首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

Cholinergic binding proteins were purified from torpedo electric organ. The preparation comprises: solubilization by non-ionic detergents followed by unspecific prepurification. For prepurification the double reversed technique proved to be very useful. Finally we applied affinity chromatography. For the affinity purification we used resins with chemically well defined small ligand groups from the depolarizing type (carbachol- and decamethonium-analogue), and from the stabilizing type (gallamine amide amine). The purified receptor proteins from all three resins showed different subunit compositions and different properties of α-bungarotoxin binding.  相似文献   

2.
目的:研究明日叶查尔酮对2型糖尿病大鼠红细胞胰岛素受体亲和力的影响.方法:将高脂喂养加链脲佐菌素注射诱发的2型糖尿病大鼠随机分为4组,每组10只.糖尿病对照组和高、中、低剂量组喂饲高脂饲料分别经口灌胃明日叶查尔酮0、30、10、5mg (kg·bw)-1,正常对照组为正常大鼠喂饲普通饲料,连续4周.测定空腹血糖、血清胰岛素与MDA、红细胞胰岛素受体结合常数与结合容量等指标.结果:高剂量组的高亲和力与低亲和力胰岛素受体结合常数高于糖尿病对照组,血糖、胰岛素和MDA含量则降低,差异均有显著性(P<0.05).结论:明日叶查尔酮能提高2型糖尿病大鼠红细胞胰岛素受体亲和力,改善胰岛素抵抗.  相似文献   

3.
Abstract

The human insulin receptor (hIR) is an integral transmembrane glycoprotein comprised of two α and two β subunits. An immediate consequence of insulin binding to the extracellular α subunit is the autophosphorylation of tyrosine residues on the intracellular domain of the β subunit. The placental hIR cDNA has been cloned and sequenced, providing the primary structural features of the protein.

In order to investigate the functions of the β subunit and particularly the role of autophosphorylation and tyrosine phosphokinase (TPK) activity (a feature shared by other receptors and oncogene proteins) in transmembrane signalling, we designed an expression system of the hIR cDNA in eucaryotic cells. Superexpressing CHO cell lines that contain about 106 functional hIR/cell have been developed. In these cells half maximum stimulation of glucose uptake occurs at 5x 10-10M insulin, whereas normal CHO cells require 5x 10-12M insulin. In this expression system we have carried out site-directed mutagenesis experiments in which domains of the molecule have been deleted or particular amino acids have been replaced by others. The replacement of either or both the tyrosine residues 1162 and 1163 compromise an autophosphorylated site that is important for kinase function and the insulin response. Expression of an isolated membrane-bound form of the β-subunit produces a 6 fold increase in glucose uptake. This insulin-independent effect disappears if the twin tyrosines are mutated or if the β subunit is expressed in the cytoplasm. These studies also show that the C terminal 112 amino acid portion of the β subunit is important for the stability of this protein.  相似文献   

4.
Russian Journal of Bioorganic Chemistry - The development of new therapies for malignant tumors is an urgent task. Currently, the humanized antibody trastuzumab is considered the “gold...  相似文献   

5.
Insulin can trigger metabolic as well as mitogenic effects, the latter being pharmaceutically undesirable. An understanding of the structure/function relationships between insulin receptor (IR) binding and mitogenic/metabolic signalling would greatly facilitate the preclinical development of new insulin analogues. The occurrence of ligand agonism and antagonism is well described for G protein-coupled receptors (GPCRs) and other receptors but in general, with the exception of antibodies, not for receptor tyrosine kinases (RTKs). In the case of the IR, no natural ligand or insulin analogue has been shown to exhibit antagonistic properties, with the exception of a crosslinked insulin dimer (B29-B’29). However, synthetic monomeric or dimeric peptides targeting sites 1 or 2 of the IR were shown to be either agonists or antagonists. We found here that the S961 peptide, previously described to be an IR antagonist, exhibited partial agonistic effects in the 1–10 nM range, showing altogether a bell-shaped dose-response curve. Intriguingly, the agonistic effects of S961 were seen only on mitogenic endpoints (3H-thymidine incorporation), and not on metabolic endpoints (14C-glucose incorporation in adipocytes and muscle cells). The agonistic effects of S961 were observed in 3 independent cell lines, with complete concordance between mitogenicity (3H-thymidine incorporation) and phosphorylation of the IR and Akt. Together with the B29-B’29 crosslinked dimer, S961 is a rare example of a mixed agonist/antagonist for the human IR. A plausible mechanistic explanation based on the bivalent crosslinking model of IR activation is proposed.  相似文献   

6.
Recently it has been proposed a model for fibrils of human insulin in which the fibril growth proceeds via stacking LVEALYL (fragment 11–17 from chain B of insulin) into pairs of tightly interdigitated -sheets. The experiments have also shown that LVEALYL has high propensity to self-assembly and binding to insulin. This necessitates study of oligomerization of LVEALYL and its binding affinity to full-length insulin. Using the all-atom simulations with Gromos96 43a1 force field and explicit water it is shown that LVEALYL can aggregate. Theoretical estimation of the binding free energy of LVEALYL to insulin by the molecular mechanic Poisson-Boltzmann surface area method reveals its strong binding affinity to chain B, implying that, in agreement with the experiments, LVEALYL can affect insulin aggregation via binding mechanism. We predict that, similar to LVEALYL, peptide RGFFYT (fragment B22-27) can self-assemble and bind to insulin modulating its fibril growth process. The binding affinity of RGFFYT is shown to be comparable with that of LVEALYL.  相似文献   

7.
Antibody-based methods for the detection and quantification of membrane integral proteins, in particular, the G protein-coupled receptors (GPCRs), have been plagued with issues of primary antibody specificity. In this report, we investigate one of the most commonly utilized commercial antibodies for the cannabinoid CB2 receptor, a GPCR, using immunoblotting in combination with mass spectrometry. In this way, we were able to develop powerful negative and novel positive controls. By doing this, we are able to demonstrate that it is possible for an antibody to be sensitive for a protein of interest—in this case CB2—but still cross-react with other proteins and therefore lack specificity. Specifically, we were able to use western blotting combined with mass spectrometry to unequivocally identify CB2 protein in over-expressing cell lines. This shows that a common practice of validating antibodies with positive controls only is insufficient to ensure antibody reliability. In addition, our work is the first to develop a label-free method of protein detection using mass spectrometry that, with further refinement, could provide unequivocal identification of CB2 receptor protein in native tissues.  相似文献   

8.
Apoptosis is an important mechanism for maintaining tissue homeostasis. The efficient induction and execution of apoptosis are essential for cell clearance in specific developmental situations. Insulin-like growth factor (IGF)-I is a survival factor for epithelial cells in the mammary gland, and its withdrawal or inhibition leads to apoptosis. In this paper we describe a novel mechanism that may lead to suppression of an IGF-I-mediated signaling pathway through cleavage of insulin receptor substrate (IRS). During the process of forced weaning, when mammary epithelial cells rapidly enter apoptosis in vivo, IRS-1 and IRS-2 disappear. We have used cultured mammary epithelial cells to demonstrate that IRS removal can be mediated through the action of caspase 10. Caspase 10 activation and IRS-1 cleavage are regulated by a MKK1-signaling pathway but not by a phosphatidylinositol-3 kinase pathway nor by the extracellular proapoptotic ligands FasL, tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL), or transforming growth factor-beta3. In addition we show that the loss of IRS-1 after MKK1 inhibition prevents IGF-mediated phosphorylation of FKHRL1.  相似文献   

9.
本文研究了人肝癌细胞SMMC-7721的胰岛素受体与^125I-胰岛素结合的条件,并比较了衣霉素处理和对照细胞的结合动力学和内吞作用。结果表明:4℃和PH8是研究胰岛素受体与配体结合的较佳条件,当0.1ug/ml衣霉素处理18小时,Scatshard作图分析指出,胰岛素受体的结合容量降低,每个细胞上的受体位点数减少。Hill作图分析说明,胰岛素和受体的亲和力(胰岛素半饱和浓度和表观解离常数)及结合  相似文献   

10.
11.
Abstract

A polyclonal antibody monospecific for an intracellular epitope of the atrial natriuretic factor (ANF)-R1 receptor was produced. The receptor protein (200 pmoles) was purified to homogeneity from bovine adrenal zona glomerulosa (BAZG), reduced, alkylated and digested with trypsin. The tryptic fragments were purified by reverse-phase h.p.l.c. on a C18 column. Based on the sequence of one of these fragments, a peptide was chemically synthesized, coupled to thyroglobulin and injected into rabbits. The antibody obtained was shown to be specific for the R1-type as no receptor was detected in bovine red blood cells (RBC) (which are devoid of ANF receptors) and in NIH-3T3 cell membranes (where only the R2-type is expressed). Several other tissues were screened and comparison of the immunoreactive receptor density estimates with those obtained by ANF binding yielded a correlation coefficient (r2) of 0.965. The minimal detectable dose was typically 3 fmoles/tube and the ED50 of the RIA was 30 fmoles/tube. Cyanogen bromide digestion of the receptor was essential for antigenic detection, indicating that the epitope is probably hindered due to the tertiary structure of the native protein. Moreover, location of the epitope in the kinase homology domain of the receptor, combined with partial tryptic digestion, suggests that the proteolysis-sensitive region of the receptor is located between the transmembrane- spanning domain and the amino acid 586. This method of production of antibodies should be useful to precisely map the amino acids involved in various functions of the receptor.  相似文献   

12.
International Journal of Peptide Research and Therapeutics - Ovarian cancer is one of the most lethal gynecologic cancers. The high mortality rate is due to lack of early symptoms and developing...  相似文献   

13.
Unique Features of the Insulin Receptor in Rat Brain   总被引:1,自引:3,他引:1  
We examined the structure of the affinity-labeled insulin receptors in rat brain, rat liver, and human IM-9 lymphocytes using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In gels run under reducing conditions, the alpha-subunit of the insulin receptor in brain had an apparent Mr of 127,000 distinctly lower than that seen in both rat liver and human lymphocytes (apparent Mr = 136,000). Exposure to neuraminidase increased the electrophoretic mobility of the liver receptor, but had no effect on the insulin receptor in brain. The carbohydrate moieties of the insulin receptors in rat brain and liver were further examined by chromatography on wheat-germ agglutinin agarose. The receptors in both tissues adsorbed to the wheat-germ agglutinin; elution with 0.3 M N-acetyl glucosamine resulted in slightly better recovery of the brain than of the liver receptor. Exposure to neuraminidase virtually abolished the interaction of the liver receptor with the lectin, whereas adsorption of the brain receptor was unaffected by neuraminidase. These results indicate that the insulin receptor in brain is distinguished from those in peripheral tissues by structural alterations, including changes in the carbohydrate moiety of the receptor. Such alterations contrast sharply with the previously observed similarities in insulin binding properties between insulin receptors in brain and other tissues. The implications of such structural alterations for the program of insulin action expressed by the receptors in brain remain to be explored.  相似文献   

14.
Abstract

Primary human T lymphocytes that have been mitogen activated in chemically defined medium express cell surface insulin receptors. The receptor is identical to other mammalian insulin receptors in binding properties, including: pH dependency, ligand affinity, hormone specificity, and cooperative interactions. Scatchard plots are curvilinear and a ligand-induced increase in dissociation, the property normally associated with “negative cooperativity”, is kinetically demonstrable. In vitro insulin treatment of the receptor-negative, resting T lymphocyte slightly enhances the degree of insulin binding which emerges following cellular activation. Insulin treatment of receptor-positive lymphoblasts results in insulin receptor “down-regulation”. These findings indicate that T lymphoblast insulin receptor concentrations are not significantly influenced by insulin before their emergence but are dramatically regulated by insulin following their appearance at the cell surface.  相似文献   

15.
Abstract

To determine the mechanism of glucocorticoid mediated enhancement of insulin receptor (IR) gene expression, we cotransfected a glucocorticoid receptor expression vector and a plasmid containing a reporter gene driven by an MMTV or IR promoter into COS 7 cells. Dexamethasone (Dex) increased MMTV promoter activity by 100% but had no effect on IR promoter activity. In the glucocorticoid responsive breast cancer cell line, MCF-7, Dex increased IR mRNA by 60%, and increased the IR mRNA half-life from approximately 6hrs to >24hrs. No glucocorticoid responsive element could be located in the insulin receptor 3′ untranslated region. Glucocorticoids stabilize IR mRNA.  相似文献   

16.
谢利芳  焦凯 《生物磁学》2011,(1):108-110
目的:观察外源性胰岛素对小鼠胰岛β细胞瘤细胞株βTC-3细胞胰岛素受体表达的影响。方法:采用免疫荧光细胞化学技术结合激光扫描共聚焦显微镜观察高浓度胰岛素(100 IU/ml)刺激不同时间(0 min、30 min、60 min、120 min、240 min),培养的βTC-3细胞胰岛素受体的表达,用Image pro plus软件对胰岛素受体的荧光强度进行了半定量分析。结果:与0 min比较,胰岛素孵育30 min、60 min、120 min、240 min时胰岛素受体荧光强度均明显下降(P〈0.05)。结论:高浓度胰岛素孵育βTC3细胞后,可明显下调胰岛素受体的表达,这可能是高胰岛素血症导致胰岛素抵抗产生的机制之一。  相似文献   

17.
18.
Class B G protein-coupled receptors (GPCRs) are important regulators of endocrine physiology, and peptide-based therapeutics targeting some of these receptors have proven effective at treating disorders such as hypercalcemia, osteoporosis, and type 2 diabetes mellitus (T2DM). As next generation efforts attempt to develop novel non-peptide, orally available molecules for these GPCRs, new animal models expressing human receptor orthologs may be required because small molecule ligands make fewer receptor contacts, and thus, the impact of amino acid differences across species may be substantially greater. The objective of this report was to generate and characterize a new mouse model of the human glucagon-like peptide-1 receptor (hGLP-1R), a class B GPCR for which established peptide therapeutics exist for the treatment of T2DM. hGLP-1R knock-in mice express the receptor from the murine Glp-1r locus. Glucose tolerance tests and gastric emptying studies show hGLP-1R mice and their wild-type littermates display similar physiological responses for glucose metabolism, insulin secretion, and gastric transit, and treatment with the GLP-1R agonist, exendin-4, elicits similar responses in both groups. Further, ex vivo assays show insulin secretion from humanized islets is glucose-dependent and enhanced by GLP-1R agonists. To enable additional utility, the targeting construct of the knock-in line was engineered to contain both flanking LoxP sites and a C-terminal FLAG epitope. Anti-FLAG affinity purification shows strong expression of hGLP-1R in islets, lung, and stomach. We crossed the hGLP-1R line with Rosa26Cre mice and generated global Glp-1r−/− animals. Immunohistochemistry of pancreas from humanized and knock-out mice identified a human GLP-1R-specific antibody that detects the GLP-1R in human pancreas as well as in the pancreas of hGLP-1r knock-in mice. This new hGLP-1R model will allow tissue-specific deletion of the GLP-1R, purification of potential GLP-1R partner proteins, and testing of novel therapeutic agents targeting the hGLP-1R.  相似文献   

19.
Abstract: We have studied the effect of an antibody against the epitope EYMPME on the internalization of the human muscarinic cholinergic receptor hm1 tagged with the epitope at the amino terminus. The antibody to the tag induces internalization of the hm1 receptor within minutes after exposure of human embryonic kidney 293 cells transfected with the tagged receptor. This antibody-induced internalization is reversible following removal of the antibody. In contrast to hm1 internalization induced by the agonist carbachol, internalization induced by antibody is not blocked by the muscarinic antagonist atropine. The mechanism of antibody-mediated internalization does not appear to involve receptor dimerization by the antibody, as Fab fragments derived from the antibody also induce internalization. The pathway of antibody-induced internalization, similar to the agonist-induced process, is mediated by clathrin-coated vesicles. Furthermore, antibody treatment does not result in any second messenger production, as measured by phosphoinositide accumulation. Our data show that internalization of a G protein-coupled receptor can be triggered by interaction of the amino terminus of the receptor with an exogenous ligand and can occur independently of second messenger production. This result suggests that the receptor can exist in multiple conformations, each mediating distinct downstream events.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号