首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the event that a vaccine is available during an influenza pandemic, vaccine safety monitoring will occur as part of comprehensive public health surveillance of the vaccination campaign. Though inactivated influenza vaccines have been widely used in the United States and much is known about their safety profile, attention will need to be paid to both common self-limited adverse reactions and rarer, more serious events that may or may not be causally related to vaccination. The primary surveillance systems used to generate and test hypotheses about vaccine safety concerns are the Vaccine Adverse Event Reporting System (VAERS) and the Vaccine Safety Datalink (VSD), respectively. Examples of recent use of these systems to investigate influenza vaccine safety and enhancements planned for use during a pandemic are presented. Ethical issues that will need to be addressed as part of an overall vaccine safety response include risk communication and injury compensation. Advance planning and the use of available technologic solutions are needed to respond to the scientific and logistic challenges involved in safely implementing mass vaccination during a pandemic.  相似文献   

2.
This article clarifies the regulatory issues surrounding influenza pandemic vaccine for the larger policy community and describes the need for regulatory harmonization. Vaccination would save lives in an influenza pandemic, but a lack of global manufacturing capacity will leave most of the world without access to vaccine. Capacity can be expanded if governments harmonize their regulatory policies. This article details the regulatory approaches taken by the United States, the European Union, and Japan for pandemic vaccine development, three regions that produce the majority of the world's seasonal influenza vaccine. They should quickly converge on regulatory requirements, intellectual property considerations, the use of recombinant DNA techniques for vaccine production, and technical issues about the composition of pandemic vaccine.  相似文献   

3.
Pandemic influenza presents special problems for vaccine development. There must be a balance between rapid availability of vaccine and the safeguards to ensure safety, quality and efficacy of vaccine. Vaccine was developed for the pandemics of 1957, 1968, 1977 and for the pandemic alert of 1976. This experience is compared with that gained in developing vaccines for a possible H5N1 pandemic in 1997-1998. Our ability to mass produce influenza vaccines against a pandemic threat was well illustrated by the production of over 150 million doses of 'swine flu' vaccine in the USA within a 3 month period in 1976. However, there is cause for concern that the lead time to begin vaccine production is likely to be about 7-8 months. Attempts to reduce this time should receive urgent attention. Immunogenicity of vaccines in pandemic situations is compared over the period 1968-1998. A consistent feature of the vaccine trials is the demonstration that one conventional 15 microg haemagglutinin dose of vaccine is not sufficiently immunogenic in naive individuals. Much larger doses or two lower doses are needed to induce satisfactory immunity. There is some evidence that whole-virus vaccines are more immunogenic than split or subunit vaccines, but this needs substantiating by further studies. H5 vaccines appeared to be particularly poor immunogens and there is evidence that an adjuvant may be needed. Prospects for improving the development of pandemic vaccines are discussed.  相似文献   

4.
The ability to elicit broadly neutralizing antibody responses against HIV-1 is a crucial goal for a prophylactic HIV-1 vaccine. Here, we discuss the difficulties of achieving broad HIV-1 neutralization in the context of both the effective annual human influenza virus vaccine and the need to develop a pandemic influenza vaccine. Immunogen-design strategies are underway to target functionally conserved regions of the HIV-1 envelope glycoproteins, and similar strategies might be applicable to pandemic influenza virus vaccine development. Efforts to develop broadly neutralizing vaccines against either HIV-1 or influenza virus might establish a paradigm for future vaccines against highly variable pathogens.  相似文献   

5.
Pandemic influenza has become a high priority item for all public health authorities. An influenza pandemic is believed to be imminent, and scientists agree that it will be a matter of when, where, and what will be the causative agent. Recently, most attention has been directed to human cases of avian influenza caused by a H5N1 avian influenza virus. An effective vaccine will be needed to substantially reduce the impact of an influenza pandemic. Current influenza vaccine manufacturing technology is not adequate to support vaccine production in the event of an avian influenza outbreak, and it has now become clear that new innovative production technology is required. Antiviral drugs, on the other hand, can play a very important role in slowing the disease spread but are in short supply and resistance has been a major issue. Here, we provide an update on the status of pandemic vaccine development and antiviral drugs. Finally, we conclude with some proposed areas of focus in pandemic vaccine preparedness.  相似文献   

6.
In the event of pandemic influenza, only limited supplies of vaccine may be available. We use stochastic epidemic simulations, genetic algorithms (GA), and random mutation hill climbing (RMHC) to find optimal vaccine distributions to minimize the number of illnesses or deaths in the population, given limited quantities of vaccine. Due to the non-linearity, complexity and stochasticity of the epidemic process, it is not possible to solve for optimal vaccine distributions mathematically. However, we use GA and RMHC to find near optimal vaccine distributions. We model an influenza pandemic that has age-specific illness attack rates similar to the Asian pandemic in 1957-1958 caused by influenza A(H2N2), as well as a distribution similar to the Hong Kong pandemic in 1968-1969 caused by influenza A(H3N2). We find the optimal vaccine distributions given that the number of doses is limited over the range of 10-90% of the population. While GA and RMHC work well in finding optimal vaccine distributions, GA is significantly more efficient than RMHC. We show that the optimal vaccine distribution found by GA and RMHC is up to 84% more effective than random mass vaccination in the mid range of vaccine availability. GA is generalizable to the optimization of stochastic model parameters for other infectious diseases and population structures.  相似文献   

7.
New strains of influenza spread around the globe via the movement of infected individuals. The global dynamics of influenza are complicated by different patterns of influenza seasonality in different regions of the world. We have released an open-source stochastic mathematical model of the spread of influenza across 321 major, strategically located cities of the world. Influenza is transmitted between cities via infected airline passengers. Seasonality is simulated by increasing the transmissibility in each city at the times of the year when influenza has been observed to be most prevalent. The spatiotemporal spread of pandemic influenza can be understood through clusters of global transmission and links between them, which we identify using the epidemic percolation network (EPN) of the model. We use the model to explain the observed global pattern of spread for pandemic influenza A(H1N1) 2009-2010 (pandemic H1N1 2009) and to examine possible global patterns of spread for future pandemics depending on the origin of pandemic spread, time of year of emergence, and basic reproductive number (). We also use the model to investigate the effectiveness of a plausible global distribution of vaccine for various pandemic scenarios. For pandemic H1N1 2009, we show that the biggest impact of vaccination was in the temperate northern hemisphere. For pandemics starting in the temperate northern hemisphere in May or April, vaccination would have little effect in the temperate southern hemisphere and a small effect in the tropics. With the increasing interconnectedness of the world's population, we must take a global view of infectious disease transmission. Our open-source, computationally simple model can help public health officials plan for the next pandemic as well as deal with interpandemic influenza.  相似文献   

8.
According to opinion of WHO's experts, development and use of tetravaccine, which contains both interdemic and pandemic (H5N1) serotypes of influenza viruses, is one of the most promising approaches to control possible influenza pandemic. Results of recently obtained data from clinical trials allowed experts from WHO to make a conclusion that protective immunity against avian influenza virus can be achieved after 2-doses immunization, when the immune system will be primed to hemagglutinin after the 1st dose and sufficient protective immunity level will be formed after the 2nd dose. However, in case of real threat of pandemic, the time for immunization with 2 doses of the vaccine will be absent. In order to provide protection for population of Russia in a limited time frame it is reasonable to vaccinate them with H5 hemagglutinin beforehand. In that case, when real threat of pandemic will arise, not two but one injection with monovalent vaccine against avian influenza will be sufficient. This idea formed the basis for concept of development of tetravaccine. The essence of the concept is vaccination of population with tetravaccine, consisting of antigens of influenza virus serotypes H3N2, H1N1, B, and H5, before the influenza pandemic caused by H5N1 virus will begin. Such vaccination will induce immunologic memory to hemagglutinin of avian influenza virus serotype H5 and, when the real threat of the pandemic will occur, only single immunization with monovaccine against avian influenza instead of 2 doses will be required. In 2006 Scientific-Production Association "Microgen" conducted extended preclinical study of immunogenic and protective characteristics of candidate vaccines against avian influenza prepared from vaccine strains of H5N1 and H5N2 serotypes. It has been shown that candidate vaccines prepared from both strains have high protective ability against Russian epidemic isolate A/chicken/Kurgan/Russia/2/2005(H5N1). To this time Scientific-Production Association "Microgen" has produced monovalent bulk of H3N2, H1N1, and B serotypes, which are included in interdemic influenza vaccines, as well as monovalent bulk of H5N1 and H5N2 serotypes. This intermediate products are ready to be produced into tetravaccine for conducting extended preclinical studies of its safety, reactogenicity, immunogenicity, and protective properties. If results of such studies will be positive then it is possible to begin clinical trials of the tetravaccine in 2007 and to discuss the questions about its dosage, methods of challenge and schedule.  相似文献   

9.

Background

Vaccination is a cost-effective counter-measure to the threat of seasonal or pandemic outbreaks of influenza. To address the need for improved influenza vaccines and alternatives to egg-based manufacturing, we have engineered an influenza virus-like particle (VLP) as a new generation of non-egg or non-mammalian cell culture-based candidate vaccine.

Methodology/Principal Findings

We generated from a baculovirus expression system using insect cells, a non-infectious recombinant VLP vaccine from both influenza A H5N1 clade 1 and clade 2 isolates with pandemic potential. VLPs were administered to mice in either a one-dose or two-dose regimen and the immune responses were compared to those induced by recombinant hemagglutinin (rHA). Both humoral and cellular responses were analyzed. Mice vaccinated with VLPs were protected against challenge with lethal reassortant viruses expressing the H5N1 HA and NA, regardless if the H5N1 clade was homologous or heterologous to the vaccine. However, rHA-vaccinated mice showed considerable weight loss and death following challenge with the heterovariant clade virus. Protection against death induced by VLPs was independent of the pre-challenge HAI titer or cell-mediated responses to HA or M1 since vaccinated mice, with low to undetectable cross-clade HAI antibodies or cellular responses to influenza antigens, were still protected from a lethal viral challenge. However, an apparent association rate of antibody binding to HA correlated with protection and was enhanced using VLPs, particularly when delivered intranasally, compared to rHA vaccines.

Conclusion/Significance

This is the first report describing the use of an H5N1 VLP vaccine created from a clade 2 isolate. The results show that a non-replicating virus-like particle is effective at eliciting a broadened, cross-clade protective immune response to proteins from emerging H5N1 influenza isolates giving rise to a potential pandemic influenza vaccine candidate for humans that can be stockpiled for use in the event of an outbreak of H5N1 influenza.  相似文献   

10.
The potential threat of another influenza virus pandemic stimulates discussion on how to prepare for such an event. The most reasonable prophylactic approach appears to be the use of effective vaccines. Since influenza and other negative-stranded RNA viruses are amenable to genetic manipulation using transfection by plasmids, it is possible to outline new reverse genetics-based approaches for vaccination against influenza viruses. We suggest three approaches. First, we use a plasmid-only rescue system that allows the rapid generation of high-yield recombinant vaccine strains. Second, we propose developing second-generation live influenza virus vaccines by constructing an attenuated master strain with deletions in the NS1 protein, which acts as an interferon antagonist. Third, we suggest the use of Newcastle disease virus recombinants expressing influenza virus haemagglutinin proteins of pandemic (epizootic) strains as novel vaccine vectors for use in animals and possibly humans.  相似文献   

11.
Perspectives on antiviral use during pandemic influenza.   总被引:3,自引:0,他引:3  
Antiviral agents could potentially play a major role in the initial response to pandemic influenza, particularly with the likelihood that an effective vaccine is unavailable, by reducing morbidity and mortality. The M2 inhibitors are partially effective for chemoprophylaxis of pandemic influenza and evidence from studies of interpandemic influenza indicate that the neuraminidase inhibitors would be effective in prevention. In addition to the symptom benefit observed with M2 inhibitor treatment, early therapeutic use of neuraminidase inhibitors has been shown to reduce the risk of lower respiratory complications. Clinical pharmacology and adverse drug effect profiles indicate that the neuraminidase inhibitors and rimantadine are preferable to amantadine with regard to the need for individual prescribing and tolerance monitoring. Transmission of drug-resistant virus could substantially limit the effectiveness of M2 inhibitors and the possibility exists for primary M2 inhibitor resistance in a pandemic strain. The frequency of resistance emergence is lower with neuraminidase inhibitors and mathematical modelling studies indicate that the reduced transmissibility of drug-resistant virus observed with neuraminidase inhibitor-resistant variants would lead to negligible community spread of such variants. Thus, there are antiviral drugs currently available that hold considerable promise for response to pandemic influenza before a vaccine is available, although considerable work remains in realizing this potential. Markedly increasing the quantity of available antiviral agents through mechanisms such as stockpiling, educating health care providers and the public and developing effective means of rapid distribution to those in need are essential in developing an effective response, but remain currently unresolved problems.  相似文献   

12.
The threat of an influenza pandemic has alarmed countries around the globe and given rise to an intense interest in disease mitigation measures. This article reviews what is known about the effectiveness and practical feasibility of a range of actions that might be taken in attempts to lessen the number of cases and deaths resulting from an influenza pandemic. The article also discusses potential adverse second- and third-order effects of mitigation actions that decision makers must take into account. Finally, the article summarizes the authors' judgments of the likely effectiveness and likely adverse consequences of the range of disease mitigation measures and suggests priorities and practical actions to be taken.  相似文献   

13.
Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process has been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.  相似文献   

14.
Mitigation of a severe influenza pandemic can be achieved using a range of interventions to reduce transmission. Interventions can reduce the impact of an outbreak and buy time until vaccines are developed, but they may have high social and economic costs. The non-linear effect on the epidemic dynamics means that suitable strategies crucially depend on the precise aim of the intervention. National pandemic influenza plans rarely contain clear statements of policy objectives or prioritization of potentially conflicting aims, such as minimizing mortality (depending on the severity of a pandemic) or peak prevalence or limiting the socio-economic burden of contact-reducing interventions. We use epidemiological models of influenza A to investigate how contact-reducing interventions and availability of antiviral drugs or pre-pandemic vaccines contribute to achieving particular policy objectives. Our analyses show that the ideal strategy depends on the aim of an intervention and that the achievement of one policy objective may preclude success with others, e.g., constraining peak demand for public health resources may lengthen the duration of the epidemic and hence its economic and social impact. Constraining total case numbers can be achieved by a range of strategies, whereas strategies which additionally constrain peak demand for services require a more sophisticated intervention. If, for example, there are multiple objectives which must be achieved prior to the availability of a pandemic vaccine (i.e., a time-limited intervention), our analysis shows that interventions should be implemented several weeks into the epidemic, not at the very start. This observation is shown to be robust across a range of constraints and for uncertainty in estimates of both R(0) and the timing of vaccine availability. These analyses highlight the need for more precise statements of policy objectives and their assumed consequences when planning and implementing strategies to mitigate the impact of an influenza pandemic.  相似文献   

15.
Influenza is an important public health issue,especially with the aging of the population,since the most serious consequences of the illness affect the elderly.Between 1979 and 2001,approximately 41000...  相似文献   

16.
Serum antibodies induced by seasonal influenza or seasonal influenza vaccination exhibit limited or no cross-reactivity against the 2009 pandemic swine-origin influenza virus of the H1N1 subtype (pH1N1). Ferrets immunized once or twice with MF59-adjuvanted seasonal influenza vaccine exhibited significantly reduced lung virus titers but no substantial clinical protection against pH1N1-associated disease. However, priming with MF59-adjuvanted seasonal influenza vaccine significantly increased the efficacy of a pandemic MF59-adjuvanted influenza vaccine against pH1N1 challenge. Elucidating the mechanism involved in this priming principle will contribute to our understanding of vaccine- and infection-induced correlates of protection. Furthermore, a practical consequence of these findings is that during an emerging pandemic, the implementation of a priming strategy with an available adjuvanted seasonal vaccine to precede the eventual pandemic vaccination campaign may be useful and life-saving.  相似文献   

17.
Given the danger of an unprecedented spread of the highly pathogenic avian influenza strain H5N1 in humans, and great challenges to the development of an effective influenza vaccine, antiviral drugs will probably play a pivotal role in combating a novel pandemic strain. A critical limitation to the use of these drugs is the evolution of highly transmissible drug-resistant viral mutants. Here, we develop a mathematical model to evaluate the potential impact of an antiviral treatment strategy on the emergence of drug resistance and containment of a pandemic. The results show that elimination of the wild-type strain depends crucially on both the early onset of treatment in indexed cases and population-level treatment. Given the probable delay of 0.5-1 day in seeking healthcare and therefore initiating therapy, the findings indicate that a single strategy of antiviral treatment will be unsuccessful at controlling the spread of disease if the reproduction number of the wild-type strain (R0s) exceeds 1.4. We demonstrate the possible occurrence of a self-sustaining epidemic of resistant strain, in terms of its transmission fitness relative to the wild-type, and the reproduction number R0s. Considering reproduction numbers estimated for the past three pandemics, the findings suggest that an uncontrollable pandemic is likely to occur if resistant viruses with relative transmission fitness above 0.4 emerge. While an antiviral strategy is crucial for containing a pandemic, its effectiveness depends critically on timely and strategic use of drugs.  相似文献   

18.
Influenza vaccines are currently produced through egg-based methods, with one drawback being that this system is slow to respond to the surging global demand during an influenza pandemic. Alternative influenza vaccine production strategies, such as using a cell-based strategy, should be considered in pandemic situations.  相似文献   

19.
Avian influenza is an infection caused by the H5N1 virus. The infection is highly contagious among birds, and only a few known cases of human avian influenza have been documented. However, healthcare experts around the world are concerned that mutation or genetic exchange with more commonly transmitted human influenza viruses could result in a pandemic of avian influenza. Their concern remains in spite of the fact that the first United States vaccine against the H5N1 virus was recently approved. Under these circumstances the fear is that a pandemic of avian influenza could result in the kind of mortality that was seen with the Spanish influenza pandemic of 1918–1919, where the number of deaths was estimated to be as high as 40 million people. Retrospective data gathered by the American Osteopathic Association shortly after the 1918–1919 influenza pandemic have suggested that osteopathic physicians (DOs), using their distinctive osteopathic manipulative treatment (OMT) methods, observed significantly lower morbidity and mortality among their patients as compared to those treated by allopathic physicians (MDs) with standard medical care available at the time. In light of the limited prevention and treatment options available, it seems logical that a preparedness plan for the treatment of avian influenza should include these OMT procedures, provided by DOs and other healthcare workers capable of being trained to perform these therapeutic interventions. The purpose of this paper is to discuss the characteristics of avian influenza, describe the success of DOs during the 1918–1919 Spanish influenza pandemic, describe the evidence base for the inclusion of OMT as part of the preparedness plan for the treatment of avian influenza, and describe some of the specific OMT procedures that could be utilized as part of the treatment protocol for avian influenza patients.  相似文献   

20.
Annual outbreaks of influenza A infection are an ongoing public health threat and novel influenza strains can periodically emerge to which humans have little immunity, resulting in devastating pandemics. The 1918 pandemic killed at least 40 million people worldwide and pandemics in 1957 and 1968 caused hundreds of thousands of deaths. The influenza A virus is capable of enormous genetic variation, both by continuous, gradual mutation and by reassortment of genome segments between viruses. Both the 1957 and 1968 pandemic strains are thought to have originated as reassortants in which one or both human-adapted viral surface proteins were replaced by proteins from avian influenza strains. Analyses of the genes of the 1918 pandemic virus, however, indicate that this strain might have had a different origin. The haemagglutinin and nucleoprotein genome segments in particular are unlikely to have come directly from an avian source that is similar to those that are currently being sequenced. Determining whether a pandemic influenza virus can emerge by different mechanisms will affect the scope and focus of surveillance and prevention efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号