首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

O-alkylated analogues (ethyl, propyl, butyl, tert.-butyl) of lysine vasopressin (LVP) and deamino-LVP are partial agonists to LVP in their effect upon activation of adenylate cyclase in porcine kidney membranes. Emax and pD2 values are linearly dependent and both of them are inversely proportional to the overall hydrophobicity of the peptides, expressed in terms of capacity factors in reversed phase high performance liquid chromatography. It is suggested that the increasing hydrophobicity augments the tendency to either a “wrong way” binding, or to a side-side interaction of several peptide ligands bound to a multi-subsite receptor, or both. The data circumstantially indicate that the relation between the peptide-receptor interaction and cyclase activation is not a linear one.  相似文献   

2.
Abstract

This paper presents the effects of 125I labelling on human chorionic gonadotropin binding ability. The results obtained showed a marked difference in the half-life of the specific radioactivity of the radiolabelled hormone comparing the one obtained by “self-displacement” analysis and that calculated considering the half-life of the radioactive isotope (60 days for 125I). The decrease in the hormone half-life (t1/2= 3.10 days) was demonstrated by binding experiments performed at various days after hormone labelling. The affinity constant (Ka) and the number of binding sites obtained after Scatchard analysis using rat testes as receptor source, remained constant when the “self-displacement” specific radioactivity was used while they varied significantly if the 60 days half-life was considered for the data processing. The importance of the labelled hormone degradation as a possible cause of the decrease in the binding ability is also described.  相似文献   

3.
Abstract

In vitro autoradiographic techniques combined with computer assisted microdensitometry were used to analyze the characteristics and distribution of multiple recognition sites for the neurotransmitters acetylcholine (M1 and M2) and serotonin (5-HT1A and 5-HT1B). For this purpose, binding competition experiments were performed using non-subtype selective 3H-labeled ligands and selective unlabeled compounds. Consecutive tissue sections were incubated in the presence of increasing concentrations of displacers. By using this approach, maximal densities of binding sites, as well as competition profiles of several drugs could be analyzed and quantified in microscopic brain areas. Our results reveal the presence of brain structures enriched in one class of muscarinic or serotonergic-1 recognition sites. This provides a tool for better characterization of the proposed “subtype-selective” ligands and suggests physiological functions for these receptor subtypes. It is concluded that quantitative autoradiographic techniques provide a level of anatomical and pharmacological information on neurotransmitter receptor subtypes, which is difficult to attain using membrane binding studies.  相似文献   

4.
Primary cultures of bone cells and skin fibroblasts were examined for their Ca++ content, intracellular distribution and Ca++ fluxes. Kinetic analysis of 45Ca++ efflux curves indicated the presence of three exchangeable Ca++ compartments which turned over at different rates: a “very fast turnover” (S1), a “fast turnover” (S2), and a “slow turnover” Ca++ pool (S3). S1 was taken to represent extracellular membrane-bound Ca++, S2 represented cytosolic Ca++, and S3 was taken to represent Ca++ sequestered in some intracellular organelles, probably the mitochondria. Bone cells contained about twice the amount of Ca++ as compared with cultured fibroblasts. Most of this extra Ca++ was localized in the “slow turnover” intracellular Ca++ pool (S3). Serum activation caused the following changes in the amount, distribution, and fluxes of Ca++: (1) In both types of cells serum caused an increase in the amount of Ca++ in the “very fast turnover” Ca++ pool, and an increase in the rate constant of 45Ca++ efflux from this pool, indicating a decrease in the strength of Ca++ binding to ligands on cell membranes. (2) In fibroblasts, serum activation also caused a marked decrease in the content of Ca++ in the “slow turnover” Ca++ pool (S3), an increase in the rates of Ca++ efflux from the cells to the medium, and from S3 to S2, as well as a decrease in the rate of influx into S3. (3) In bone cells the amount of Ca++ in S3 remained high in “serum activated” cells, the rate of efflux from S3 to S2 increased, and the rate of influx into S3 also increased. The rate of efflux from the cells to the medium did not change. The results suggest specific properties of bone cells with regard to cell Ca++ presumably connected with their differentiation. Following serum activation we investigated the time course of changes in the amount of exchangeable Ca++ in bone cells and fibroblasts, in parallel with measurements of 3H-thymidine incorporation and cell numbers. Serum activation caused a rapid decrease in the content of cell Ca++ which was followed by a biphasic increase lasting until cell division.  相似文献   

5.
Abstract

We have adressed the question as to whether calcium may modify the [3H]estradiol ([3H]E2) binding properties of the estrogen receptor (ER). A human recombinant full length ER (yER) expressed in yeast was used to limit the potential interference of ER-associated proteins and proteases present in the target tissues.

Ca++ (0.1–10 mM) always produced an important loss of [3H]E2 binding capacity without any effect on the hormone binding affinity of residual receptors. This loss was reflected in a decrease of immunoreactivity for monoclonal antibodies raised against the hormone binding domain. An ER recombinant expressing solely this domain confirmed that the ion operated at this level. Binding of [125I]Z-17 α-(2-iodovinyl)-11β-chloromethyl estradiol-17β (an compound with very high selectivity for ER) as well as [125I]tamoxifen aziridine were similarly affected. Size-exclusion chromatography failed to reveal the emergence of any ER isoforms of low molecular weight rejecting the hypothesis of a Ca++- induced proteolysis. In agreement with this conclusion, EDTA reversed the loss of [3H]E2 binding capacity. Phosphoamino acids (PY, PT and PS) partly antagonized the effect of Ca++ suggesting its interaction with phosphoamino acid residues. Worthy of note, the effect of Ca++ appeared more marked when assessed by DCC than HAP assay. The phosphocalcic nature of the HAP matrix may explain this phenomenon which was observed with cytosolic ER from various origins.  相似文献   

6.
The interaction of the uterine estrogen receptor (R) with three anti-estrogens, Dimethylstilbestrol1, Tamoxifen and Nafoxidine, have been studied either indirectly by competitive experiments or directly using radioactive compounds. The affinity of these anti-estrogens for R was found much higher when determined directly without estradiol (E2) than when evaluated by competitive experiments. In the presence of E2, but not in its absence, the inhibitory activity of the anti-estrogens decreased slowly with time. The present report strongly suggests that R is transformed by E2 into a form less sensitive to anti-estrogen. This “desensitization” of R to the estrogen antagonists is proposed as another in vitro test for the E2 induced “activation” of its receptor.  相似文献   

7.
Summary This study was undertaken in order to examine the estrogen sensitivity of HKT-1097, an established cell line recently derived from diethylstilbestrol (DES)-induced kidney tumors in Syrian hamsters. Estrogen receptor (ER) level in HKT-1097, determined by enzyme-linked immunoassay, was 67 fmol/mg protein, i.e., a value approx. 30% lower than that found in Syrian hamster kidney tumors. ER immunostaining in cells fixed with Carnoy's mixture, as well as ER demonstration by Western blotting, suggested DES-induced nuclear translocation or stabilization of the receptor within the nucleus. Kinetic parameters of estrogen binding to ER in HKT-1097 cells were 8.4×10−11 M and 60.8 fmol/mg protein for K d and Bmax, respectively. The K d of estrogen binding to ER in HKT-1097 was close to that evaluated for the receptor in breast cancer-derived MCF-7 cell line, whereas the Bmax value was approx. seven times lower in HKT-1097 as compared to MCF-7. In HKT-1097 cells, antiestrogens ICI 182,780 and RU 58,668 induced ER downregulation and competed with estrogen binding to the receptor. As demonstrated by Western blot analysis, DES exposure led to an increased expression of progesterone receptor (PgR) in HKT-1097 cells. Addition of DES to estrogen-free medium produced a stimulation of growth in both HKT-1097 and MCF-7 cells, but the mitogenic effect was less marked for HKT-1097. Despite the fact that ICI 182,780 and RU 58,668 clearly interact with HKT-1097 cell ER, they appeared unable to suppress DES-induced stimulation of growth and increase of PgR expression.  相似文献   

8.
Summary Castrated male and female rats pretreated with dihydrotestosterone (DHT) were injected i.v. with 3H-estradiol (E2). Nuclear uptake and retention of 3H-E2 was measured in each of five cell types of the anterior pituitary gland using a combined quantitative autoradiographic and immunocytochemical procedure. In non-pretreated groups, each cell type bound a characteristic amount of ligand but no sex differences were apparent. DHT pretreatment, however, caused a significant decrease in 3H-E2 retention by gonadotrophs in both males and females. The treatment also caused a decrease in binding by lactotrophs and somatotrophs, but only in the females. No other cell types were altered. Thus, androgen appears to modulate E2 binding and retention by pituitary cells in both a cell-type and sexdependent manner. Our results also indicate that the inhibitory effects of androgens on E2 binding by the pituitary gland is more complex than can be explained by simple competition for the estrogen receptor.  相似文献   

9.
Abstract

Binding of [3H]CGS 21680, an agonist radioligand selective for A2-adenosine receptors (A2AR), to membranes and solubilized preparations from bovine brain striatum revealed labelling of a single high affinity binding state. In membranes, guanine nucleotides per se were ineffective in modulating agonist binding whereas cations, Na+ and Mg++, had distinct effects. The addition of NaCl (200 mM) as well as the Mg++-free preparation of membranes led to a significant decrease in binding affinity and the number of binding sites. Moreover, the presence of Na+ was required for the demonstration of a guanine nucleotide effect, i.e. a decrease in maximal binding. Following solubilization, agonist-A AR interactions were sensitive to guanine nucleotides even in the absence of Na+2; guanine nucleotides and Na+ had additive effects in reducing the number of binding sites. Moreover, the effect of GTP was reversible, i.e. binding returned to control levels upon removal of the nucleotide. This suggests the A2AR and its G protein (presumably GS) are solubilized as a functional unit and may not dissociate even in the presence of GTP following solubilization. We, therefore, believe that a “tight” association exists between receptor and G protein (GS), and that guanine nucleotides and sodium act at different sites on the R–G complex. Drawing an analogy with similar observations on the avian β-adrenergic receptor (Hertel et al, J.Biol.Chem. 265:17988–94, 1990; Parker & Ross, J.Biol.Chem. 266:9987–96, 1991) we postulate that the regulatory features of the A2AR can be attributed to a distinct receptor domain that interacts with cellular regulatory elements.  相似文献   

10.
Antiestrogens: studies using an in vitro estrogen-responsive uterine system   总被引:3,自引:0,他引:3  
Three antiestrogens have been tested in vitro for their capacity to affect the cytosol binding and nuclear uptake of 17β-estradiol (E2) and induction of the synthesis of a specific uterine protein (IP). CI-628 competes with E2 for binding sites, inhibits IP induction, and is itself much less effective than E2 in promoting the IP response; U-11, 100A is a binding competitor and a weak inducer of IP synthesis, but does not antagonize the E2-induced IP response. Dimethylstilbestrol is an effective inhibitor of E2 binding, elicits a high IP response, but does not antagonize E2-induced IP synthesis. Higher concentrations of antiestrogens are required to inhibit nuclear binding of E2 than expected from their relative binding ability to cytosol.  相似文献   

11.
We have compared the binding to the estrogen receptor (R) of different androgens and antiestrogens with their antiestrogenic activities on uterine growth. We found that estradiol (E2)1 and hydroxytamoxifen, a potent antiestrogen, displayed the same affinity for R. Conversely, androgens which have a much lower affinity for R and a much higher dissociation rate than E2, behave at high doses as full estrogens, with no significant antiestrogenic activity. We conclude that there is no correlation between the dissociation rate from R and the antiestrogenic activity of R ligands and that one cannot discriminate between estrogen and antiestrogen ligands by simply evaluating their in vitro binding to the cytosol R.  相似文献   

12.
Mouse uterus estradiol receptor undergoes a inactivation-reactivation process “in vitro”. The specific estrogen binding activity inactivated by nuclei, apparently through a dephosphorylation process (1,2,3), is reactivated by an ATP-dependent process. The enzyme reactivating the receptor has been purified from calf uterus cytosol. It shows high affinity for the inactive receptor (Km of ~ 0.3 × 10?9 mol of 17β-estradiol binding sites/l); it is simulated by MgCl2 and CaCl2. Present and previous results suggest that in cytoplasm of intact cells a phosphorylation process makes the receptor able to bind hormone and in nuclei dephosphorylation of receptor causes loss of hormone binding activity.  相似文献   

13.
Abstract: The N-methyl-d -aspartate (NMDA) receptor possesses two distinct amino acid recognition sites, one for glutamate and one for glycine, which appear to be allosterically linked. Using rat cortex/hippocampus P2 membranes we have investigated the effect of glutamate recognition site ligands on [3H]glycine (agonist) and (±)4-trans-2-car-boxy-5,7-dichloro-4-[3H]phenylaminocarbonylamino-1,2,3,4-tetrahydroquinoline ([3H]l -689,560; antagonist) binding to the glycine site and the effect of glycine recognition site ligands on l -[3H]glutamate (agonist), dl -3-(2-carboxypiperazin-4-yl)-[3H]propyl-1 -phosphonate ([3H]-CPP; “C-7” antagonist), and cis-4-phosphonomethyl-2-[3H]piperidine carboxylate ([3H]CGS-19755; “C-5” antagonist) binding to the glutamate site. “C-7” glutamate site antagonists partially inhibited [3H]l -689,560 binding but had no effect on [3H]glycine binding, whereas “C-5” antagonists partially inhibited the binding of both radioligands. Glycine, d -serine, and d -cycloserine partially inhibited [3H]CGS-19755 binding but had little effect on l -[3H]-glutamate or [3H]CPP binding, whereas the partial agonists (+)-3-amino-1-hydroxypyrrolid-2-one [(+)-HA-966], 3R-(+)cis-4-methyl-HA-966 (l -687,414), and 1-amino-1-carboxycyclobutane all enhanced [3H]CPP binding but had no effect on [3H]CGS-19755 binding, and (+)-HA-966 and l -687,414 inhibited l -[3H]glutamate binding. The association and dissociation rates of [3H]l -689,560 binding were decreased by CPP and d -2-amino-5-phosphonopentanoic acid (“C-5”). Saturation analysis of [3H]l -689,560 binding carried out at equilibrium showed that CPP had little effect on the affinity or number of [3H]l -689,560 binding sites. These results indicate that complex interactions occur between the glutamate and glycine recognition sites on the NMDA receptor. In addition, mechanisms other than allosterism may underlie some effects, and the possibility of a steric interaction between CPP and [3H]l -689,560 is discussed.  相似文献   

14.
Aim of the present study was to characterize the pituitary GnRH receptor in white sturgeon, Acipenser transmontanus, using a superagonist analog of mammalian GnRH [D‐Ala6, des‐Gly10–Pro9]‐ethylamide and to investigate the possible effect of estradiol‐17β treatment on the concentration and affinity of the GnRH receptor in immature white sturgeon. The binding of 125I‐GnRH‐A to sturgeon pituitary receptors was rapid and saturable at 4°C and 20°C. However, maximal binding at 20°C was almost two‐fold greater than the highest binding noted at 4°C. Specific binding of radioligand was directly related to the amount of tissue included in the assay system over the range of 5–20 mg fresh tissue equivalents per ml. The binding capacity of 125I‐GnRH‐A with sturgeon pituitary tissue was much greater than radiolabeled GnRH. Administration of E2 to immature sturgeon caused an almost two‐fold increase in GnRH‐A binding capacity (E2 treated: Bmax = 2.87 fmoles 3 mg?1 FTE; control: Bmax = 1.70 fmoles 3 mg?1), and did not affect GnRH‐A binding affinity (E2 treated: Ka = 0.13 × 1011 m ?1; control: Ka = 0.15 × 1011 m ?1). Overall, the study provides evidence that the GnRH analog is effective for characterizing the GnRH receptor in white sturgeon; however, more experimentation is necessary to determine whether E2 administration to immature white sturgeon can increase the GnRH receptor capacity.  相似文献   

15.
Abstract

Based on molecular modeling of the complexes between the μ-opioid receptor and its ligands, we present a hypothesis that accounts for several of the experimental data including the importance of conserved polar residues in rhodopsin-like G-protein-coupled receptors and the effect of Na+ on the binding of ligands to these receptors. We propose that agonists, but not antagonists, would displace Na+ from its initial binding site at the conserved D2.50 residue in the second transmembrane α-helical segment, H2. The displaced Na+ would pass through a “gate” of conserved hydrophobic residues and move along a tunnel-like interface (formed of H2, H3 and H7) enriched with several conserved hydrophilic residues including D3.49. Interaction of Na+ with D3.49 would result in the breaking of a salt-bridge between D3.49 and the conserved R3.50 residue thus exposing the latter for interaction with the G-protein.  相似文献   

16.
A series of nucleoside transport inhibitors has been tested for their ability to displace [3H]diazepam binding to CNS membranes. No correlation between their potency as [3H]adenosine uptake blockers and as inhibitors of [3H]diazepam binding was found, either in rat or guinea-pig brain tissue. Dipyridamole, a potent adenosine transport inhibitor interacted strongly (Ki = 54 nM) with peripheral-type benzodiazepine binding sites (“acceptor sites”) and was 4–5 fold weaker in displacing [3H]methylclonazepam and [3H]Ro15-1788, ligands selective for the specific central benzodiazepine “receptor”. Unlike the benzodiazepines, dipyridamole had no anticonvulsant action against metrazole-induced convulsions in mice. Ro5-4864, a benzodiazepine which selectively interacts with the peripheral-type benzodiazepine binding site, was approximately equipotent with diazepam in inhibiting [3H]adenosine uptake in brain tissue. These results do not support the idea of a very close link between high-affinity central binding sites for clinically-active benzodiazepines and the adenosine uptake site. The possibility of a connection between benzodiazepine “acceptor” sites and the membrane nucleoside transporter is discussed.  相似文献   

17.
The photosynthesis‐irradiance (PE) relationship links indices of phytoplankton biomass (e.g. chl) to rates of primary production. The PE curve can be characterized by two variables: the light‐limited slope (αb) and the light‐saturated rate (Pbmax) of photosynthesis. Variability in PE curves can be separated into two categories: that associated with changes in the light saturation index, Ek (=Pbmaxb) and that associated with parallel changes in αband Pbmax (i.e. no change in Ek). The former group we refer to as “Ek‐dependent” variability, and it results predominantly from photoacclimation (i.e. physiological adjustments in response to changing light). The latter group we refer to as “Ek‐independent” variability, and its physiological basis is unknown. Here, we provide the first review of the sporadic field and laboratory reports of Ek‐independent variability, and then from a stepwise analysis of potential mechanisms we propose that this important yet largely neglected phenomenon results from growth rate–dependent variability in the metabolic processing of photosynthetically generated reductants (and generally not from changes in the oxygen‐evolving PSII complexes). Specifically, we suggest that as growth rates decrease (e.g. due to nutrient stress), reductants are increasingly used for simple ATP generation through a fast (<1s) respiratory pathway that skips the carbon reduction cycle altogether and is undetected by standard PE methodologies. The proposed mechanism is consistent with the field and laboratory data and involves a simple new “twist” on established metabolic pathways. Our conclusions emphasize that simple reductants, not reduced carbon compounds, are the central currency of photoautotrophs.  相似文献   

18.
Abstract

In coastal marine sediments, the interactions between NO3 ? reduction and transformations of Fe and S compounds often occur in a strong gradient of electron activity ("redoxcline"). Denitrification activity is observed throughout the NC3 ?‐containing surface zone, although the reduction step from N2O to N2 can be inhibited by H2S in the “redoxcline.”; Survival of denitrifiers is generally poor in NO3 ?‐free, reduced sediment; such populations are likely to employ Fe3+ reduction in their energy metabolism. At depth, the sediments often contain a larger capacity for “nitrate ammonification”; (dissimilatory NO3 ? reduction to NH4 +) than for denitrification. The “nitrate ammonification”; is found commonly among fermenting bacteria, although SO4 2? reducers may also be involved. In situ activities observed in whole sediment cores indicate that “nitrate ammonification”; may account for as much as one‐third of the carbon oxidation in organic‐rich sediments. The control of partitioning between denitrification and “nitrate ammonification”; at low NO3 ? concentrations is poorly investigated, but the larger metabolic capacity of fermenting and S O4 2?‐reducing baceria in relatively reduced sediment could be important. In addition to bacterial reduction, chemical NO3 ? reduction is possible where significant amounts of Fe2+ (or H2S) accumulate in the “redoxcline.”;  相似文献   

19.
Abstract

The binding of (3H)-estradiol (E2) to cytoplasmic estrogen receptors isolated from female rat hypothalamus-preoptic area by unlabeled estrogen and antiestrogens (nafoxidine and tamoxifen) was examined when the concentrations of both the agonist (3H)-E2) and unlabeled competitors were varied over a wide range. Concentrations of unlabeled E2 up to 10-10M decreased the affinity of the labeled steroid for its receptor; at higher E2 concentrations, the apparent number of binding sites (Bmax) began to decline. Thus at some concentrations, E2 may act as a mixed competitive and noncompetitive inhibitor of its own binding to hypothalamic cytosol receptors. The antiestrogens differed markedly from E2 in their interactions with hypothalamic estrogen receptors. Only at relatively high competitor concentrations (e.g., > 10-9M) did the antagonists appear to competitively inhibit (3H)-E2-receptor binding. The most striking observation was that tamoxifen and nafoxidine significantly inhibited (3H)-E2-receptor binding at very low competitor concentrations (e.g., 1 pM), but only slightly inhibited estrogen binding at intermediate concentrations (e.g., 10-10M). It was proposed that the non-linear, concentration-dependent effects of antiestrogens on the neural estrogen receptors might be due to complex interactions of the antagonists with a non-estrogen binding site.  相似文献   

20.
Abstract

The present methods used to measure estrogen nuclear (E2Rn) and progestin cytosol (PRc) receptors in the hypothalamus and pituitary gland require that separate assays be performed to determine the concentrations of each receptor. In the present studies we describe a method which simultaneously measures both E2Rn and PRc in hypothalamic and pituitary tissue. Tissue samples were homogenized in tris-EDTA-glycerol-dithiothreitol buffer and centrifuged at 1500 × g for 5 min. The supernatant was purified for the PRc assay while the nuclear pellet was extracted for the E2Rn exchange assay.

For the PRc assay, the supernatant was centrifuged at 106,500 × g for 30 min and aliquots from the resultant supernatant then were incubated with 3H-R5020. For the E2Rn exchange assay, the original pellet was purified further by successively resuspending and centrifuging it through several sucrose solutions. Estrogen-receptor complexes were extracted from the chromatin pellet with a 0.4M KC1 solution and aliquots of the final supernatant were incubated with 3H-estradiol.

In both assays, the samples were placed onto Sephadex LH20 columns and the receptor bound 3H-steroid was eluted directly into scintillation vials. Scatchard analyses revealed that these assays measure a single class of binding sites for E2Rn and PRc with dissociation constants (KD) and maximal number of binding sites (Bmax) similar to those previously reported using a separate assay for each receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号