首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The interactions between freezing kinetics and subsequent storage temperatures and their effects on the biological activity of lactic acid bacteria have not been examined in studies to date. This paper investigates the effects of three freezing protocols and two storage temperatures on the viability and acidification activity of Lactobacillus delbrueckii subsp. bulgaricus CFL1 in the presence of glycerol. Samples were examined at -196 degrees C and -20 degrees C by freeze fracture and freeze substitution electron microscopy. Differential scanning calorimetry was used to measure proportions of ice and glass transition temperatures for each freezing condition tested. Following storage at low temperatures (-196 degrees C and -80 degrees C), the viability and acidification activity of L. delbrueckii subsp. bulgaricus decreased after freezing and were strongly dependent on freezing kinetics. High cooling rates obtained by direct immersion in liquid nitrogen resulted in the minimum loss of acidification activity and viability. The amount of ice formed in the freeze-concentrated matrix was determined by the freezing protocol, but no intracellular ice was observed in cells suspended in glycerol at any cooling rate. For samples stored at -20 degrees C, the maximum loss of viability and acidification activity was observed with rapidly cooled cells. By scanning electron microscopy, these cells were not observed to contain intracellular ice, and they were observed to be plasmolyzed. It is suggested that the cell damage which occurs in rapidly cooled cells during storage at high subzero temperatures is caused by an osmotic imbalance during warming, not the formation of intracellular ice.  相似文献   

2.
Calorimetric analysis indicates that 82% of the body water of Hemideina maori is converted into ice at 10 degrees C. This is a high proportion and led us to investigate whether intracellular freezing occurs in H. maori tissue. Malpighian tubules and fat bodies were frozen in haemolymph on a microscope cold stage. No fat body cells, and 2% of Malpighian tubule cells froze during cooling to -8 degrees C. Unfrozen cells appeared shrunken after ice formed in the extracellular medium. There was no difference between the survival of control tissues and those frozen to -8 degrees C. At temperatures below -15 degrees C (lethal temperatures for weta), there was a decline in survival, which was strongly correlated with temperature, but no change in the appearance of tissue. It is concluded that intracellular freezing is avoided by Hemideina maori through osmotic dehydration and freeze concentration effects, but the reasons for low temperature mortality remain unclear. The freezing process in H. maori appears to rely on extracellular ice nucleation, possibly with the aid of an ice nucleating protein, to osmotically dehydrate the cells and avoid intracellular freezing. The lower lethal temperature of H. maori (-10 degrees C) is high compared to organisms that survive intracellular freezing. This suggests that the category of 'freezing tolerance' is an oversimplification, and that it may encompass at least two strategies: intracellular freezing tolerance and avoidance.  相似文献   

3.
Protective effect of intracellular ice during freezing?   总被引:9,自引:0,他引:9  
Acker JP  McGann LE 《Cryobiology》2003,46(2):197-202
Injury results during freezing when cells are exposed to increasing concentrations of solutes or by the formation of intracellular ice. Methods to protect cells from the damaging effects of freezing have focused on the addition of cryoprotective chemicals and the determination of optimal cooling rates. Based on other studies of innocuous intracellular ice formation, this study investigates the potential for this ice to protect cells from injury during subsequent slow cooling. V-79W Chinese hamster fibroblasts and Madin-Darby Canine Kidney (MDCK) cells were cultured as single attached cells or confluent monolayers. The incidence of intracellular ice formation (IIF) in the cultures at the start of cooling was pre-determined using one of two different extracellular ice nucleation temperatures (-5 or -10 degrees C). Samples were then cooled at 1 degrees C/min to the experimental temperature (-5 to -40 degrees C) where samples were warmed rapidly and cell survival assessed using membrane integrity and metabolic activity. For single attached cells, the lower ice nucleation temperature, corresponding to increased incidence of IIF, resulted in decreased post-thaw cell recovery. In contrast, confluent monolayers in which IIF has been shown to be innocuous, show higher survival after cooling to temperatures as low as -40 degrees C, supporting the concept that intracellular ice confers cryoprotection by preventing cell dehydration during subsequent slow cooling.  相似文献   

4.
The mechanism of cell injury during slow freezing was examined using PC-3 human prostate adenocarcinoma cells suspended in NaCl solutions. The objective was to evaluate contribution of extracellular ice and the 'solution effects' to freezing injury separately. The solution effects that designate the influence of elevated concentration were evaluated from a pseudo-freezing experiment, where cells were subjected to the milieu that simulated a freeze-thaw process by changing the NaCl concentration and the temperature at the same time. The effect of extracellular ice formation on cell injury was then estimated from the difference in cell survival between the pseudo-freezing experiment and a corresponding freezing experiment. When cells were frozen to a relatively higher freezing temperature at -10 degrees C, about 30% of cells were damaged mostly due to extracellular ice formation, because the concentration increase without ice formation to 2.5-M NaCl, i.e., the equilibrium concentration at -10 degrees C, had no effect on cell survival. In contrast, in the case of the lower freezing temperature at -20 degrees C, about 90% of cells were injured by both effects, particularly 60-80% by the solution effects among them. The present results suggested that the solution effects become more crucial to cell damage during slow freezing at lower temperatures, while the effect of ice is limited to some extent.  相似文献   

5.
Although cellular injury in some woody plants has been correlated with freezing of supercooled water, there is no direct evidence that intracellular ice formation is responsible for the injury. In this study we tested the hypothesis that injury to xylem ray parenchyma cells in supercooling tissues is caused by intracellular ice formation. The ultrastructure of freezing-stress response in xylem ray parenchyma cells of flowering dogwood (Cornus florida L.) was determined in tissue prepared by freeze substitution. Wood tissue was collected in the winter, spring, and summer of 1992. Specimens were cooled from 0 to -60[deg]C at a rate of 5[deg]C h-1. Freezing stress did not affect the structural organization of wood tissue, but xylem ray parenchyma cells suffered severe injury in the form of intracellular ice crystals. The temperatures at which the ice crystals were first observed depended on the season in which the tissue was collected. Intracellular ice formation was observed at -20, -10, and -5[deg]C in winter, spring, and summer, respectively. Another type of freezing injury was manifested by fragmented protoplasm with indistinguishable plasma membranes and damaged cell ultrastructure but no evidence of intracellular ice. Intracellular cavitation may be a source of freezing injury in xylem ray parenchyma cells of flowering dogwood.  相似文献   

6.
The temperature at which ice formation occurs in supercooled cytoplasm is an important element in predicting the likelihood of intracellular freezing of cells cooled by various procedures to subzero temperatures. We have confirmed and extended prior indications that permeating cryoprotective additives decrease the ice nucleation temperature of cells, and have determined some possible mechanisms for the decrease. Our experiments were carried out on eight-cell mouse embryos equilibrated with various concentrations (0-2.0 M) of dimethyl sulfoxide or glycerol and then cooled rapidly. Two methods were used to assess the nucleation temperature. The first, indirect, method was to determine the in vitro survival of the rapidly cooled embryos as a function of temperature. The temperatures over which an abrupt drop in survival occurs are generally diagnostic of the temperature range for intracellular freezing. The second, direct, method was to observe the microscopic appearance during rapid cooling and note the temperature at which nucleation occurred. Both methods showed that the nucleation temperature decreased from - 10 to - 15 degrees C in saline alone to between - 38 degrees and - 44 degrees C in 1.0-2.0 M glycerol and dimethyl sulfoxide. The latter two temperatures are close to the homogeneous nucleation temperatures of the solutions in the embryo cytoplasm, and suggest that embryos equilibrated in these solutions do not contain heterogeneous nucleating agents and are not accessible to any extracellular nucleating agents, such as extracellular ice. The much higher freezing temperatures of cells in saline or in low concentrations of additive indicate that they are being nucleated by heterogeneous agents or, more likely, by extracellular ice.  相似文献   

7.
The pattern of ice formation during the freezing of Panagrolaimus davidi, an Antarctic nematode that can survive intracellular ice formation, was visualised using a freeze substitution technique and transmission electron microscopy. Nematodes plunged directly into liquid nitrogen had small ice crystals throughout their tissues, including nuclei and organelles, but did not survive. Those frozen at high subzero temperatures showed three patterns of ice formation: no ice, extracellular ice, and intracellular ice. Nematodes subjected to a slow-freezing regime (at -1 degrees C) had mainly extracellular ice (70.4%), with the bulk of the ice in the pseudocoel. Some (24.8%) had no ice within their bodies, due to cryoprotective dehydration. Nematodes subjected to a fast-freezing regime (at -4 degrees C) had intracellular (54%) and extracellular (42%) ice. Intracellular ice was confined to the cytoplasm of cells, with organelles in the spaces in between ice crystals. The survival of nematodes subjected to the fast-freezing regime (53%) was less than those subjected to the slow-freezing regime (92%).  相似文献   

8.
P Mazur 《Cell biophysics》1990,17(1):53-92
The first successful freezing of early embryos to -196 degrees C in 1972 required that they be cooled slowly at approximately 1 degree C/min to about -70 degrees C. Subsequent observations and physical/chemical analyses indicate that embryos cooled at that rate dehydrate sufficiently to maintain the chemical potential of their intracellular water close to that of the water in the partly frozen extracellular solution. Consequently, such slow freezing is referred to as equilibrium freezing. In 1972 and since, a number of investigators have studied the responses of embryos to departures from equilibrium freezing. When disequilibrium is achieved by the use of higher constant cooling rates to -70 degrees C, the results is usually intracellular ice formation and embryo death. That result is quantitatively in accord with the predictions of the physical/chemical analysis of the kinetics of water loss as a function of cooling rate. However, other procedures involving rapid nonequilibrium cooling do not result in high mortality. One common element in these other nonequilibrium procedures is that, before the temperature has dropped to a level that permits intracellular ice formation, the embryo water content is reduced to the point at which the subsequent rapid nonequilibrium cooling results in either the formation of small innocuous intracellular ice crystals or the conversion of the intracellular solution into a glass. In both cases, high survival requires that subsequent warming be rapid, to prevent recrystallization or devitrification. The physical/chemical analysis developed for initially nondehydrated cells appears generally applicable to these other nonequilibrium procedures as well.  相似文献   

9.
A quasi-elastic light-scattering technique was used to study the hydrodynamic conformations of antifreeze glycoproteins from an Antarctic fish. Antifreeze glycoprotein is composed of repeating units of Ala-Ala-Thr, with each threonine O-linked to a disaccharide, and it exists as several polymers of different numbers of this repeating unit. Molecular weights of the two major active polymers are 10,500 and 17,500 by such methods as centrifugation and osmotic pressure, but smaller than 20 by freezing-point depression. Translational diffusion coefficients at 20 degrees were 8.35 times 10-7 cm2 s-1 and 6.15 times 10-7 cm2 s-1 for the M-r-10,500 and 17,500 polymers, respectively. Measurements at -0.2 degrees in the presence of ice crystals did not indicate any conformational changes that might be related to the lowering of the freezing temperature. Lowering the temperature of these glycoprotein solutions close to temperatures of freezing caused a decrease in the effective hydrodynamic radius of both active and inactive glycoprotein components.  相似文献   

10.
The occurrence of intracellular ice formation (IIF) during freezing, or the lack there of, is the single most important factor determining whether or not cells survive cryopreservation. One important determinant of IIF is the temperature at which a supercooled cell nucleates. To avoid intracellular ice formation, the cell must be cooled slowly enough so that osmotic dehydration eliminates nearly all cell supercooling before reaching that temperature. This report is concerned with factors that determine the nucleation temperature in mouse oocytes. Chief among these is the concentration of cryoprotective additive (here, glycerol or ethylene glycol). The temperature for IIF decreases from -14 degrees C in buffered isotonic saline (PBS) to -41 degrees C in 1M glycerol/PBS and 1.5M ethylene glycol/PBS. The latter rapidly permeates the oocyte; the former does not. The initial extracellular freezing at -3.9 to -7.8 degrees C, depending on the CPA concentration, deforms the cell. In PBS that deformation often leads to IIF; in CPA it does not. The oocytes are surrounded by a zona pellucida. That structure appears to impede the growth of external ice through it, but not to block it. In most cases, IIF is characterized by an abrupt blackening or flashing during cooling. But in some cases, especially with dezonated oocytes, a pale brown veil abruptly forms during cooling followed by slower blackening during warming. Above -30 degrees C, flashing occurs in a fraction of a second. Below -30 degrees C, it commonly occurs much more slowly. We have observed instances where flashing is accompanied by the abrupt ejection of cytoplasm. During freezing, cells lie in unfrozen channels between the growing external ice. From phase diagram data, we have computed the fraction of water and solution that remains unfrozen at the observed flash temperatures and the concentrations of salt and CPA in those channels. The results are somewhat ambiguous as to which of these characteristics best correlates with IIF.  相似文献   

11.
Ice formation and tissue response in apple twigs   总被引:7,自引:0,他引:7  
Abstract. The response of apple twig tissue to a freezing stress was examined using a combination of low temperature scanning electron microscopy and freeze substitution techniques. Bark and wood tissues responded differently. In the bark, large extracellular ice crystals were observed in the cortex. The adjacent cortical cells collapsed and a large reduction in cell volume was observed. The extent of cell collapse throughout the bark was not uniform. Cells in the periderm, phloem and cambium exhibited little change in cell volume compared to cortical cells. Large extracellular ice crystals were not observed in the xylem or pith tissues. The xylem ray parenchyma and pith cells did not collapse in response to a freezing stress, but retained their original shape. The pattern of ice formation and cell response was not observed to change with season or the level of cold acclimation. This study supported the concept that bark and xylem tissues exhibit contrasting freezing behaviour. The observations were consistent with the idea that water in bark freezes extracellularly while water in xylem ray parenchyma and pith cells may supercool to temperatures approaching –40 °C prior to freezing intracellularly.  相似文献   

12.
Opuntia ficus-indica, a Crassulacean acid metabolism plant cultivated for its fruits and cladodes, was used to examine chemical and physiological events accompanying low-temperature acclimation. Changes in osmotic pressure, water content, low molecular weight solutes, and extracellular mucilage were monitored in the photosynthetic chlorenchyma and the water-storage parenchyma when plants maintained at day/night air temperatures of 30/20°C were shifted to 10/0°C. An increase in osmotic pressure of 0.13 megapascal occurred after 13 days at 10/0°C. Synthesis of glucose, fructose, and glycerol accounted for most of the observed increase in osmotic pressure during the low-temperature acclimation. Extracellular mucilage and the relative apoplastic water content increased by 24 and 10%, respectively, during exposure to low temperatures. These increases apparently favor the extracellular nucleation of ice closer to the equilibrium freezing temperature for plants at 10/0°C, which could make the cellular dehydration more gradual and less damaging. Nuclear magnetic resonance studies helped elucidate the cellular processes during ice formation, such as those revealed by changes in the relaxation times of two water fractions in the chlorenchyma. The latter results suggested a restricted mobility of intracellular water and an increased mobility of extracellular water for plants at 10/0°C compared with those at 30/20°C. Increased mobility of extracellular water could facilitate extracellular ice growth and thus delay the potentially lethal intracellular freezing during low-temperature acclimation.  相似文献   

13.
The alpine cockroach Celatoblatta quinquemaculata is common at altitudes of around 1500 m on the Rock and Pillar range of Central Otago, New Zealand where it experiences freezing conditions in the winter. The cockroach is freeze tolerant, but only to c. -9 degrees C. The cause of death at temperatures below this is unknown but likely to be due to osmotic damage to cells (shrinkage). This study compared the effect of different ice nucleation temperatures (-2 and -4 degrees C) on the viability of three types of cockroach tissue (midgut, Malpighian tubules and fat body cells) and cooling to three different temperatures (-5, -8, -12 degrees C). Two types of observations were made (i) cryomicroscope observations of ice formation and cell shrinkage (ii) cell integrity (viability) using vital stains. Cell viability decreased with lower treatment temperatures but ice nucleation temperature had no significant effect. Cryomicroscope observations showed that ice spread through tissue faster at -4 than -2 degrees C and that intracellular freezing only occurred when nucleated at -4 degrees C. From temperature records during cooling, it was observed that when freezing occurred, latent heat immediately increased the insect's body temperature close to its melting point (c. -0.3 degrees C). This "rebound" temperature was independent of nucleation temperature. Some tissues were more vulnerable to damage than others. As the gut is thought to be the site of freezing, it is significant that this tissue was the most robust. The ecological importance of the effect of nucleation temperature on survival of whole animals under field conditions is discussed.  相似文献   

14.
It has been accepted that xylem ray parenchyma cells (XRPCs) in hardwood species respond to subfreezing temperatures either by deep supercooling or by extracellular freezing. Present study by cryo-scanning electron microscopy examined the freezing responses of XRPCs in five boreal hardwoods: Salix sachalinensis Fr. Schmit, Populus sieboldii Miq., Betula platyphylla Sukat. var japonica Hara, Betula pubescens Ehrh., and red osier dogwood (Cornus sericea), in which XRPCs have been reported to respond by extracellular freezing. Cryo-scanning electron microscopy observations revealed that slow cooling of xylem to -80 degrees C resulted in intracellular freezing in the majority of XRPCs in S. sachalinensis, an indication that these XRPCs had been deep supercooled. In contrast, in the majority of XRPCs in P. sieboldii, B. platyphylla, B. pubescens, and red osier dogwood, slow cooling to -80 degrees C produced slight cytorrhysis without clear evidence of intracellular freezing, suggesting that these XRPCs might respond by extracellular freezing. In these XRPCs exhibited putative extracellular freezing; however, deep etching revealed the apparent formation of intracellular ice crystals in restricted local areas. To confirm the occurrence of intracellular freezing, we rewarmed these XRPCs after cooling and observed very large intracellular ice crystals as a result of the recrystallization. Thus, the XRPCs in all the boreal hardwoods that we examined responded by deep supercooling that was accompanied with incomplete desiccation. From these results, it seems possible that limitations to the deep-supercooling ability of XRPCs might be a limiting factor for adaptation of hardwoods to cold climates.  相似文献   

15.
Previous studies into the mechanisms governing the freezing of cells in the absence of extracellular ice have been extended to develop a method for the preservation of viable cells in the undercooled state. Deep undercooling of cells is achieved by suspending fine droplets of the cells in oil to make an emulsion, thus minimizing initiation of extracellular ice nucleation. Attempts to preserve yeast cells, cultured sainfoin cells, and dissected shoot-tips (pea and potato) in this way are described. The main findings are that yeast cells can be preserved undercooled at -20 degrees C for at least 16 weeks with no detectable loss of viability, showing that -20 degrees C is a low enough temperature for inhibition of significant biochemical deterioration and that the emulsions are stable over long periods. In preliminary experiments, sainfoin cells survived 24 hr at -10 degrees C, and shoot-tips survived 48 hr at -10 degrees C. Sainfoin cells, conditioned by growth in medium supplemented with sorbitol, showed enhanced survival after exposure to low temperatures and a lower intracellular freezing point than control cells. Possible reasons for this are discussed.  相似文献   

16.
Vitrification in plants as a natural form of cryoprotection   总被引:2,自引:0,他引:2  
A G Hirsh 《Cryobiology》1987,24(3):214-228
A small group of woody plants from the far northern hemisphere can, while in the dormant state, tolerate freezing and thawing to and from any subzero temperature at rates less than 30 degrees C/hr. In addition, the hardiest of them can tolerate cooling and warming between -20 degrees C and any colder temperature at virtually any combination of rates subsequent to cooling to -20 degrees C at rates less than 5 degrees C/hr. We term this latter capability "quench hardiness." I and my colleagues have shown that the limits of this quench hardiness can be closely correlated to the stability of intracellular glasses formed during the slow cooling of hardy tissues in the presence of extracellular ice. In this paper, I briefly review the evidence for intracellular glass formation and present data indicating that major components of the glass forming solutions are raffinose and stachyose. Evidence from differential scanning calorimetry that sugar-binding soluble proteins are also important is presented. Finally, I correlate data from our work with that of other workers to make the case that, even when most of a cytoplasmic solution is vitrified, fluid microdomains remain which can lead to long-term biodegradation during storage at high subzero temperatures.  相似文献   

17.
Direct evidence for metabolism in a variety of frozen environments has pushed temperature limits for bacterial activity to increasingly lower temperatures, so far to -20 degrees C. To date, the metabolic activities of marine psychrophilic bacteria, important components of sea-ice communities, have not been studied in laboratory culture, not in ice and not below -12 degrees C. We measured [3H]-leucine incorporation into macromolecules (further fractionated biochemically) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H over a range of anticipated activity-permissive temperatures, from +13 to -20 degrees C, including expected negative controls at -80 and -196 degrees C. For incubation temperatures below -1 degrees C, the cell suspensions [all in artificial seawater (ASW)] were first quick-frozen in liquid nitrogen. We also examined the effect of added extracellular polymeric substances (EPS) on [3H]-leucine incorporation. Results showed that live cells of strain 34H incorporated substantial amounts of [3H]-leucine into TCA-precipitable material (primarily protein) down to -20 degrees C. At temperatures from -1 to -20 degrees C, rates were enhanced by EPS. No activity was detected in the killed controls for strain 34H (or in Escherichia coli controls), which included TCA-killed, heat-killed, and sodium azide- and chloramphenicol-treated samples. Surprisingly, evidence for low but significant rates of intracellular incorporation of [3H]-leucine into protein was observed for both ASW-only and EPS-amended (and live only) samples incubated at -80 and -196 degrees C. Mechanisms that could explain the latter results require further study, but the process of vitrification promoted by rapid freezing and the presence of salts and organic polymers may be relevant. Overall, distinguishing between intracellular and extracellular aspects of bacterial activity appears important to understanding behavior at sub-freezing temperatures.  相似文献   

18.
The interactions between freezing kinetics and subsequent storage temperatures and their effects on the biological activity of lactic acid bacteria have not been examined in studies to date. This paper investigates the effects of three freezing protocols and two storage temperatures on the viability and acidification activity of Lactobacillus delbrueckii subsp. bulgaricus CFL1 in the presence of glycerol. Samples were examined at −196°C and −20°C by freeze fracture and freeze substitution electron microscopy. Differential scanning calorimetry was used to measure proportions of ice and glass transition temperatures for each freezing condition tested. Following storage at low temperatures (−196°C and −80°C), the viability and acidification activity of L. delbrueckii subsp. bulgaricus decreased after freezing and were strongly dependent on freezing kinetics. High cooling rates obtained by direct immersion in liquid nitrogen resulted in the minimum loss of acidification activity and viability. The amount of ice formed in the freeze-concentrated matrix was determined by the freezing protocol, but no intracellular ice was observed in cells suspended in glycerol at any cooling rate. For samples stored at −20°C, the maximum loss of viability and acidification activity was observed with rapidly cooled cells. By scanning electron microscopy, these cells were not observed to contain intracellular ice, and they were observed to be plasmolyzed. It is suggested that the cell damage which occurs in rapidly cooled cells during storage at high subzero temperatures is caused by an osmotic imbalance during warming, not the formation of intracellular ice.  相似文献   

19.
Optimization of techniques for cryopreservation of mammalian sperm is limited by a lack of knowledge regarding water permeability characteristics during freezing in the presence of extracellular ice and cryoprotective agents (CPAs). Cryomicroscopy cannot be used to measure dehydration during freezing in mammalian sperm because they are highly nonspherical and their small dimensions are at the limits of light microscopic resolution. Using a new shape-independent differential scanning calorimeter (DSC) technique, volumetric shrinkage during freezing of ICR mouse epididymal sperm cell suspensions was obtained at cooling rates of 5 and 20 degrees C/min in the presence of extracellular ice and CPAs. Using previously published data, the mouse sperm cell was modeled as a cylinder (122-microm long, radius 0.46 microm) with an osmotically inactive cell volume (V(b)) of 0.61V(o), where V(o) is the isotonic cell volume. By fitting a model of water transport to the experimentally obtained volumetric shrinkage data, the best-fit membrane permeability parameters (L(pg) and E(Lp)) were determined. The "combined best-fit" membrane permeability parameters at 5 and 20 degrees C/min for mouse sperm cells in solution are as follows: in D-PBS: L(pg) = 1.7 x 10(-15) m(3)/Ns (0.01 microm/min-atm) and E(Lp) = 94.1 kJ/mole (22.5 kcal/mole) (R(2) = 0.94); in "low" CPA media (consisting of 1% glycerol, 6% raffinose, and 15% egg yolk in D-PBS): L(pg)[cpa] = 1.7 x 10(-15) m(3)/Ns (0.01 microm/min-atm) and E(Lp)[cpa] = 122.2 kJ/mole (29.2 kcal/mole) (R(2) = 0.98); and in "high" CPA media (consisting of 4% glycerol, 16% raffinose, and 15% egg yolk in D-PBS): L(pg)[cpa] = 0.68 x 10(-15) m(3)/Ns (0.004 microm/min-atm) and E(Lp)[cpa] = 63.6 kJ/mole (15.2 kcal/mole) (R(2) = 0.99). These parameters are significantly different than previously published parameters for mammalian sperm obtained at suprazero temperatures and at subzero temperatures in the absence of extracellular ice. The parameters obtained in this study also suggest that damaging intracellular ice formation (IIF) could occur in mouse sperm cells at cooling rates as low as 25-45 degrees C/min, depending on the concentrations of the CPAs. This may help to explain the discrepancy between the empirically determined optimal cryopreservation cooling rates, 10-40 degrees C/min, and the numerically predicted optimal cooling rates, greater than 5000 degrees C/min, obtained using suprazero mouse sperm permeability parameters that do not account for the presence of extracellular ice. As an independent test of this prediction, the percentages of viable and motile sperm cells were obtained after freezing at two different cooling rates ("slow" or 5 degrees C/min; "fast," or 20 degrees C/min) in both the low and high CPA media. The greatest sperm motility and viability was found with the low CPA media under fast (20 degrees C/min) cooling conditions.  相似文献   

20.
B. Korniski  T. B. Darr  A. Hubel   《Cryobiology》1999,38(4):339-352
This study has been conducted to examine basic transport characteristics of pig hepatocytes cultured as spheroids for use in a bioartificial liver. Static osmotic experiments were conducted by subjecting hepatocyte spheroids in solutions of increasing sucrose concentrations. A Boyle-van't Hoff plot was used to extrapolate an osmotically inactive volume, V(b), of 0.60, which is unusually high and might not represent the inactive volume of the individual cells. The spheroids were disaggregated and low-temperature cryomicroscopy experiments performed to examine the transport and intracellular ice formation (IIF) characteristics. A hydraulic permeability, L(pg), of 7.6 x 10(15) m(3)/Ns and an activation energy, E(lp), of 82 kJ/mol was determined for the individual cells. The kinetic (Omega(o)) and thermodynamic (kappa(o)) coefficients for IIF were determined to be 5.9 x 10(8) m(-2) s(-1) and 3.0 x 10(9) K(5), respectively. These results infer a decrease in the temperature range over which IIF is observed compared to freshly isolated pig hepatocytes. The technique of freeze substitution was used to examine the structure inside the spheroid during freezing. At a low cooling rate of 1 degrees C/min, increasing amounts of intercellular ice formed between the cells. At a higher cooling rate of 100 degrees C/min small intracellular ice crystals formed. This study shows the location of ice in a freezing hepatocyte spheroid and confirms that the cells cultured as spheroids do not transport water in the same manner as isolated cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号