglobin S was observed by both techniques. In the absence of inositol hexaphosphate no gelation was observed, nor did nitrosyl hemoglobin A exhibit gelation. On the assumption that gelation is dependent on the deoxy or T (low ligand affinity) as opposed to the oxy or R (high ligand affinity) quaternary structure this supports the conclusion that nitrosyl hemoglobin S in inositol hexaphosphate assumes the T structure, in contrast to the other liganded ferrohemoglobin derivatives oxy and carbon monoxide hemoglobin. Assuming further that the quaternary structures and isomerizations are the same in hemoglobins A and S it can also be concluded that nitrosyl hemoglobin A in inositol hexaphosphate assumes the T state. Since no gelation was seen in stripped nitrosyl hemoglobin S, inositol hexaphosphate serves to effect an R to T switch in this derivative. Thus R-T isomerization in nitrosyl hemoglobin occurs without change in ligand binding at the sixth position of the heme group confirming the conclusion of Salhany (1974) and Salhany et al. (1974).Lowering of the pH toward 6 favors gelation of NO hemoglobin S as it does of deoxy and aquomethemoglobin S (Briehl &; Ewert, 1973,1974), consistent with a favoring of the T structure due to strengthening of the interchain salt bridges and the binding of inositol hexaphosphate and/or changes in site-to-site interactions on which gelation depends.  相似文献   

19.
A β-sheet conformation is predicted at the N-terminal of β chains in sickle cell hemoglobin (Hb S) as a result of the β6 Glu → Val mutation. Since Glu is the weakest and Val is the strongest β-sheet former in the predictive method of Chou and Fasman [Biochemistry 13, 211, 222 (1974)], such a substitution greatly increases the β-sheet potential in the β 1–6 region. The similarity in the concentration and temperature dependence of Hb S gelation to β-sheet formation in polyamino acids suggest that a common aggregation mechanism may be involved. Conditions to cause a β → α trans-formation at the β 1–6 region of Hb S is discussed relative to the treatment of sickle cell disease.  相似文献   

20.
L W Fung  K L Lin  C Ho 《Biochemistry》1975,14(15):3424-3430
High-resoluiton proton nuclear magnetic resonance spectroscopy at 250 MHz has been used to investigate sickle cell hemoglobin. The hyperfine shifted, the ring-current shifted, and the exchangeable proton resonances suggest that the heme environment and the subunit interfaces of the sickle cell hemoglobin molecule are normal. These results suggest that the low oxygen affinity in sickle cell blood is not due to conformational alterations in the heme environment or the subunit interfaces. The C-2 proton resonances of certain histidyl residues can serve as structural probes for the surface conformation of the hemoglobin molecule. Several sharp resonances in sickle cell hemoglobin are shifted upfield from their positions in normal adult hemoglobin. These upfield shifts, which are observed in both oxy and deoxy forms of the molecule under various experimental conditions, suggest that some of the surface residues of sickle cell hemoglobin are altered and they may be in a more hydrophobic environment as compared with that of normal human adult hemoglobin. These differences in surface conformation are pH and ionic strength specific. In particular, upon the addition of organic phosphates to normal and sickle cell hemoglobin samples, the differences in their aromatic proton resonances diminish. These changes in the surface conformation may, in part, be responsible for the abnormal properties of sickle cell hemoglobin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号