首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The water diffusion across human erythrocyte membrane has been studied on intact cells and resealed ghosts by a doping NMR technique. Although the water exchange time of ghosts was longer than that of erythrocytes, no significant differences in their diffusional permeability were noticed for temperatures in the range 2–43°C. Contrary to what was previously noticed in erythrocytes, no significant increase in the water exchange time of ghosts in the acid range of pH occurred.  相似文献   

2.
Summary The temperature and pH dependence of water exchange has been studied on isolated erythrocytes suspended in isotonic buffered solutions. At pH 7.4 a break in the Arrhenius plot of water exchange time at around 26°C was found. The mean value of the apparent activation energy of the water exchange time at temperatures higher than that of the discontinuity was 5.7 kcal/mole (±0.4); at lower temperatures the values of the apparent activation energy were below 1.4 kcal/mole. The pH dependence of water exchange time of isolated erythrocytes revealed a marked increase of the water exchange time values in the acid range of pH; a much smaller variation of the same parameter occurs between pH 7.0 and 8.0. These finding could be correlated with other processes involving erythrocyte membranes that showed similar pH and temperature dependence and were considered to indicate state transitions in the membranes. It is suggested that the temperature and pH effects on water diffusion indicate that conformational changes and cooperative effects are implicated in the mechanism of this transport process.Institute for Isotopic and Molecular Technology.  相似文献   

3.
Summary The water permeability of human red blood cell (RBC) membrane has been monitored by a doping nuclear magnetic resonance (NMR) technique on intact cells and resealed ghosts following exposure to various sulfydryl-reacting (SH) reagents and proteolytic enzymes. The main conclusions are the following: (i) When appropriate conditions for exposure of erythrocytes or ghosts to mercury-containing SH reagents (concentration, temperature and duration of incubation) were found, the maximal inhibition of water diffusion could be obtained with all mercurials (including HgCl2 and mersalyl that failed to show their inhibitory action on RBC water permeability in some investigations). While previous studies claimed that long incubation times are required for the development of maximal inhibition of water diffusion by mercurials, the present results show that it can be induced in a much shorter time (5–15 min at 37°C) if relatively high concentrations of PCMBS (2–4mm) are used and no washings of the inhibitor are performed after incubation. Higher than optimal concentrations of mercurials and/or longer incubation times result in lower values of inhibition, sometimes a loss of inhibition, or can even lead to higher values of permeability compared to control RBCs. (ii) The conditions for inhibition by mercurials are drastically changed by preincubation of erythrocytes with noninhibitory SH reagents (such as NEM or IAM) or by exposure to proteolytic enzymes. If the cells are digested with papain, the duration of incubation with PCMBS should be decreased in order for inhibition to occur. This explains the lack of inhibition reported previously, when a relatively long duration of incubation with PCMBS was used subsequent to papain digestion. (iii) The degree of inhibition of water diffusion induced by mercurials appeared to be dependent upon the temperature of which the water permeability was measured. The values of maximal inhibition ranged from 45–50% at 37°C, increased 10–15% at 20°C and further increased at lower temperatures, reaching values above 75% below 10°C; these results clarify the conflicting reports of various authors. (iv) The inhibition of water diffusion, either reversible, or irreversible, was not accompanied by significant changes in the pattern of RBC membrane polypeptides fractionated by polyacrylamide gel electrophoresis. (v) The mean value of the activation energy of water diffusion (E a,d) obtained on 42 donors was 25.6 kJ/mol. The values ofE a,d increased in parallel with the values of the inhibition of water diffusion induced by PCMBS until the maximal inhibition was reached (whenE a,d=41 kJ/mol) and then both sets of values decreased in parallel.  相似文献   

4.
5.
The effects produced by chronic in vivo tritium contamination on the process of water diffusion across the rat erythrocyte membranes were investigated using an NMR relaxation method. As the level of tritium intake increased, an inhibition of the water permeability was observed, reaching values of 40% for corresponding absorbed doses of about 100 mGy. The activation energy of the transport process was also significantly increased, suggesting that the mechanism of the water diffusion across the membrane had changed.  相似文献   

6.
A comparison of water diffusion in human erythrocytes and ghosts revealed a longer relaxation time in ghosts, A comparison of water diffusion in human erythrocytes and ghosts revealed a longer relaxation time in ghosts, corresponding to a decreased exchange rate. However, the diffusional permeability of ghosts was not significantly different from that of erythrocytes . The changes in water diffusion following exposure to p-chloromercuribenzene sulfonate (PCMBS) have been studied on ghosts suspended in isotonic solutions. It was found that a significant inhibitory effect of PCMBS on water diffusion occurred only after several minutes of incubation at 37°C. No inhibition was noticed after short incubation at 0°C as previously used in some labelling experiments. This indicates the location in the membrane interior of the SH groups involved in water diffusion across human erythrocyte membranes. The nuclear magnetic resonance ( n . m . r . ) method appears as a useful tool for studying changes in water diffusiofl in erythrocyte ghosts with the aim of locating the water channel.  相似文献   

7.
The temperature dependence of the apparent water diffusional exchange through erythrocyte membranes in cases of policitemia vera, chronic granulocytic leukemia and primary myelofibrosis was measured by using a nuclear magnetic resonance method in the presence of Mn2+. The thermal transition shifted to lower temperatures in all cases, regardless of the stage of the disease, suggesting a structural alteration of the membrane. The shift of transition indirectly suggests a lower penetration of the erythrocytes by Mn2+. The water exchange time at 37 degrees C also increased, mainly in the blast crisis; it seems to have a prognostic value of some clinical interest. No simple correlation of the water exchange and the following clinical investigations was observed: the white count, the percentage of promyelocites and myeloblasts, the sedimentation rate of blood, the osmotic fragility of erythrocytes, the total concentration of proteins, albumin and immunoglobulins, respectively, in plasma.  相似文献   

8.
Nuclear magnetic resonance studies of polyisoprenols in model membranes   总被引:3,自引:0,他引:3  
2H-NMR investigation of polyisoprenols (PIs) in model membranes has revealed information about their motions, relative order, and locale within the membrane. Initial 2H-NMR studies of the organization of the shorter chain homologues geraniol (C10), farnesol (C15), and solanesol (C45) were carried out by incorporating 2H-acetyl esters of the alcohol or the di-perdeuterome-thylated derivatives of the omega-labeled prenols into multilamellar phosphatidylcholine (PC) vesicles. 2H-NMR powder patterns interpretable in terms of quadrupole splittings and spin-lattice relaxation times were obtained. Similar experiments have now been carried out with the labeled free alcohol, acetyl ester, and phosphate ester of dolichol (C95) and undecaprenol (C55). 2H-NMR results show that the head and tail 2H-labeled sites of C55 and C95 exhibit a fast motion isotropic signal only; no slower motion anisotropy, as exhibited by the short chain PIs, was observed. These data suggest that C55 and C95 either have substantially different (faster) motions and/or conformations relative to the shorter chain PIs within the membrane, and that the longer PIs alter the membrane host packing matrix. This conclusion was supported by 31P-NMR studies of C55 and C95 derivatives in PC and PE/PC membranes, which showed new pronounced spectral changes relative to the results obtained with the shorter chain PIs. These spectral changes indicate that undecaprenol and dolichol derivatives appear to induce a non-bilayer (isotropic) organization of phospholipid molecules in PE/PC (2:1) vesicles. The possible physiological consequences of this perturbation remains to be determined.  相似文献   

9.
The changes in water diffusion across human erythrocyte membrane following exposure to proteolytic enzymes and to p-chloromercuribenzene sulfonate (PCMBS) have been studied on isolated erythrocytes suspended in isotonic solutions. Trypsin digested glycophorin without significantly changing the pattern of other polypeptides in erythrocyte membrane. On the contrary, with chymotrypsin or papain an extensive digestion of band 3 protein occured. No changes in water diffusion were noticed after exposure of erythrocytes to trypsin, chymotrypsin or papain. Neither trypsin nor chymotrypsin treatment prevented the inhibition of water diffusion induced by PCMBS. In contrast, exposure of erythrocytes to papain did hamper the inhibitory effect of subsequent incubation with PCMBS. Taking into account the degradation of band 3 protein by papain it appears that the binding site for PCMBS playing a role in the inhibition of water diffusion is located in this protein.  相似文献   

10.
11.
DSC and (1H and 31P) NMR measurements are used to investigate the perturbation caused by the keratolytic drug, salicylic acid (SA) on the physicochemical properties of the model membranes. Model membranes (in unilamellar vesicular (ULV) form) in the present studies are prepared with the phospholipids, dipalmitoyl phosphatidylcholine (DPPC), dipalmitoyl phosphatidylethanolamine (DPPE), dipalmitoyl phosphatidic acid (DPPA) and mixed lipid DPPC-DPPE (with weight ratio, 2.5:2.2). These lipids have the same acyl (dipalmitoyl) chains but differed in the headgroup. The molar ratio of the drug to lipid (lipid mixture), is in the range 0 to 0.4. The DSC and NMR results suggest that the lipid head groups have a pivotal role in controlling (i) the behavior of the membranes and (ii) their interactions with SA. In the presence of SA, the main phase transition temperature of (a) DPPE membrane decreases, (b) DPPA membrane increases and (c) DPPC and DPPC-DPPE membranes are not significantly changed. The drug increases the transition enthalpy (i.e., acyl chain order) in DPPC, DPPA and DPPC-DPPE membranes. However, the presence of the drug in DPPC membrane formed using water (instead of buffer), shows a decrease in the transition temperature and enthalpy. In all the systems studied, the drug molecules seem to be located in the interfacial region neighboring the glycerol backbone or polar headgroup. However, in DPPC-water system, the drug seems to penetrate the acyl chain region also.  相似文献   

12.
We analyze an increasingly popular NMR method analogous to the black lipid membrane (BLM) isotopic tracer experiment for the study of mediated cation transport but involving the preparation of vesicles with an environment asymmetric in that paramagnetic metal ions are present only outside the vesicles. This asymmetry is manifest in the NMR spectrum as two distinct resonances for magnetic nuclei in outside and inside lipid headgroups. As mediated transport begins and for the paramagnetic metal ions enter the vesicles, the inner headgroup resonance line shifts and changes shape with a time course containing much information on the actual ion transport mechanism. Processes by which the ions enter the vesicles one or a few at a time (such as via a diffusive carrier) are easily distinguishable from those by which the ions enter in large bursts (such as by pore activation). The limiting case where intervesicular mediator exchange is slow relative to cation transport (the situation for integral membrane proteins) is treated analytically. Computer simulated curves indicate conditions necessary for certain changes in the line shape which are analogous to the "current jumps" observed in BLM conductance studies. The theory derived allows estimates of the average number of ions entering the first few bursts, how often the bursts occur, and how they depend on the concentration of the mediating species in the vesicular membrane. Preliminary experimental spectra illustrating some of the various possible line shape behaviors are presented.  相似文献   

13.
P L Yeagle  D Kelsey 《Biochemistry》1989,28(5):2210-2215
Human erythrocyte glycophorin containing four molecules of phospholipid tightly bound to the protein was isolated from human red cell ghosts. This protein preparation was reconstituted into a digalactosyl diglyceride bilayer. The 31P NMR spectrum of this reconstituted membrane produced an axially symmetric powder pattern arising exclusively from the phospholipids bound to glycophorin. The width of the powder pattern, about 90 ppm, is about twice as broad as that normally exhibited by a phospholipid bilayer. The chemical shift tensor is perturbed relative to phospholipids in a bilayer. The spin-lattice relaxation rate of these protein-bound phospholipids is found to be nearly an order of magnitude faster than phospholipids in a bilayer. The results are consistent with phospholipids tightly bound to the membrane protein and undergoing rotational diffusion, perhaps as a complex of phospholipid and protein.  相似文献   

14.
15.
Nuclear magnetic resonance studies of hemoglobins   总被引:3,自引:0,他引:3  
  相似文献   

16.
Structural damage to isolated erythrocyte membranes ('ghosts') has been studied following gamma-irradiation under a variety of conditions. For this two fluorescent probes were used; one 1-anilino-8-naphthalene sulphonate probes the lipid-aqueous interface, the other, diphenylhexatriene, was used to probe the membrane fluidity. Irradiation of the membranes caused a decrease in fluorescent intensity of the added probes, and changes in polarization of fluorescence. Oxygen was found to enhance the radiation damage, and scavenger experiments showed the hydroxyl radical was the major radical species involved. The structural modifications are therefore interpreted in terms of preliminary chemical damage involving peroxidation of unsaturated lipids. In addition sensitization and protection was observed in the presence of known dose-modifying chemicals.  相似文献   

17.
The effect of procaine hydrochloride and its metabolites on the diffusional water exchange through erythrocyte membranes was investigated at 37 degrees C and at concentrations ranging between 5 X 10(-5) M and 5 X 10(-1) M by using the NMR manganese doping method. Procaine hydrochloride and 2-diethylaminoethanol have a moderate stimulating effect on the water exchange, of up to 20% at concentrations ranging between 10(-3) and 10(-2) M, while an increasing inhibitory effect was found at higher concentrations. The p-aminobenzoic acid has no effect on the water exchange up to 10(-2) M and, at higher concentrations, and apparent decreasing inhibition was noticed which is thought to be an artefact due to the uptake of Mn2+ by the cells. The temperature dependence studies suggest that procaine HCl enhances the uptake of Mn2+ by the cells. An opposite effect was found for rigid erythrocytes. The p-aminobenzoic acid and 2-diethylaminoethanol appeared to be more effective than procaine hydrochloride in increasing the uptake of Mn2+.  相似文献   

18.
Nuclear magnetic resonance studies of cellular metabolism   总被引:8,自引:1,他引:7  
  相似文献   

19.
20.
Blood platelets contain membrane-enclosed granules which have inside them high concentrations of 5-hydroxytryptamine (serotonin) along with adenine nucleotides and divalent metal ions. 19F n.m.r. of fluorinated serotonin incorporated into the granules of both human and pig intact platelets has shown that the motional state of the serotonin is restricted. Comparison with 31P n.m.r. experiments indicates that this restriction of motion is a consequence of high molecular weight aggregates formed by the adenine nucleotides and metal ions, and that it varies with the species from which the platelets are obtained. In the case of human platelet granules, at least, these high molecular weight aggregates are present in the absence as well as in the presence of serotonin. The biological significance of these data is briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号