首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AimsHypnotic zolpidem is a positive allosteric modulator of γ-aminobutyric acid (GABA) action, with preferential although not exclusive binding for α1 subunit-containing GABAA receptors. The pharmacological profile of this drug is different from that of classical benzodiazepines, although it acts through benzodiazepine binding sites at GABAA receptors. The aim of this study was to further explore the molecular mechanisms of GABAA receptor induction by zolpidem.Main methodsIn the present study, we explored the effects of two-day zolpidem (10 μM) treatment on GABAA receptors on the membranes of rat cerebellar granule cells (CGCs) using [3H]flunitrazepam binding and semi-quantitative PCR analysis.Key findingsTwo-day zolpidem treatment of CGCs did not significantly affect the maximum number (Bmax) of [3H]flunitrazepam binding sites or the expression of α1 subunit mRNA. However, as shown by decreased GABA [3H]flunitrazepam binding, two-day exposure of CGCs to zolpidem caused functional uncoupling of GABA and benzodiazepine binding sites at GABAA receptor complexes.SignificanceIf functional uncoupling of GABA and benzodiazepine binding sites at GABAA receptors is the mechanism responsible for the development of tolerance following long-term administration of classical benzodiazepines, chronic zolpidem treatment may induce tolerance.  相似文献   

2.
Abstract

A GABA / benzodiazepine/barbiturate receptor complex has been purified from bovine cerebral cortex by affinity chromatography on a benzodiazepine column. Depending on the detergent present during the isolation of the receptor (deoxycholate/Triton X-100 or CHAPS/Asolectin), and during the binding assays (Triton X-100 or CHAPS), the receptor displays different binding properties for the GABAA agonist [3H]muscimol and for the chloride ion channel blocking agent [35S]t-butylbicyclophosphoro-thionate (TBPS), whereas the binding properties for the benzodiazepine [3H] flunitrazepam are independent of isolation and assay conditions. Both methods of isolation yield a protein complex consisting of the same two subunits of Mr 53000 and Mr 57000. Therefore the different binding properties reflect different conformations of the isolated receptor protein. [3H] flunitrazepam binding to the CHAPS-purified receptor is stimulated by GABA and the barbiturate pentobarbital in a dose-dependent manner. Photo-affinity labeling of the purified receptor with [3H] flunitrazepam leads to incorporation of radioactivity into both subunits, but predominantly into the Mr 53000 band, as shown by fluorography. Proteolytic degradation by trypsin of the isolated photo-affinity labeled receptor in detergent solution proceeds via a labeled Mr 48000 polypeptide. Proteolytic destruction of the reversible [3H]flunitrazepam and [3H]muscimol binding activities requires > 100 fold higher concentrations of trypsin than the decomposition of the receptor polypeptides into fragments < Mr 10000.  相似文献   

3.
GABA receptor binding to mammalian neuronal membranes has been classified into at least 2 subtypes—GABAA and GABAB binding sites. In catfish brain GABAA receptor sites have previously been demonstrated. Evidence is now presented that under appropriate conditions which rule out GABAA receptor binding, [3H]GABA binds to membranes prepared from catfish brain. This binding is bicuculline-insensitive but differs enough from mammalian GABAB binding to cast some doubt on the idea that GABAB receptors exist in catfish brain. Specific binding was detected that was saturable and exhibited a dissociation constant of 4μM. (±)Baclofen, a potent inhibitor in rat brain, was a weak inhibitor, producing a maximum of 43% inhibition. This inhibitory effect could be enhanced, however, in the presence of 320 μM isoguvacine. [3H]GABA binding was unaffected by bicuculline. Thus bicuculline-insensitive GABA binding sites exist in catfish brain but they differ in a number of ways from the GABAB receptor site found in mammals. Furthermore, a third [3H]GABA binding site appears to exist that is both baclofen- and bicuculline-insensitive, yet is inhibited by high concentrations of isoguvacine, a known GABAA agonist.  相似文献   

4.
(3SR,4RS)-3,4-Epoxypiperidine-4-carboxylic acid (isoguvacine oxide) is a potent and specific GABAA receptor agonist. Isoguvacine oxide, originally designed as a potentially alkylating agonist, turned out to interact with the GABAA receptor in a fully reversible manner. The protected form of isoguvacine oxide, benzyl (3SR,4RS)-1-(benzyloxycarbonyl)-3,4-epoxypiperidine-4-carboxylate ( 1 ) (Scheme 1), has now been resolved by chiral chromatography using cellulose triacetate as a chiral stationary phase. The enantiomers of 1 (ee ≥ 98.8%) were subsequently deprotected by hydrogenolysis. Whereas both enantiomers of isoguvacine oxide were inactive as inhibitors of the binding of [3H]GABA to GABAB receptor sites (IC50 > 100 μM), (+)-isoguvacine oxide (IC50 = 0.20 ± 0.03 μM) and (?)-isoguvacine oxide (IC50 = 0.32 ± 0.05 μM) showed comparable potencies as inhibitors of the binding of [3H]GABA to GABAA receptor sites. Furthermore, (+)-isoguvacine oxide (EC50 = 6 μM; 33% relative efficacy) and (?)-isoguvacine oxide (EC50 = 5 μM; 38% efficacy relative to 10 μM muscimol) were approximately equipotent and equiefficacious as stimulators of the binding of [3H]diazepam to the GABAA receptor-associated benzodiazepine site. This latter effect is an in vitro estimate of GABAA agonist efficacy. These pharmacological data for isoguvacine oxide and its enantiomers do not seem to support our earlier conception of the topography of the GABAA recognition site(s), derived from extensive structure—activity studies on GABAA agonists. Thus, the model of the GABAA recognition site(s) comprising a narrow cleft or pocket, in which the anionic moiety of the zwitterionic GABAA agonists is assumed to be embedded during receptor activation, may have to be revised. © 1995 Wiley-Liss, Inc.  相似文献   

5.
Brain GABAA/benzodiazepine receptors are highly heterogeneous. This heterogeneity is largely derived from the existence of many pentameric combinations of at least 16 different subunits that are differentially expressed in various brain regions and cell types. This molecular heterogeneity leads to binding differences for various ligands, such as GABA agonists and antagonists, benzodiazepine agonists, antagonists, and inverse agonists, steroids, barbiturates, ethanol, and Cl channel blockers. Different subunit composition also leads to heterogeneity in the properties of the Cl channel (such as conductance and open time); the allosteric interactions among subunits; and signal transduction efficacy between ligand binding and Cl channel opening. The study of recombinant receptors expressed in heterologous systems has been very useful for understanding the functional roles of the different GABAA receptor subunits and the relationships between subunit composition, ligand binding, and Cl channel properties. Nevertheless, little is known about the complete subunit composition of the native GABAA receptors expressed in various brain regions and cell types. Several laboratories, including ours, are using subunit-specific antibodies for dissecting the heterogeneity and subunit composition of native (not reconstituted) brain GABAA receptors and for revealing the cellular and subcellular distribution of these subunits in the nervous system. These studies are also aimed at understanding the ligand-binding, transduction mechanisms, and channel properties of the various brain GABAA receptors in relation to synaptic mechanisms and brain function. These studies could be relevant for the discovery and design of new drugs that are selective for some GABAA receptors and that have fewer side effects.  相似文献   

6.
Tien LT  Ma T  Fan LW  Loh HH  Ho IK 《Neurochemical research》2007,32(11):1891-1897
Anatomical evidence indicates that γ-aminobutyric acid (GABA)-ergic and opioidergic systems are closely linked and act on the same neurons. However, the regulatory mechanisms between GABAergic and opioidergic system have not been well characterized. In the present study, we investigated whether there are changes in GABAA receptors in mice lacking μ-opioid receptor gene. The GABAA receptor binding was carried out by autoradiography using [3H]-muscimol (GABAA), [3H]-flunitrazepam (FNZ, native type 1 benzodiazepine) and [35S]-t-butylbicyclophosphorothionate (TBPS, binding to GABAA-gated chloride channels) in brain slices of wild type and μ-opioid receptor knockout mice. The binding of [3H]-FNZ in μ-opioid receptor knockout mice was significantly higher than that of the wild type controls in most of the cortex and hippocampal CA1 and CA2 formations. μ-Opioid receptor knockout mice show significantly lower binding of [35S]-TBPS than that of the wild type mice in few of the cortical areas including ectorhinal cortex layers I, III, and V, but not in the hippocampus. There was no significant difference in binding of [3H]-muscimol between μ-opioid receptor knockout and wild type mice in the cortex and hippocampus. These data indicate that there are specific regional changes in GABAA receptor binding sites in μ-opioid receptor knockout mice. These data also suggest that there are compensatory up-regulation of benzodiazepine binding site of GABAA receptors in the cortex and hippocampus and down-regulation of GABA-gated chloride channel binding site of GABAA receptors in the cortex of the μ-opioid receptor knockout mice.  相似文献   

7.
Carvone is a natural terpene which can be purified as R‐(?) or S‐(+) enantiomers. There are many reports about its antibacterial, antifungal, and insecticide activities, and also of some effects on the nervous system, where both enantiomers showed different potencies. Considering that the GABAA receptor is a major insecticide target, we studied the pharmacological activity of both carvone enantiomers, and of thujone as a reference compound acting on the receptor, on native GABAA by determining their effects on benzodiazepine recognition sites using primary neuronal cultures. Both isomers were able to inhibit the GABA‐induced stimulation of [3H]flunitrazepam binding, suggesting their interaction with the GABAA receptor as negative allosteric modulators. Their activity was comparable to that described for thujone in the present article, with the R‐(?)‐carvone being the more similar and potent stereoisomer. The different configuration of the isopropenyl group in position 5 thus seems to be significant for receptor interaction and the bicycle structure not to be critical for receptor recognition. The concentrations necessary to induce negative modulation of the receptor were not cytotoxic in a murine neuron culture system. These results confirm that, at least partially, the reported insecticidal activity of carvones may be explained by their interaction with the GABAA receptor at its noncompetitive blocker site. Chirality 26:368–372, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
The CNS of the cockroach Periplaneta americana contains saturable, specific binding sites for [3H]GABA, [3H]flunitrazepam and [35S]TBPS. The [3H]GABA binding site exhibits a pharmacological profile distinct from that reported for mammalian GABAA and GABAB receptors. The most potent inhibitors of [3H]GABA binding were GABA and muscimol, whereas isoguvacine, thiomuscimol and 3-aminopropane sulphonic acid were less effective. Bicuculline methiodide and baclofen were ineffective. Binding of [35S]TBPS was partially inhibited by 1.0 × 10−6 M GABA, whilst binding of [3H]flunitrazepam was enhanced by 1.0 × 10−7 M GABA. The pharmacological profile of the [3H]flunitrazepam binding site showed some similarities with the peripheral benzodiazepine binding sites of vertebrates, with Ro-5-4864 being a far more effective inhibitor of binding than clonazepam. Thus a class of GABA receptors with pharmacological properties distinct from mammalian GABA receptor subtypes is present in insect CNS.  相似文献   

9.
Abstract: Expression of rat brain γ-aminobutyric acid type A (GABAA) receptors in Xenopus laevis oocytes can be achieved by injection of the oocytes with synaptosomes. This approach has now been applied to evaluate changes in the function of nigral GABAA receptors after degeneration of the striatonigral GABAergic pathway induced by the unilateral infusion of kainic acid into the rat striatum. Ten days after striatal injection, synaptosomal membranes were prepared from the substantia nigra and introduced into oocytes. Nigral GABAA receptors incorporated into the oocyte cell membrane were then characterized electrophysiologically under voltage-clamp conditions. The maximal amplitude of GABA-induced Cl? currents in oocytes injected with synaptosomes from denervated substantia nigra was twice that observed in oocytes injected with synaptosomes from control substantia nigra. The concentration of GABA required for the half-maximal response did not differ between the two groups of oocytes. In addition, the potentiation of GABA-induced currents by the benzodiazepine diazepam (1 µM) and the steroid derivative allopregnanolone (3 µM) was increased by ~65 and 60%, respectively, in oocytes injected with synaptosomes from denervated substantia nigra compared with those injected with control synaptosomes. The concentrations of diazepam and allopregnanolone giving half-maximal responses were not affected by denervation. In contrast, the inhibitory effects of the benzodiazepine receptor inverse agonists FG 7142 (10 µM) and 6,7-dimethoxy-4-ethyl-β-carboline-3-carboxylic acid ethyl ester (1 µM) were reduced by 48 and 38%, respectively, after denervation. These results indicate that the up-regulation of nigral GABAA receptors induced by degeneration of the striatonigral GABAergic pathway is associated with an increased efficacy of positive allosteric modulators, such as benzodiazepines and steroids, and with a reduced efficacy of negative allosteric modulators such as β-carbolines.  相似文献   

10.
The significance of N-linked glycosylation and oligosaccharide processing was examined for the expression of γ-aminobutyric acidA receptor (GABAAR) in cultured neurons derived from chick embryo brains. Incubation of cultures with 5 μg/ml of tunicamycin for 24 h blocked the binding of 3H-flunitrazepam and 3H-muscimol, probes for the benzodiazepine and GABA sites on the receptor, by about 20% and 28%, respectively. The loss of ligand binding was due to a reduction in the number of binding sites with no significant changes in receptor affinity. Light microscopic immunocytochemistry also revealed that the treatment reduced approximately 13% of the intensity of GABAAR immunoreactivity in the neuronal somata. Furthermore, the fraction of intracellular receptors was decreased to 24% from 34% of control in the presence of the agent, as revealed by trypsinization of cells in situ followed by 3H-flunitrazepam binding. The molecular weight of the receptor subunit protein was lowered around 0.5 kDa after tunicamycin treatment, in accordance with that following N-glycosidase F digestion, indicating the blockade of N-linked glycosylation of GABAAR by tunicamycin. Moreover, intense inhibitions of 91% and 44%, respectively, were detected to the general galactosylation and mannosylation in the tunicamycin-treated cells, whereas the protein synthesis was hindered by 13%, through assaying the incorporation of 3H-sugars and 3H-leucine. Nevertheless, treatment with castanospermine or swainsonine (10 μg/ml, 24 h), inhibitors to maturation of oligosaccharides, failed to produce significant changes in the ligand binding. In addition, in situ hybridization analysis showed that these three inhibitors did not perturb the mRNA of GABAAR α1-subunit. The data suggest that tunicamycin causes the downregulation and subcellular redistribution of GABAAR by producing irregularly glycosylated receptors and modifying their localization. Both galactosylation and mannosylation during the process of N-linked glycosylation may be important for the functional expression and intracellular transport of GABAAR. J. Cell. Biochem. 70:38–48, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
Abstract: The developmental properties of primary rat cerebellar granule cells have been characterised with respect to their expression of GABAA receptor subtypes using both an immunological approach and radioligand binding assays. At day 1 in culture, the GABAA receptor α1 subunit was detectable in immunoblots and increased in level up to day 9. The GABAA receptor α6 subunit was not detectable at day 1; however, at days 3–5, a specific Mr 58,000 anti-α6 1–16 Cys immunoreactive species was present which further increased in level up to 9 days in culture. Similar qualitative results were obtained for the expression of the GABAA receptor α6 subunit in age-matched rat cerebellar membranes. In parallel studies, it was found that although there was an overall increase in [3H]Ro 15–4513 binding sites with days in culture, the relative contributions of diazepam-sensitive and diazepam-in-sensitive [3H]Ro 15–4513 binding changed. A time-dependent enrichment of the diazepam-insensitive binding site up to a maximum of 74% of total [3H]Ro 15–4513 sites was found. This was concomitant with the appearance of the GABAA receptor α6 subunit. These results are in agreement with the pharmacology described for α6βγ2 cloned receptors. They suggest a developmentally regulated expression of the GABAA receptor α6 subunit gene at a time that is correlated in vivo with establishment of neuronal connections.  相似文献   

12.
We evaluated the effects of 6-methoxyflavanone and 6-methoxyflavone on wild-type α1/α2β2γ2L GABAA and ρ1 GABAC receptors and on mutant ρ1I307S, ρ1W328 M, ρ1I307S/W328 M GABAC receptors expressed in Xenopus oocytes using two-electrode voltage clamp and radioligand binding. 6-Methoxyflavanone and 6-methoxyflavone act as a flumazenil-insensitive positive allosteric modulator of GABA responses at human recombinant α1β2γ2L and α2β2γ2L GABAA receptors. However, unlike 6-methoxyflavone, 6-methoxyflavanone was relatively inactive at α1β2 GABAA receptors. 6-Methoxyflavanone inhibited [3H]-flunitrazepam binding to rat brain membranes. Both flavonoids were found to be inactive as modulators at ρ1, ρ1I307S and ρ1W328 M GABA receptors but acted as positive allosteric modulators of GABA at the benzodiazepine sensitive ρ1I307S/W328 M GABA receptors. This double mutant retains ρ1 properties of being insensitive to bicuculline and antagonised by TPMPA and THIP. Additionally, 6-methoxyflavanone was also a partial agonist at ρ1W328 M GABA receptors. The relative inactivity of 6-methoxyflavanone at α1β2 GABAA receptors and it’s partial agonist action at ρ1W328 M GABA receptors suggest that it exhibits a unique profile not matched by other flavonoids.  相似文献   

13.
By binding to the benzodiazepine site, diazepam binding inhibitor (DBI) is associated with negative allosteric modulation (NAM) of GABAA receptors (Costa and Guidotti in Life Sci 49:325–344, 1991). However, the demonstration of a true physiological role of DBI and its fragments has only recently been reported. Based on DBI gain- and loss-of-function experiments in vivo, DBI and its fragment ODN were found to promote neurogenesis in the subventricular zone in vivo. Acting as NAM on GABAA receptors of precursor cells, DBI counteracted the inhibitory effect of GABA and thereby enhanced the proliferation of these cells (Alfonso et al. in Cell Stem Cell 10:76–87, 2012). Conversely and most remarkably, in similar gain- and loss-of-function experiments in the thalamus, the DBI gene products acted as positive allosteric modulators (PAM) of GABAA receptors in prolonging the duration of IPSCs, an effect which was specific for GABA transmission within the reticular nucleus (nRT) (Christian et al. in Neuron 78:1063–1074, 2013). Since intra-nRT potentiation of GABA transmission by benzodiazepine drugs exerts powerful anti-oscillatory effects, DBI might be endogenously effective by modulating seizure susceptibility. It remains to be seen by which mechanism both NAM and PAM activity can arise from the Dbi gene. Nevertheless, the results open new perspectives on the regionally distinct endogenous modulation of GABA transmission via the benzodiazepine site.  相似文献   

14.
Abstract: The effect of calcium-phospholipid-dependent protein kinase (PKC) on GABAA receptor function was examined in Xenopus oocytes expressing recombinant human GABAA receptor using two-electrode voltage-clamp measurements. Phorbol 12-myristate 13-acetate (PMA), a potent activator of PKC, inhibited GABA-gated chloride currents by ~72% in oocytes expressing αlβ1γ2L subunit cDNAs. Phorbol 12-monomyristate (PMM), a negative control analogue of PMA, did not alter GABAA receptor responses. To investigate whether activation of PKC could alter the modulatory responses of the receptor complex, the effect of PMA on benzodiazepine and barbiturate potentiation of GABA responses was assessed. In oocytes expressing αlβ1γ2s subunit cDNAs, diazepam (300 nM) potentiated GABA responses by ~160%. Following PMA (5-25 nM/) treatment, diazepam potentiation was significantly increased to 333%. No effect of the inactive phorbol ester PMM (25 nM) was observed on diazepam potentiation of GABA responses. PMA enhancement of diazepam potentiation of GABA responses was also observed in oocytes expressing αlβ1γ2Ssubunit cDNAs, indicating that the unique PKC site present in the Tγ2LL subunit is not required for observing the PMA effect. PMA (5-25 nM) also enhanced pentobarbital potentiation of GABA responses. In oocytes expressing αlβ1γ2L subunit cDNAs, pentobarbital (25 μM) potentiated GABA receptor responses by ~97%. Following treatment with PMA (5-25 nM), pentobarbital potentiation of GABA responses increased to ~ 156%. The present results suggest that protein phosphorylation may alter the coupling between the allosteric modulatory sites within the GABAA receptor complex.  相似文献   

15.
[35S]TBPS binding to the GABAA receptor ionophore binding site is anion dependent. Using autoradiography on rat brain sections, we show that permeabilities of anions through the receptor channel correlate with their efficiencies to promote basal [35S]TBPS binding. Phosphate made an exception as it induced more binding than expected from its permeability. Well-permeable anions (chloride, nitrate, formate) allowed [35S]TBPS binding to be effectively displaced by 1 mM GABA, whereas low-permeable anions (acetate, phosphate, propionate) markedly prevented this GABA effect, especially in the thalamus, the transition from the high to the low GABA effect being between formate and acetate. In the presence of phosphate, GABA enhanced [3H]flunitrazepam binding to benzodiazepine site of recombinant α1β2γ2 receptors with the same efficacy but lower potency as compared to the presence of chloride, whereas [35S]TBPS binding was abnormally modulated by GABA. These results suggest that inorganic phosphate affects coupling between agonist and ionophore sites in GABAA receptors. Special issue dedicated to Simo S. Oja  相似文献   

16.
An endogenous inhibitor of γ-aminobutyric acid (GABA) receptors was partially purified from bovine brain striatum. It was obtained as a low molecular weight fraction by gel filtration on Biogel P-2 and was adsorbed to Dowex AG 50W-X8, but not to Dowex AG 1-X8. It was ninhydrin-negative, basic, heat-stable substance. It caused dose-dependent inhibition of Na+-independent [3H]GABA bindings. Scatchard plot analysis of the [3H]GABA binding to GABA “B” receptor recognition site showed this inhibitor increased the Kd value (24.1 nM to 3.6 nM) without changing the Bmax. On the other hand, Scatchard plot analysis of the [3H]GABA binding to GABA “A” receptor recognition site showed that the inhibitor decreased number of binding sites (706 fmol/mg protein to 494 fmol/mg protein) without affecting the Kd value. These results suggest that the endogenous inhibitor functions as a modulator for GABAB and GABAA receptors.  相似文献   

17.
Previously we have reported the presence of endogenous ligands that are involved in the regulation of the binding of muscimol to the GABA binding site of the GABAA receptors. Here, we report the presence of multiple forms of endogenous ligands in the brain which modulate the binding of flunitrazepam (FNZP) to the benzodiazepine (BZ) binding site of the GABAA receptor. Furthermore, one of the endogenous ligands for the BZ receptors, referred to as EBZ, has been identified as inosine based on the following observations: (1) standard inosine and the EBZ have identical NMR and UV spectra; (2) the elution profile of inosine and the EBZ from a HPLC column are indistinguishable, and (3) inosine and the EBZ show identical activity in inhibiting [3H]FNZP binding.  相似文献   

18.
Recent publications defined requirements for inter-subunit contacts in a benzodiazepine-sensitive GABAA receptor (GABAARα1β3γ2). There is strong evidence that the heteropentameric receptor contains two α1, two β3, and one γ2 subunit. However, the available data do not distinguish two possibilities: When viewed clockwise from an extracellular viewpoint the subunits could be arranged in either γ2β3α1β3α1 or γ2α1β3α1β3 configurations. Here we use molecular modeling to thread the relevant GABAAR subunit sequences onto a template of homopentameric subunits in the crystal structure of the acetylcholine binding protein (AChBP). The GABAA sequences are known to have 15-18% identity with the acetylcholine binding protein and nearly all residues that are conserved within the nAChR family are present in AChBP. The correctly aligned GABAA sequences were threaded onto the AChBP template in the γ2β3α1β3α1 or γ2α1β3α1β3  arrangements. Only the γ2α1β3α1β3 arrangement satisfied three known criteria: (1) α1 His102 binds at the γ2 subunit interface in proximity to γ2 residues Thr142, Phe77, and Met130; (2) α1 residues 80-100 bind near γ2 residues 91-104; and (3) α1 residues 58-67 bind near the β3 subunit interface. In addition to predicting the most likely inter-subunit arrangement, the model predicts which residues form the GABA and benzodiazepine binding sites.  相似文献   

19.
In the internal granular layer of the cerebellar cortex the polysynaptic complexes called glomeruli consist mainly of homogeneous populations of glutamatergic and GABAergic synapses, both located on granule cell dendrites. A subcellular fraction enriched in glomeruli was prepared from rat cerebellum, and the distribution of GABAA and of benzodiazepine binding sites between membranes derived from this fraction (fraction G) and from a total cerebellar homogenate (fraction T) was studied. The benzodiazepine and GABA binding sites were measured by the binding of agonists [3H]flunitrazepam and [3H]muscimol, respectively. The results indicate that both binding sites are present, but only slightly enriched, in the glomerular synapses. We found a muscimol/flunitrazepam binding site ratio of two, which is consistent with the enrichement of muscimol binding sites in the granular layer shown by both autoradiographic with radioactive glutamatergic ligands and in situ hybridization experiments respectively.  相似文献   

20.
Pharmacological and biochemical characteristics of the partially purified -aminobutyric acid (GABA)B receptor using baclofen affinity column chromatography have been examined. The Scatchard analysis of [3H]GABA binding to the purified GABAB receptor showed a linear relationship and the KD and Bmax values were 60 nM and 118 pmol/mg of protein, respectively. Although GTP and Mg2+ did not affect on the GABAB receptor binding, Ca2+ significantly increased [3H]GABA binding to the purified GABAB receptor in a dose-dependent manner and showed its maximum effect at 2 mM. The enhancement of the binding by Ca2+ was found to be due to the increase of Bmax by the Scatchard analysis. The treatments with pronase and trypsin significantly decreased the binding of [3H]GABA, but phospholipase A2 had no significant effect on the binding. In addition, treatment with glycosidases such as glycopeptidase A and -galactosidase significantly decreased the binding of [3H]GABA to the purified GABAB receptor. These results suggest that purification of the solubilized GABAB receptor by the affinity column chromatography may result in the functional uncoupling of GABAB receptor with GTP-binding protein. Furthermore, the present results suggest that cerebral GABAB receptor may be a glycoprotein and membrane phospholipids susceptible to phospholipase A2 treatment may not be involved in the exhibition of the binding activity.Special issue dedicated to Dr. Eugene Roberts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号