首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
P F Guidinger  T Nowak 《Biochemistry》1991,30(36):8851-8861
The participation of lysine in the catalysis by avian liver phosphoenolpyruvate carboxykinase was studied by chemical modification and by a characterization of the modified enzyme. The rate of inactivation by 2,4-pentanedione is pseudo-first-order and linearly dependent on reagent concentration with a second-order rate constant of 0.36 +/- 0.025 M-1 min-1. Inactivation by pyridoxal 5'-phosphate of the reversible reaction catalyzed by phosphoenolpyruvate carboxykinase follows bimolecular kinetics with a second-order rate constant of 7700 +/- 860 M-1 min-1. A second-order rate constant of inactivation for the irreversible reaction catalyzed by the enzyme is 1434 +/- 110 M-1 min-1. Treatment of the enzyme with pyridoxal 5'-phosphate gives incorporation of 1 mol of pyridoxal 5'-phosphate per mole of enzyme or one lysine residue modified concomitant with 100% loss in activity. A stoichiometry of 1:1 is observed when either the reversible or the irreversible reactions catalyzed by the enzyme are monitored. A study of kobs vs pH suggests this active-site lysine has a pKa of 8.1 and a pH-independent rate constant of inactivation of 47,700 M-1 min-1. The phosphate-containing substrates IDP, ITP, and phosphoenolpyruvate offer almost complete protection against inactivation by pyridoxal 5'-phosphate. Modified, inactive enzyme exhibits little change in Mn2+ binding as shown by EPR. Proton relaxation rate measurements suggest that pyridoxal 5'-phosphate modification alters binding of the phosphate-containing substrates. 31P NMR relaxation rate measurements show altered binding of the substrates in the ternary enzyme.Mn2+.substrate complex. Circular dichroism studies show little change in secondary structure of pyridoxal 5'-phosphate modified phosphoenolpyruvate carboxykinase. These results indicate that avian liver phosphoenolpyruvate carboxykinase has one reactive lysine at the active site and it is involved in the binding and activation of the phosphate-containing substrates.  相似文献   

2.
P Pasta  G Mazzola  G Carrea 《Biochemistry》1987,26(5):1247-1251
Diethyl pyrocarbonate inactivated the tetrameric 3 alpha,20 beta-hydroxysteroid dehydrogenase with second-order rate constants of 1.63 M-1 s-1 at pH 6 and 25 degrees C or 190 M-1 s-1 at pH 9.4 and 25 degrees C. The activity was slowly and partially restored by incubation with hydroxylamine (81% reactivation after 28 h with 0.1 M hydroxylamine, pH 9, 25 degrees C). NADH protected the enzyme against inactivation with a Kd (10 microM) very close to the Km (7 microM) for the coenzyme. The ultraviolet difference spectrum of inactivated vs. native enzyme indicated that a single histidyl residue per enzyme subunit was modified by diethyl pyrocarbonate, with a second-order rate constant of 1.8 M-1 s-1 at pH 6 and 25 degrees C. The histidyl residue, however, was not essential for activity because in the presence of NADH it was modified without enzyme inactivation and modification of inactivated enzyme was rapidly reversed by hydroxylamine without concomitant reactivation. Progesterone, in the presence of NAD+, protected the histidyl residue against modification, and this suggests that the residue is located in or near the steroid binding site of the enzyme. Diethyl pyrocarbonate also modified, with unusually high reaction rate, one lysyl residue per enzyme subunit, as demonstrated by dinitrophenylation experiments carried out on the treated enzyme. The correlation between inactivation and modification of lysyl residues at different pHs and the protection by NADH against both inactivation and modification of lysyl residues indicate that this residue is essential for activity and is located in or near the NADH binding site of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
THE SYNTHESES OF THE FOLLOWING ORGANOMERCURIALS ARE DESCRIBED: 2-chloromercuri-4-nitrophenol, 2-chloromercuri-4,6-dinitrophenol, 4-chloromercuri-2-nitrophenol and 2,6-dichloromercuri-4-nitrophenol. All four organomercurials show large spectral changes in the visible spectrum when thiols displace a more weakly bound ligand such as EDTA from the mercury atom. These spectral changes are primarily associated with pK perturbation of the nitrophenols. The mercurials are therefore chromophoric probes for thiol groups in proteins and other thiols of biological interest. The enzyme d-glyceraldehyde 3-phosphate dehydrogenase from lobster muscle is used as a model system in which the properties of the organomercurials may be illustrated. In particular it is shown how d-glyceraldehyde 3-phosphate dehydrogenase carboxymethylated at the active site may be mercurated at a specific site. This mercurial derivative may be crystallized and shown to be isomorphous with the parent enzyme. The mercurials also act as ;reporter groups' by monitoring phosphate or pyrophosphate binding to the enzyme. The mercurials may also be used to estimate cations by an EDTA displacement method.  相似文献   

4.
Reaction of phenylglyoxal with aspartate transcarbamylase and its isolated catalytic subunit results in complete loss of enzymatic activity. This modification reaction is markedly influenced by pH and is partially reversible upon dialysis. Carbamyl phosphate or carbamyl phosphate with succinate partially protect the catalytic subunit and the native enzyme from inactivation by phenylglyoxal. In the native enzyme complete protection from inactivation is afforded by N-(phosphonacetyl)-L-aspartate. The decrease in enzymatic activity correlates with the modification of 6 arginine residues on each aspartate transcarbamylase molecule, i.e. 1 arginine per catalytic site. The data suggest that the essential arginine is involved in the binding of carbamyl phosphate to the enzyme. Reaction of the single thiol on the catalytic chain with 2-chloromercuri-4-nitrophenol does not prevent subsequent reaction with phenylglyoxal. If N-(phosphonacetyl)-L-aspartate is used to protect the active site we find that phenylglyoxal also causes the loss of activation of ATP and inhibition by CTP. The rate of loss of heterotropic effects is exactly the same for both nucleotides indicating that the two opposite regulatory effects originate at the same location on the enzyme, or are transmitted by the same mechanism between the subunits, or both.  相似文献   

5.
Some properties of hexameric purine nucleoside phosphorylase II (EC 2.4.2.1) from Escherichia coli K-12 were studied. The enzyme obeys the Michaelis-Menten kinetics with respect to purine substrates (Km for inosine, deoxyinosine and hypoxanthine are equal to 492, 106 and 26.6 microM, respectively) and exhibits negative kinetic cooperativity towards phosphate and ribose-1-phosphate. The Hill coefficient is equal to approximately 0.5 for both substrates. Hexameric purine nucleoside phosphorylase II is not a metal-dependent enzyme; its activity is inhibited by Cu2+, Zn2+, Ni2+ and SO4(2-). The enzyme is the most stable at pH 6.0; it contains essential thiol groups. All substrates partly protect the enzyme against inactivation by 5.5'-dithiobis(2-nitrobenzoic acid) and heat-inactivation and, with the exception of phosphate-against inactivation by p-chloromercuribenzoate. Hypoxanthine, especially in combination with phosphate, afford the best protection against inactivation.  相似文献   

6.
An unusual intermediate bound to the enzyme was detected in the interaction of thiosemicarbazide with sheep liver serine hydroxymethyltransferase. This intermediate had absorbance maxima at 464 and 440 nm. Such spectra are characteristic of resonance stabilized intermediates detected in the interaction of substrates and quasi-substrates with pyridoxal phosphate enzymes. An intermediate of this kind has not been detected in the interaction of thiosemicarbazide with other pyridoxal phosphate enzymes. This intermediate was generated slowly (t 1/2 = 4 min) following the addition of thiosemicarbazide (200 microM) to sheep liver serine hydroxymethyltransferase (5 microM). It was bound to the enzyme as evidenced by circular dichroic bands at 464 and 440 nm and the inability to be removed upon Centricon filtration. The kinetics of interaction revealed that thiosemicarbazide was a slow binding reversible inhibitor in this phase with a k(on) of 11 M-1 s-1 and a k(off) of 5 x 10(-4) s-1. The intermediate was converted very slowly (k = 4 x 10(-5) s-1) to the final products, namely the apoenzyme and the thiosemicarbazone of pyridoxal phosphate. A minimal kinetic mechanism involving the initial conversion to the intermediate absorbing at longer wavelengths and the conversion of this intermediate to the final product, as well as, the formation of pyridoxal phosphate-thiosemicarbazone directly by an alternate pathway is proposed.  相似文献   

7.
The effects of urea in concentrations from 0 to 6M on the following properties of yeast phosphoglycerate kinase were studied: the kinetics of inactivation of the enzyme, the spectrum of 2-chloromercuri-4-nitrophenol bound to the single thiol group of the enzyme, the rate of reaction between the mercurial and enzyme, and the isoelectric point. The enzyme was inactivated by as much as 30% in 1M-urea, and the other data were interpreted as a possible 'tightening' of enzyme structure. The catalytic behaviour of the enzyme in 2M-urea was time-dependent, the initial effects being similar to those in 1M-urea. Polyacrylamide-gel isoelectric focusing of the enzyme in the presence of 2M-urea showed a single species of enzyme with an isoelectric point intermediate between those in 1M- and 3M-urea; a species with an identical isoelectric point was obtained after an 11-day exposure at 4 degrees C to the denaturant at 2M. The enzyme was rapidly inactivated in 3M-urea, with the thiol group fully exposed and the isoelectric point 0.9pH unit higher than in the absence of urea. No further conformational changes could be demonstrated with urea concentrations of 4M or greater. It is suggested that the equilibrium species that exists in 2M-urea has one of two buried lysine residues exposed. The second lysine residue is exposed in 3M or greater concentrations of the denaturant.  相似文献   

8.
Sheep liver 6-phosphogluconate dehydrogenase is shown to be inactivated by diethylpyrocarbonate in a biphasic manner at pH 6.0, 25 degrees C. After allowing for the hydrolysis of the reagent, rate constants of 56 M-1 s-1 and 11.0 M-1 s-1 were estimated for the two processes. The complete reactivation of partially inactivated enzyme by neutral hydroxylamine, the elimination of the possibility that modification of cysteine or tyrosine residues are responsible for inactivation, and the magnitudes of the rate constants for inactivation relative to the experimentally determined value for the reaction of diethylpyrocarbonate with N alpha-acetylhistidine (2.2 M-1 s-1), all suggested that enzyme inactivation occurs solely by modification of histidine residues. Comparison of the experimental plot of residual fractional activity versus the number of modified histidine residues per subunit with simulated plots for three hypothetical models, each predicting biphasic kinetics, indicated that inactivation results from the modification of at most one essential histidine residue per subunit, although it appears that other (non-essential) histidines react independently. This histidine is thought to be His-242 and is present in the active site. Evidence in support of its role in catalysis is briefly discussed. Both 6-phosphogluconate and organic phosphate protect against inactivation, and a kinetic analysis of the protection indicated a dissociation constant of 2.1 X 10(-6) M for the enzyme--6-phosphogluconate complex. NADP+ also protected, but this might be due, at least in part, to a reduction in the effective concentration of diethylpyrocarbonate.  相似文献   

9.
Creatine kinase modified by mercurials has been reported to be fully reactive as the native enzyme. This was ascribed to the modification of a second class of thiol groups instead of the reactive thiols at the active site (Laue, M.C. and Quiocho, F.A. (1977) Biochemistry 16, 3838-3845). It has now been shown by spectrophotometric titration and fluorescence studies that 2-chloromercuri-4-nitrophenol (MNP) reacts preferentially with the active-site thiol. Moreover, if the activity of the modified enzyme is determined in the absence of added bovine serum albumin or other enzymes, as usually employed in coupled activity assay systems for creatine kinase, the modified enzyme is completely inactive. Addition of an excess of bovine serum albumin or rabbit muscle glyceraldehyde-3-phosphate dehydrogenase restores the activity of the enzyme to over 80% of its original level. It appears that the active thiol groups at the active site of creatine kinase are after all modified by MNP with complete inactivation.  相似文献   

10.
Chemical modification of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase with water-soluble N-hydroxysuccinimide esters was used to identify a reactive lysyl residue that is essential for activity. Incubation of Rubisco activase with sulfosuccinimidyl-7-amino-4-methylcoumarin-3-acetate (AMCA-sulfo-NHS) or sulfosuccinimidyl-acetate (sulfo-NHS-acetate) caused progressive inactivation of ATPase activity and concomitant loss of the ability to activate Rubisco. AMCA-sulfo-NHS was the more potent inactivator of Rubisco activase, exhibiting a second-order rate constant for inactivation of 239 M-1 s-1 compared to 21 M-1 s-1 for sulfo-NHS-acetate. Inactivation of enzyme activity by AMCA-sulfo-NHS correlated with the incorporation of 1.9 mol of AMCA per mol of 42-kD Rubisco activase monomer. ADP, a competitive inhibitor of Rubisco activase, afforded considerable protection against inactivation of Rubisco activase and decreased the amount of AMCA incorporated into the Rubisco activase monomer. Sequence analysis of the major labeled peptide from AMCA-sulfo-NHS-modified enzyme showed that the primary site of modification was lysine-247 (K247) in the tetrapeptide methionine-glutamic acid-lysine-phenylalanine. Upon complete inactivation of ATPase activity, modification of K247 accounted for 1 mol of AMCA incorporated per mol of Rubisco activase monomer. Photoaffinity labeling of AMCA-sulfo-NHS- and sulfo-NHS-acetate-modified Rubisco activase with ATP analogs derivatized on either the adenine base or on the gamma-phosphate showed that K247 is not essential for the binding of adenine nucleotides per se. Instead, the data indicated that the essentiality of K247 is probably due to an involvement of this highly reactive, species-invariant residue in an obligatory interaction that occurs between the protein and the nucleotide phosphate during catalysis.  相似文献   

11.
Dopamine beta-hydroxylase (3,4- dihydroxyphenylethylamine ,ascorbate:oxygen oxidoreductase (beta-hydroxylating), EC 1.14.17.1) is the terminal enzyme in the biosynthetic pathway of norepinephrine. Chemical modification studies of this enzyme were executed to investigate contributions of specific amino-acid side-chains to catalytic activity. Sulfhydryl reagents were precluded, since no free cysteine residue was detected upon titration of the denatured or native protein with 2-chloromercuri-4-nitrophenol. Incubation of enzyme with diazonium tetrazole caused inactivation of the protein coupled with extensive reaction of lysine and tyrosine residues. Reaction with iodoacetamide resulted in complete loss of enzymatic activity with reaction of approximately three histidine residues; methionine reaction was also observed. Modification of the enzyme using diethylpyrocarbonate resulted in complete inactivation of the enzyme, and analysis of the reacted protein indicated a loss of approx. 1.7 histidine residues per protein monomer with no tyrosine or lysine modification observed. The correlation of activity loss with histidine modification supports the view that this residue participates in the catalytic function of dopamine beta-hydroxylase.  相似文献   

12.
The sequence of 164 amino acid residues in the NH2-terminal BrCN peptide of rabbit muscle aldolase has been determined. The information has permitted location of the following amino acid residues involved in the catalytic activity or in maintaining the structural integrity of the enzyme: Cys-72, forms a disulfide bridge with Cys-336 in the COOH-terminal segment on inactivation of the enzyme by oxidation; Lys-107, forms a Schiff base with pyridoxal phosphate upon inactivation of aldolase by this reagent; Cys-134 and Cys-177, buried, do not react with SH-reagents in the native enzyme.  相似文献   

13.
Uridine phosphorylase from Escherichia coli is inactivated by diethyl pyrocarbonate at pH 7.1 and 10 degrees C with a second-order rate constant of 840 M-1.min-1. The rate of inactivation increases with pH, suggesting participation of an amino acid residue with pK 6.6. Hydroxylamine added to the inactivated enzyme restores the activity. Three histidine residues per enzyme subunit are modified by diethyl pyrocarbonate. Kinetic and statistical analyses of the residual enzymic activity, as well as the number of modified histidine residues, indicate that, among the three modifiable residues, only one is essential for enzyme activity. The reactivity of this histidine residue exceeded 10-fold the reactivity of the other two residues. Uridine, though at high concentration, protects the enzyme against inactivation and the very reactive histidine residue against modification. Thus it may be concluded that uridine phosphorylase contains only one histidine residue in each of its six subunits that is essential for enzyme activity.  相似文献   

14.
1. The inactivation of horse liver alcohol dehydrogenase by pyridoxal 5'-phosphate in phosphate buffer, pH8, at 10 degrees C was investigated. Activity declines to a minimum value determined by the pyridoxal 5'-phosphate concentration. The maximum inactivation in a single treatment is 75%. This limit appears to be set by the ratio of the first-order rate constants for interconversion of inactive covalently modified enzyme and a readily dissociable non-covalent enzyme-modifier complex. 2. Reactivation was virtually complete on 150-fold dilution: first-order analysis yielded an estimate of the rate constant (0.164min-1), which was then used in the kinetic analysis of the forward inactivation reaction. This provided estimates for the rate constant for conversion of non-covalent complex into inactive enzyme (0.465 min-1) and the dissociation constant of the non-covalent complex (2.8 mM). From the two first-order constants, the minimum attainable activity in a single cycle of treatment may be calculated as 24.5%, very close to the observed value. 3. Successive cycles of modification followed by reduction with NaBH4 each decreased activity by the same fraction, so that three cycles with 3.6 mM-pyridoxal 5'-phosphate decreased specific activity to about 1% of the original value. The absorption spectrum of the enzyme thus treated indicated incorporation of 2-3 mol of pyridoxal 5'-phosphate per mol of subunit, covalently bonded to lysine residues. 4. NAD+ and NADH protected the enzyme completely against inactivation by pyridoxal 5'-phosphate, but ethanol and acetaldehyde were without effect. 5. Pyridoxal 5'-phosphate used as an inhibitor in steady-state experiments, rather than as an inactivator, was non-competitive with respect to both NADH and acetaldehyde. 6. The partially modified enzyme (74% inactive) showed unaltered apparent Km values for NAD+ and ethanol, indicating that modified enzyme is completely inactive, and that the residual activity is due to enzyme that has not been covalently modified. 7. Activation by methylation with formaldehyde was confirmed, but this treatment does not prevent subsequent inactivation with pyridoxal 5'-phosphate. Presumably different lysine residues are involved. 8. It is likely that the essential lysine residue modified by pyridoxal 5'-phosphate is involved either in binding the coenzymes or in the catalytic step. 9. Less detailed studies of yeast alcohol dehydrogenase suggest that this enzyme also possesses an essential lysine residue.  相似文献   

15.
The Neurospora crassa plasma membrane H+-ATPase is rapidly inactivated in the presence of diethyl pyrocarbonate (DEP). The reaction is pseudo-first-order showing time- and concentration-dependent inactivation with a second-order rate constant of 385-420 M-1.min-1 at pH 6.9 and 25 degrees C. The difference spectrum of the native and modified enzyme has a maximum near 240 nm, characteristic of N-carbethoxyhistidine. No change in the absorbance of the inhibited ATPase at 278 nm or in the number of modifiable sulfhydryl groups is observed, indicating that the inhibition is not due to tyrosine or cysteine modification, and the inhibition is irreversible, ruling out serine residues. Furthermore, pretreatment of the ATPase with pyridoxal phosphate/NaBH4 under the conditions of the DEP treatment does not inhibit the ATPase and does not alter the DEP inhibition kinetics, indicating that the inactivation by DEP is not due to amino group modification. The pH dependence of the inactivation reaction indicates that the essential residue has a pKa near 7.5, and the activity lost as a result of H+-ATPase modification by DEP is partially recovered after hydroxylamine treatment at 4 degrees C. Taken together, these results strongly indicate that the inactivation of the H+-ATPase by DEP involves histidine modification. Analyses of the inhibition kinetics and the stoichiometry of modification indicate that among eight histidines modified per enzyme molecule, only one is essential for H+-ATPase activity. Finally, ADP protects against inactivation by DEP, indicating that the essential residue modified may be located at or near the nucleotide binding site.  相似文献   

16.
The pyrophosphate-dependent phosphofructokinase from Propionibacterium freudenreichii is rapidly inactivated by low concentrations of pyridoxal 5'-phosphate (PLP). The inactivation is first order with respect to PLP and the rate increases linearly with PLP concentrations suggesting that over the concentration range used no significant E-PLP complex accumulates during inactivation. The rate of inactivation decreases at high and low pH and this is discussed in terms of the mechanism of Schiff base formation. The presence of any reactants decreases the rate of inactivation to 0 at infinite concentration. This protection against inactivation has been used to obtain the pH dependence of the dissociation constants of all enzyme-reactant binary complexes. Reduction of the PLP-inactivated enzyme with NaB[3H]4 indicates that about 7 lysines are modified in free enzyme and fructose 6-phosphate protects 2 of these from modification. The pH dependence of the enzyme-reactant dissociation constants suggests that the phosphates of fructose 6-phosphate, fructose 1,6-bisphosphate, inorganic phosphate, and Mg-pyrophosphate must be completely ionized and that lysines are present in the vicinity of the 1- and 6-phosphates of the sugar phosphate and bisphosphate probably directly coordinated to these phosphates.  相似文献   

17.
The reaction of choline acetyltransferase with methoxycarbonyl alkyl disulfides leads to a progressive loss in enzyme activity as the size of the alkyl group increases from methyl to n-butyl. Reaction with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) or methoxycarbonyl coenzyme A (CoA) disulfide, leads to a total loss of enzyme activity. DTNB inactivation is biphasic (k1 = approximately 9 x 10(2) M-1 s-1, k2 = approximately 6 x 10(1) M-1 s-1) with the slow phase being diminished by acetyl-CoA. Methoxycarbonyl-CoA disulfide inactivation is also biphasic (k1 = approximately 2.1 x 10(3) M-1 s-1, k2 = approximately 6 x 10(1) M-1 s-1), with the rapid phase being diminished in the presence of acetyl-CoA. Inactivation by methoxycarbonyl methyl disulfide, ethyl disulfide, or hydroxyethyl disulfide, or by methyl methanethiosulfonate is not biphasic. Pretreatment of the enzyme with methyl methanethiosulfonate, which leads to a 25% loss in enzyme activity, abolishes the fast phase of DTNB inactivation, the slow phase of methoxycarbonyl-CoA disulfide inactivation, and any further inactivation by methoxycarbonyl ethyl disulfide. These results are interpreted to suggest that choline acetyltransferase contains two classes of reactive sulfhydryl groups, neither of which are required for enzyme activity.  相似文献   

18.
Counting of integral numbers of cysteine residues of the reduced and denaturated form of cyclomaltodextrin glucanotransferase (CGTase) from Bacillus circulans var. alkalophilus (ATCC 21783) showed two cysteine residues per enzyme molecule. Titrations of the enzyme with 5,5'-dithiobis-(2-nitrobenzoic acid) led to the same result. No free SH-group was detected in denatured form of CGTase, indicating that the two cysteine residues are linked by one disulfide bridge. Cyclizing activity of the GdmCl-denaturated and reduced enzyme was 13% of that of the native one. Incubation of CGTase with diethylpyrocarbonate (DEP) showed a pseudo-first-order inhibition with second-order rate constant of 3.2 M-1 s-1. Reaction with hydroxylamine and spectroscopic studies implied that inactivation of CGTase by DEP is due to modification of one histidine residue concomitantly with a 50% decrease in the cyclizing activity (t1/2 = 10.8 min). The inhibition was partially reversible. CGTase was protected against inactivation by alpha- and beta-cyclodextrins suggesting that the modified histidine residue is at or near the active site. Conversion of starch with DEP-modified enzyme resulted in a decreased formation of cyclodextrins while the relative amount of reducing sugars increased. Preliminary results on modification of CGTase with other reagents, e.g., Woodward's reagent K, 2,3-butanedione and carbodiimide are included.  相似文献   

19.
The properties of creatine kinase isolated from bovine heart mitochondria in dimeric (Mr = 84 +/- 6 kD) and octameric (Mr = 340 +/- 17 kD) forms were compared with those of the earlier described hexameric form of the enzyme (Mr = 240 +/- 12 kD). The kinetics of SH-group modification by DTNB, the inactivation kinetics as well as the number of modified SH-groups point to significant differences between the three oligomeric forms of the enzyme. Each subunit of creatine kinase was found to possess one "fast" essential cysteine residue whose modification by DTNB and iodoacetamide led to enzyme inactivation. The formation of an analog of the transition state complex (E--MgADP--NO3--creatine) was paralleled with partial protection of only the "fast" cysteine residue which manifested itself in the decrease of the rate of its interaction with DTNB in all the three oligomeric forms. Dimer association into a hexamer and octamer occurred in parallel with a decrease of the affinity of essential SH-groups of cysteine for DTNB in 50% of the oligomeric molecule subunits. Thus, in the dimer two essential SH-groups were rapidly modified by DTNB at the same rate: k1 = k2 = (23.9 +/- 5.6).10(4) M-1 min-1. Within the hexamer, the rate of modification of 3 out of 6 SH-groups was practically unchanged: k1 = (10.6 +/- 2.3).10(4) M-1 min-1. Another 3 SH-groups in the remaining 50% of the subunits were partly masked, which manifested itself in a 10-fold decrease of their modification rate: k2 = (1.12 +/- 0.28).10(4) M-1 min-1. Within the octamer, the SH-groups rapidly interacted with DTNB only on 4 subunits: k1 = (20.7 +/- 2.2).10(4) M-1 min-1, whereas in the remaining 4 octamer subunits a practically complete masking of essential SH-groups was observed, as a result of which these groups became inaccessible to DTNB. This manifested itself in a 1000-fold decrease of the rate of SH-group modification by DTNB which reached that of non-essential SH-group modification. In has been found that a complete loss of the octamer activity is due to the modification of only 4 SH-groups which interact with DTNB at a high rate. A model for subunit association into a dimer, hexamer and octamer has been proposed. Presumably, 50% of the active centers in the mitochondrial creatine kinase octamer are not involved in the catalytic act.  相似文献   

20.
Rabbit muscle creatine kinase III (EC 2.7.3.2) can be reacted with 2-chloromercuri-4-nitrophenol and this results in the incorporation of two moles of mercurial per mole of enzyme subunit in a biphasic reaction. The second-order rate constant for the slow reaction is 475 ± 42 M?1 s?1. S-Carboxamidomethyl-creatine kinase reacts with a single mole of mercurial per mole of subunit. The rate constant, 466 ± 57 M?1 s?1, is almost identical to that for the slow reaction of the native enzyme. The reaction between 3-carboxy-4-nitrophenylthio-creatine kinase and 2-chloromercuri-4-nitrophenol has a second-order rate constant of 449 ± 56 M?1 s?1. The results may be explained if the mercurial reacts very rapidly with that cysteine residue which reacts independently with iodoacetamide or 5,5′-dithiobis(2-nitrobenzoic acid). However, 2-chloromercuri-4-nitrophenol also reacts more slowly with a second cysteine residue. Definition of the essentiality of thiol groups in enzymes by reaction with labile ligands, here represented by organomercurials, clearly must be approached with caution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号