首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proton and metal complexes of adenyl-5''-yl imidodiphosphate.   总被引:2,自引:0,他引:2       下载免费PDF全文
The formation constants of the complexes of adenyl-5'-yl imidodiphosphate with H+ Mg2+, Ca2+ and a number of bivalent transition-metal ions were measured potentionmetrically. The complexes are generally a little more stable than the analogous complexes of ATP. By measuring the formation constants at two temperatures, this increase in stability was shown to result from an increased enthalpy change on complex-formation.  相似文献   

2.
1. Insoluble complexes, formed by electrostatic interaction between chondromucoprotein and chromoproteins (haemoglobin, methaemalbumin), were studied by measurement of precipitated pigment and by decrease in peroxidatic activity, maximum formation from aqueous solution occurring at pH 4·0–4·6. 2. Chondromucoprotein did not form complexes with plasma haptoglobins and haptohaemoglobins under these conditions, and high concentrations had no significant effect on colorimetric estimates of serum haptoglobin, although the peroxidatic activity of haemoglobinaemic serum was depressed owing to formation of chondromucoprotein–methaemalbumin complex. 3. The complexes formed by interaction between chondromucoprotein and plasma proteins contain two protein-bound biologically active components (plasminogen, haematin), as a result of co-precipitation after interaction between their carriers and chondromucoprotein. The possible presence of other biologically active trace components is discussed. 4. The results are related to complex-formation between other plasma proteins and chondromucoprotein, and possible implications arising from the complex-forming properties of tissue and urine chondromucoprotein are referred to. It is concluded that the inability of chondromucoprotein to form complexes with normal urine proteins is due to a deficiency of fibrinogen, β-lipoproteins and chromoproteins, which, in plasma, form a large proportion of the proteins involved in complex-formation.  相似文献   

3.
Electrometric and spectrophotometric titrations showed vancomycin to contain groups having pK values of about 2.9, 7.2, 8.6, 9.6, 10.5 and 11.7. Of these the four last-named were phenolic. Titration above pH11 and below pH1 was irreversible and antibiotic potency was destroyed. Combination with the specific peptide diacetyl-l-lysyl-d-alanyl-d-alanine hindered the titration of the first three phenolic groups. Spectrophotometric titration of iodovancomycin showed that the phenolic group with pK 9.6 was the one iodinated. The stability of the vancomycin-peptide complex in the range pH1-13 showed that complex-formation occurred only when carboxyl groups were ionized and the phenolic groups were non-ionized. The complex was formed in concentrations of urea up to 8m, of potassium chloride up to 4m, of sodium dodecyl sulphate up to 1%, and at temperatures up to 60 degrees C. From titration curves, organic chlorine and iodine analysis, and combination with peptide, a minimum molecular weight for vancomycin of 1700-1800 was estimated. Optical-rotatory-dispersion and circular-dichroism experiments suggested that vancomycin has only limited conformational flexibility. Both vancomycin and its complexes with peptide exhibited properties suggesting aggregation. Vancomycin and iodovancomycin can be fractionated into a main fraction and at least three minor components. The isolation of these fractions salt-free is described and their antibiotic properties are shown to correlate with their ability to form complexes with peptide.  相似文献   

4.
Electrometric and spectrophotometric titrations showed vancomycin to contain groups having pK values of about 2.9, 7.2, 8.6, 9.6, 10.5 and 11.7. Of these the four last-named were phenolic. Titration above pH11 and below pH1 was irreversible and antibiotic potency was destroyed. Combination with the specific peptide diacetyl-l-lysyl-d-alanyl-d-alanine hindered the titration of the first three phenolic groups. Spectrophotometric titration of iodovancomycin showed that the phenolic group with pK 9.6 was the one iodinated. The stability of the vancomycin–peptide complex in the range pH1–13 showed that complex-formation occurred only when carboxyl groups were ionized and the phenolic groups were non-ionized. The complex was formed in concentrations of urea up to 8m, of potassium chloride up to 4m, of sodium dodecyl sulphate up to 1%, and at temperatures up to 60°C. From titration curves, organic chlorine and iodine analysis, and combination with peptide, a minimum molecular weight for vancomycin of 1700–1800 was estimated. Optical-rotatory-dispersion and circular-dichroism experiments suggested that vancomycin has only limited conformational flexibility. Both vancomycin and its complexes with peptide exhibited properties suggesting aggregation. Vancomycin and iodovancomycin can be fractionated into a main fraction and at least three minor components. The isolation of these fractions salt-free is described and their antibiotic properties are shown to correlate with their ability to form complexes with peptide.  相似文献   

5.
We have identified a tissue-kallikrein-binding protein in human serum and in the serum-free culture media from human lung fibroblasts (WI-38) and rodent neuroblastoma X glioma hybrid cells (NG108-15). Purified and 125I-labelled tissue kallikrein and human serum form an approximately 92,000-Mr SDS-stable complex. The relative quantity of this complex-formation is measured by densitometric scanning of autoradiograms. Complex-formation between tissue kallikrein and the serum binding protein was time-dependent and detectable after 5 min incubation at 37 degrees C, with half-maximal binding at 28 min. Binding of 125I-kallikrein to kallikrein-binding protein is temperature-dependent and can be inhibited by heparin or excess unlabelled tissue kallikrein but not by plasma kallikrein, collagenase, thrombin, urokinase, alpha 1-antitrypsin or kininogens. The kallikrein-binding protein is acid- and heat-labile, as pretreatment of sera at pH 3.0 or at 60 degrees C for 30 min diminishes complex-formation. However, the formed complexes are stable to acid or 1 M-hydroxylamine treatment and can only be partially dissociated with 10 mM-NaOH. When kallikrein was inhibited by the active-site-labelling reagents phenylmethanesulphonyl fluoride or D-Phe-D-Phe-L-Arg-CH2Cl no complex-formation was observed. An endogenous approximately 92,000-Mr kallikrein-kallikrein-binding protein complex was isolated from normal human serum by using a human tissue kallikrein-agarose affinity column. These complexes were recognized by anti-(human tissue kallikrein) antibodies, but not by anti-alpha 1-antitrypsin serum, in Western-blot analyses. The results show that the kallikrein-binding protein is distinct from alpha 1-antitrypsin and is not identifiable with any of the well-characterized plasma proteinase inhibitors such as alpha 2-macroglobulin, inter-alpha-trypsin inhibitor, C1-inactivator or antithrombin III. The functional role of this kallikrein-binding protein and its impact on kallikrein activity or metabolism in vivo remain to be investigated.  相似文献   

6.
The interaction between the highly basic and cytotoxic eosinophil cationic protein (ECP) and human plasma proteins is described. The major plasma protein responsible for complex-formation with ECP was shown to be the 'fast' form of alpha 2-macroglobulin (alpha 2M). Large amounts of complexes were observed in a serum obtained from a patient with hypereosinophilic syndrome. The amount of complexes that could be generated in vitro in normal fresh serum was rather low and was even less in fresh citrated plasma. Complex-formation between the non-proteolytic ECP and alpha 2M was augmented in the presence of methylamine. Binding of ECP to alpha 2M was also induced by the proteinases cathepsin G and thrombin, and the binding was competitive with cathepsin G. Methylamine and the proteinases seem to share a common mechanism in inducing binding of ECP. The nature of the ECP-alpha 2M interaction is non-covalent, but withstands high salt concentrations. The interaction with alpha 2M may reflect a mechanism by which the organism protects itself against the deleterious effects of the highly cytotoxic protein ECP.  相似文献   

7.
Ferricytochrome b5 was found to convert oxyhaemoglobin into methaemoglobin under conditions previously found to be optimal for complex-formation between ferricytochrome b5 and methaemoglobin [Mauk & Mauk (1982) Biochemistry 21, 4730-4734]. As this reaction is completely inhibited by CO, it is proposed that oxyhaemoglobin is oxidized after O2 dissociation, as has been suggested for the oxidation of oxyhaemoglobin by inorganic complexes. From the present analysis, ferricytochrome b5 seems unlikely to contribute significantly to methaemoglobin formation in vivo. Nevertheless, this observation provides a relatively convenient means of investigating the mechanism by which these two proteins interact.  相似文献   

8.
1. Some mucus glycoproteins form soluble complexes with lysozyme at neutral pH values. 2. The extent of complex-formation was determined, by an ultracentrifugal difference method, for a range of glycoproteins covering the common blood-group specificities. 3. Interaction was strongest with those glycoproteins of blood-group Lea specificity; these were also richest in sialic acid. 4. Interaction diminished with increase of ionic strength, and was not detectable at I 0.50; however, an asialoglycoprotein was found to retain some activity. The interaction is accordingly primarily, but probably not exclusively, coulombic in origin. 5. The buoyant density of lysozyme in CsCl, CsBr, CsI and Cs2SO4 was determined; the values in the last three salts are anomalously high. This finding accounts for the previously noted difficulty of separating free protein from glycoproteins by single-stage centrifugation in CsBr. 6. Conditions for effective separation of glycoproteins from secretions containing lysozyme by density-gradient centrifugation are reported.  相似文献   

9.
Serum albumin and immunoglobulin G were chromatographed on columns of dextran, hyaluronate and chondroitin 4-sulphate. The partition of the two proteins between hyaluronate and buffer was also measured by equilibrium dialysis. The results accord with the view that there is no complex-formation between the polysaccharides and the proteins in 0.05m-phosphate buffer, pH7.4, containing sodium chloride (0.1m). The observations support the hypothesis that the previously described polysaccharide enhancement of the precipitin reaction is due to exclusion and not to non-specific complex-formation.  相似文献   

10.
Protease nexin-1 (PN-1) is a proteinase inhibitor that is secreted by human fibroblasts in culture. PN-1 inhibits certain regulatory serine proteinases by forming a covalent complex with the catalytic-site serine residue; the complex then binds to the cell surface and is internalized and degraded. The fibroblast surface was recently shown to accelerate the rate of complex-formation between PN-1 and thrombin. The present paper demonstrates that the accelerative activity is primarily due to cell-surface heparan sulphate, with a much smaller contribution from chondroitin sulphate. This conclusion is supported by the effects of purified glycosaminoglycans on the second-order rate constant for the inhibition of thrombin by PN-1. Also, treatment of 35SO4(2-)-labelled cells with heparitin sulphate lyase or chondroitin sulphate ABC lyase demonstrated two discrete pools of 35S-labelled glycosaminoglycans; subsequent treatment of plasma membranes with these glycosidases showed that heparitin sulphate lyase treatment abolished about 80% of the accelerative activity and chondroitin sulphate ABC lyase removed the remaining 20%. These results show that two components are responsible for the acceleration of PN-1-thrombin complex-formation by human fibroblasts. Although dermatan sulphate is also present on fibroblasts, it did not accelerate the inhibition of thrombin by PN-1.  相似文献   

11.
Photoreduction and incorporation of iron into ferritins.   总被引:3,自引:1,他引:2       下载免费PDF全文
The characteristics of a new kallikrein-binding protein in human serum and its activities were studied. Both the kallikrein-binding protein and alpha 1-antitrypsin form 92 kDa SDS-stable and heat-stable complexes with human tissue kallikrein. In non-SDS/PAGE, the mobility of these complexes differ. Complex-formation between kallikrein and the binding protein is inhibited by heparin, whereas that between kallikrein and alpha 1-antitrypsin is heparin-resistant. In normal or alpha 1-antitrypsin-deficient-serum, the amount of 92 kDa SDS-stable complex formed upon addition of kallikrein is not related to serum alpha 1-antitrypsin levels. The rate of complex-formation between kallikrein and the binding protein is 12 times higher than that between kallikrein and alpha 1-antitrypsin. Purified alpha 1-antitrypsin, which exhibits normal elastase binding, has a kallikrein-binding activity less than 5% of that of serum. Binding of tissue kallikrein in serum is not inhibited by increasing elastase concentrations, and elastase binding in serum is not inhibited by excess tissue kallikrein. A specific monoclonal antibody to human alpha 1-antitrypsin does not bind to either 92 kDa endogenous or exogenous kallikrein complexes isolated from human serum. The studies demonstrate a new tissue kallikrein-binding protein, distinct from alpha 1-antitrypsin, is present in human serum.  相似文献   

12.
Carbon-13 NMR spectra of sodium d-gluco- and d-galactopyranuronates were measured in the presence of lanthanum, europium, praseodymium, or neodymium ions in deuterium oxide. The lanthanide-induced shifts of all the carbon signals were divided into three components based on complex-formation, contact, and pseudocontact effects. The last effects on C-1 in the α-anomers were exceedingly greater than those in the corresponding β-anomers. Carbon-13 spin-lattice relaxation times and their reduction induced by gadolinium ion were also measured and the binding sites of the ion were estimated, which showed marked differences between the two anomers and suggested the formation of bidentate complexes, involving linkages to both the ring and the carboxyl oxygen only between the α-anomers and the lanthanide ions.  相似文献   

13.
The influence of protoplasting and protoplast regeneration in the presence of polyethylene glycol on antibiotic activity, components of antibiotic complexes and antibiotic resistance in Streptomyces hygroscopicus 155 was studied. It was shown that the protoplasting and protoplast regeneration influenced the antibiotic activity. The protoplast fusion resulted in increased isolation of variants with higher antibiotic activity. The processes also affected the components of the antibiotic complexes but had no effect on the strain resistance to some antibiotics.  相似文献   

14.
Cell-to-cell movement of Poa semilatent virus (genus Hordeivirus) in infected plants is mediated by three viral ‘triple gene block’ (TGB) proteins. One of those termed TGBp3 is an integral membrane protein essential for intracellular transport of other TGB proteins and viral genomic RNA to plasmodesmata. TGBp3 targeting to plasmodesmata-associated sites is believed to involve an unconventional mechanism which does not employ endoplasmic reticulum-derived transport vesicles. Previously TGBp3 has been shown to contain a composite transport signal consisting of the central hydrophilic protein region which includes a conserved pentapeptide YQDLN and the C-terminal transmembrane segment. This study demonstrates that these TGBp3 structural elements have distinct functions in protein transport. The YQDLN-containing region is essential for TGBp3 incorporation into high-molecular-mass protein complexes. In transient expression assay formation of such complexes is necessary for entering the TGBp3-specific pathway of intracellular transport and protein delivery to plasmodesmata-associated sites. In virus-infected plants TGBp3 is also found predominantly in the form of high-molecular-mass complexes. When the complex-formation function of YQDLN-containing region is disabled by a mutation, targeting to plasmodesmata-associated sites can be complemented by a heterologous peptide capable of formation multimeric complexes. The C-terminal transmembrane segment is found to be an essential signal of TGBp3 intracellular transport to peripheral sites.  相似文献   

15.
16.
M A Novoseler 《Biofizika》1983,28(4):570-572
Studies were carried out of circular dichroism spectra of the complexes between poly-l-lysine (PL) and calf thymus DNA, E. coli DNA, T2--and T7--phage DNA, Modiolus sp. DNA. The results indicate that PL more strongly changes AT--DNA conformation as compared to GC DNA conformation. This change correlates with the size of minimal PL clusters on DNA investigated. Sequence of DNA bases produces almost no effect on conformational changes caused by the complex-formation with PL.  相似文献   

17.
1. The stable complex formed between mammalian cytochrome c and phosvitin at low ionic strength was studied by partition in an aqueous two-phase system. Oxidized cytochrome c binds to phosvitin with a higher affinity than reduced cytochrome c. The difference was equivalent to a decrease of the redox potential by 22 mV on binding. 2. Complex-formation with phosvitin strongly inhibited the reaction of cytochrome c with reagents that react as negatively charged species, such as ascorbate, dithionite, ferricyanide and tetrachlorobenzoquinol. Reaction with uncharged reagents such as NNN'N'-tetramethylphenylenediamine and the reduced form of the N-methylphenazonium ion (present as the methylsulphate) was little affected by complex-formation, whereas oxidation of the reduced cytochrome by the positively charged tris-(phenanthroline)cobalt(III) ion was greatly stimulated. 3. A similar pattern of inhibition and stimulation of reaction rates was observed when phosvitin was replaced by other macromolecular polyanions such as dextran sulphate and heparin, indicating that the results were a general property of complex-formation with polyanions. A weaker but qualitatively similar effect was observed on addition of inositol hexaphosphate and ATP. 4. It is suggested that the effects of complex-formation with polyanions on the reactivity of cytochrome c with redox reagents are mainly the result of replacing the positive charge on the free cytochrome by a net negative charge. Any steric effects on polyanion binding are small in comparison with such electrostatic effects.  相似文献   

18.
The structural events taking place during the reaction between PAI-1 (plasminogen-activator inhibitor 1) and the plasminogen activators sc-tPA (single-chain tissue plasminogen activator) and tc-tPA (two-chain tissue plasminogen activator) were studied. Complexes were formed by mixing sc-tPA or tc-tPA with PAI-1 in slight excess (on an activity basis). The complexes were purified from excess PAI-1 by affinity chromatography on fibrin-Sepharose. Examination of the purified complexes by SDS/polyacrylamide-gel electrophoresis (SDS/PAGE) and N-terminal amino acid sequence analysis demonstrated that a stoichiometric 1:1 complex is formed between PAI-1 and both forms of tPA. Data obtained from both complexes revealed the amino acid sequences of the parent molecules and, in addition, a new sequence: Met-Ala-Pro-Glu-Glu-. This sequence is found in the C-terminal portion of the intact PAI-1 molecule and thus locates the reactive centre of PAI-1 to Arg346-Met347. The proteolytic activity of sc-tPA is demonstrated by its capacity to cleave the 'bait' peptide bond in PAI-1. The complexes were inactive and dissociated slowly at physiological pH and ionic strength, but rapidly in aq. NH3 (0.1 mol/l). Amidolytic tPA activity was generated on dissociation of the complexes, corresponding to 0.4 mol of tPA/mol of complex. SDS/PAGE of the dissociated complexes indicated a small decrease in the molecular mass of PAI-1, in agreement with proteolytic cleavage of the 'bait' peptide bond during complex-formation.  相似文献   

19.
Characterization of ionomycin as a calcium ionophore.   总被引:12,自引:0,他引:12  
The ionophorous properties of a new antibiotic, ionomycin, have been studied. It was found that the antibiotic is capable of extracting calcium ion from the bulk of an aqueous phase into an organic phase. The antibiotic also acts as a mobile ion carrier to transport the cation across a solvent barrier. The divalent cation selectivity order for ionomycin as determined by ion competition experiments was found to be: Ca greater than Mg greater than Sr = Ba, where the binding of strontium and barium by the antibiotic is insignificant. The antibiotic also binds La3+ to some extent, but its complexation with monovalent alkali metal ions is negligible. Measurement of the binding of ionomycin with Ca2+ indicates that ionomycin complexes and transports calcium ion in a one to one stoichiometry.  相似文献   

20.
The binding of naphthyridinomycin (NAP) to deoxyribonucleic acid was investigated using radioisotope labeled antibiotic. Dithiothreitol (DTT) enhances complex formation in a concentration dependent fashion but was found to be slightly inhibitory at concentrations above 10 mM. [C3H3]-NAP-DNA complexes, formed in the presence or absence of reducing reagents, were stable to Sephadex G-25 chromatography and precipitation with ethanol, indicating a strong bond formed between the drug and DNA. Time course studies showed that the difference between the binding of activated and non-activated antibiotic was a DTT-dependent burst. This was followed by a second phase of binding which was similar in both the activated and non-activated antibiotics. The activation of the antibiotic by DTT was a reversible reaction at pH 7.9. The activated form at pH 5.0 was extremely stable and did not revert to the unactivated form even after an 8-h incubation period. Antibiotic-DNA complex formation was pH independent between pH 5.0 and 7.0 for activated NAP. The non-activated antibiotic bound to DNA much better at pH 5.0 than at physiological pH values. Release of antibiotic from complexes (as followed by long term dialysis) formed in the presence of DTT and at pH 5.0 was biphasic, suggesting that the drug can bind to DNA in more than one way. A constant rate of antibiotic release was observed at pH 7.9 with or without DTT. At pH 2.0 and pH 12.0, greater than 95% of the antibiotic is released from the complexes. Most of the acid released antibiotic is NAP while most of the base released antibiotic had decomposed to a more polar compound. NAP binds well to calf thymus DNA, poly(dG) . poly(dC), and T4 DNA but shows significantly less affinity for poly(dA) . poly(dT), poly(dA . dT) . poly(dA . dT), poly(dG), poly(dC), poly(dI) . poly(dC) or poly(dG . dC) . poly(dG . dC). This specificity of NAP for DNA is similar to that observed for the pyrrolo(1,4)benzodiazepine antibiotics and saframycin A and S; all of which bind to double stranded DNA through their carbinolamine or masked carbinolamine functionalities. Two mechanisms which can explain the need for activation of NAP are also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号