首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biochemical studies on receptors for peptides are most often carried out on affinity-labelled (peptide-receptor) complexes. Necessarily, the assumption is made that a covalent (peptide-receptor) complex behaves as the native receptor. The validity of this assumption is dependent on both the affinity-labelling technique and the resolution of the analytical method used for biochemical characterization. We designed a new affinity-labelling probe in order to minimize structural modifications occurring within the affinity-labelled cholecystokinin (CCK) receptor protein. The probe was 125I-labelled 2-(p-azidosalicylamido)-1,3-dithiopropionate-[Thr28,Ahx31 ]CCK-25-33, (125I-ASD-[Thr28,Ahx31]CCK-25-33), the peptide moiety of which was released from its binding site by reduction. It was obtained by coupling a photoactivable chemical to [Thr28,Ahx31]CCK-25-33 via its N-terminus. The resulting peptide was HPLC purified and radioiodinated in the presence of chloramine T. Binding of 125I-ASD-[Thr28,Ahx31]CCK-25-33 was time- and temperature-dependent and reversible. At 25 degrees C, a steady-state level was reached after 60 min and half-maximal dissociation after 38 min. Binding was inhibited by [Thr28,Ahx31]CCK-25-33 and L-364-718 antagonist with IC50 0.4 nM and 0.9 nM, respectively. Photoaffinity labelling of pancreatic plasma membranes by 125I-ASD-[Thr28,Ahx31]CCK-25-33 identified a glycoprotein of Mr 85,000-100,000 which was retained on immobilized wheat germ agglutinin. Enzyme cleavage by endoproteinase Glu-C generated a main fragment of Mr 30,000-34,000. The same glycoprotein was photoaffinity labelled with 125I-DTyr-Gly-[Ahx28,31,pNO2Phe33]CCK-26-33 (Ahx, 2-aminohexanoic acid; pNO2Phe,p-nitrophenylalanine) an intrinsic probe having its photolabile group sited in the binding domain of cholecystokinin. 125I-ASD-[Thr28,Ahx31]CCK-25-33 is a potentially powerful tool for biologically and biochemically studying cholecystokinin receptors.  相似文献   

2.
So far, no efficient affinity chromatography for CCK receptor purification has been reported that prevented obtention of sequenceable amounts of purified receptor. In this work, 10% of plasma membrane receptor sites were specifically cross-linked with the photoreactive cleavable agonist 125I-ASD-[Thr28, Ahx31]-CCK-25-33, solubilized by NP-40, chromatographied on immobilized wheat germ agglutinin and further immunopurified using anti-CCK antibodies to an overall rate of 3000-3600-fold. Analysis of eluted material demonstrated a protein migrating at Mr 85,000-100,000 and the absence of 35S-labeled impurity. This single and efficient affinity chromatography should provide enough homogeneous receptor protein for microsequence determination and leads to consider immunoaffinity chromatography on immobilized anti-ligand antibodies as a potential tool for purification of membrane receptors.  相似文献   

3.
The present study was undertaken to characterize the immune recognition of pancreatic cholecystokinin receptor by an anti-cholecystokinin antibody. Cholecystokinin receptor from pancreatic plasma membranes was photoaffinity labelled using the specific, cleavable probe 125I-labelled 2-(p-azidosalicylamido)-1,3-dithiopropionate-[Thr28,Ahx31 ]CCK(25-33) [CCK(25-33) is the C-terminal nonapeptide of the 33-amino-acid form of cholecystokinin]. Labelled receptor was then solubilized and subsequently prepurified on immobilized wheat-germ agglutinin. The C-terminal-directed anti-cholecystokinin serum (8E) specifically immunoprecipitated a fraction of affinity-labelled cholecystokinin receptor which was identified at Mr 85,000 - 100,000 on SDS/PAGE. The binding affinity of antiserum 8E for covalently labelled cholecystokinin receptor was lower (Kd 0.11 +/- 0.02 nM) than for cholecystokinin (Kd 3.65 +/- 0.55 pM). The compound L364-718, an A-subtype cholecystokinin-receptor antagonist did not interfere with the immune recognition of cholecystokinin. However, the recognition of affinity-labelled cholecystokinin receptor was enhanced as a result of an increasing availability of cholecystokinin molecules. Indeed, the amount of immunoprecipitated receptor was doubled in the presence of 10 microM L364-718. This study offers the possibility of using an anti-cholecystokinin antibody for cholecystokinin-receptor purification and demonstrates that prepurified affinity-labelled cholecystokinin receptor retains A-subtype specificity.  相似文献   

4.
Affinity labeling of the rat pancreatic cholecystokinin (CCK) receptor with decapeptide probes has identified an Mr = 85,000-95,000 protein, distinct from the Mr = 80,000 component previously labeled with 125I-Bolton Hunter-CCK-33. We have characterized the carbohydrate composition of this novel protein labeled with 125I-D-Tyr-Gly-[(Nle28,31)-CCK-26-33] and disuccinimidyl suberate by using chemical and enzymatic deglycosylation and lectin chromatography. The Mr = 85,000-95,000 component was demonstrated to be an N-linked sialoglycoprotein based on neuraminidase digestion to Mr = 75,000-85,000 and endo-beta-N-acetylglucosaminidase F (Endo F) digestion to Mr = 42,000. This was distinct from the Mr = 65,000 product of Endo F digestion of the protein labeled with 125I-Bolton Hunter-CCK-33. Lack of an effect of endo-beta-N-acetylglucosaminidase H demonstrated the absence of N-linked simple oligosaccharides, while products of chemical deglycosylation with hydrogen fluoride and endo-alpha-N-acetylgalactosaminidase supported the absence of O-linked carbohydrate. The presence of at least four oligosaccharide chains on the core protein was suggested by Endo F digestion of the Mr = 85,000-95,000 protein using limiting enzyme conditions. This glycoprotein was retained on wheat germ agglutininagarose and eluted by N,N',N"-triacetylchitotriose. Identification of the Mr = 85,000-95,000 component on the ectodomain of the plasmalemma of intact pancreatic acini confirmed this to be the fully processed form of the CCK-binding protein.  相似文献   

5.
Human platelet glycoproteins were isolated from whole platelets by two methods. The first method, that of affinity chromatography on wheat germ agglutinin, is based on the known affinity of lectins for cell surface glycoproteins. When solubilized whole platelets are used as starting material for this procedure, elution with N-acetylglucosamine yields primarily a glycoprotein of Mr ≈ 150 000 as estimated by sodium dodecyl sulfate-acrylamide gel electrophoresis. The second method is based on the ability of the chaotropic salt lithium diiodosalicylate to extract glycoprotein from particulate cell fractions in water-soluble form. This method yields three major glycopeptides with apparent molecular weights after sulfhydryl reduction of 145 000, 125 000, and 95 000 as estimated on 5.6% sodium dodecyl sulfate-acrylamide gels. Carboxymethylation of these preparations in the presence of sulfhydryl-reducing agent further resolves a glycoprotein of Mr ≈ 165 000.Treatment of whole platelets by periodate oxidation and sodium[3H]borohydride reduction labels the three major glycoproteins extracted by lithium diiodosalicylate and the glycoprotein of Mr ≈ 150 000 isolated on wheat germ agglutinin confirming their surface orientation. However, glycoprotein with Mr ≈ 165 000 resolved by carboxymethylation of the lithium diiodosalicylate extracted glycoprotein mixture was not labelled by this method, suggesting that it represents the granule protein with similar electrophoretic characteristics described by others.Phosphorylation of intact platelets with 32Pi also results in labelling of glycoproteins isolated by both methods, suggesting that these molecules traverse the  相似文献   

6.
To identify the molecular components of the vasoactive intestinal peptide (VIP) binding sites in the liver, 125I-labelled VIP was covalently linked to liver membranes by using the cleavable cross-linker dithiobis(succinimidylpropionate). Purified rat liver plasma membranes were incubated with 125I-VIP, washed and treated with 1 mM-cross-linker. Polyacrylamide-gel electrophoresis of membrane proteins followed by autoradiography revealed a major 125I-VIP-protein complex of Mr 51 000. A minor Mr 89 000 complex was also observed. An identical pattern of protein labelling was obtained using crude membranes from rat liver. Labelling of the Mr 51 000 and 89 000 species was specific in that it could be abolished by native VIP, but was unaffected by 1 microM-glucagon and cholecystokinin octapeptide. Densitometric scanning of autoradiographs indicated that the labelling of the two species was abolished by similar low VIP concentrations (0.1-100 nM). It was also reduced by two VIP agonists, peptide histidine isoleucine amide and secretin, with a potency that is 1/7 and 1/200 that of native VIP, respectively. The guanine nucleotide GTP in the concentration range between 10(-7) and 10(-3) M reduces the labelling of the major Mr 51 000 protein and that of the minor Mr 89 000 protein, but with a slightly higher potency. Assuming one molecule of 125I-VIP was bound per molecule of protein, a major Mr 48 000 protein and a minor Mr 86 000 protein were identified as components of the high-affinity VIP binding sites in liver. This contrasts markedly with the pattern of labelling of rat intestinal epithelial membranes, where a Mr 73 000 protein was identified as a high-affinity VIP receptor and a Mr 33 000 protein as a low-affinity VIP binding site [Laburthe, Bréant & Rouyer-Fessard (1984) Eur. J. Biochem. 139, 181-187], suggesting structural differences between VIP binding sites in rat liver and intestinal epithelium.  相似文献   

7.
The major sialoglycoprotein of mammalian erythrocytes has been incorporated into phosphatidylcholine membranes to generate a model system, glycoprotein-liposomes. Electron microscopic examination revealed these structures to be vesicles, approximately 300 Å in diameter. An aqueous compartment inside the glycoprotein-liposomes has been identified by trapped volume studies with [14C]sucrose. These glycoprotein-liposomes were found to interact with the lectins, wheat germ agglutinin, and phytohemagglutinin, to form aggregates of mainly unfused vesicles. The aggregation process has been studied by electron microscopy, 90° light scattering, and differential ultracentrifugation analysis. Hapten inhibitors of the lectins were found to inhibit the lectin-induced aggregation of the glycoprotein-liposomes. Binding of 125I-labeled wheat germ agglutinin to glycoprotein-liposomes was studied by differential ultracentrifugation. Hapten inhibitors of wheat germ agglutinin were also found to inhibit the binding of 125I-labeled wheat germ agglutinin to the glycoprotein-liposomes. The characteristics of the lectin interactions with glycoprotein-liposomes appeared to be phenomenologically similar to lectin-cell interactions.  相似文献   

8.
The surface of the HeLa cell is composed of a heterogeneous population of sialogly coproteins which undergo lectin-mediated endocytosis (Kramer and Canellakis, Biochim Biophys Acta 551:328, 1979). One such sialoglyco-protein, gamma protein, is the major periodate-Schiff-reactive and [3H]-glucosamine-labeled component of the plasma membrane; it has an apparent molecular weight of 165,000. Gamma protein is also the major [125I]-wheat germ agglutinin-binding component in sodium dodecyl sulfate gels. Neuraminidase digestion of HeLa cells abolishes binding of [125I]-wheat germ agglutinin to gamma protein, and pretreatment of cells with wheat germ agglutinin protects gamma protein from desialation by neuraminidase. suggesting that wheat germ agglutinin binds to the sialic acid residues of gamma protein at the cell surface. Gamma protein can be extracted with various detergents but not with high-salt, chelating, or chaotropic agents. Intact inside-out plasma membrane vesicles have been prepared from HeLa cells that had phagocytosed latex particles. Treatment of these isolated vesicles with trypsin reduces the molecular weight of gamma protein. These results suggest that gamma protein is an integral membrane protein that spans the plasma membrane. Gamma protein can be purified to homogeneity by sequential lithium diiodosalicylate-phenol extraction, wheat germ agglutinin-agarose affinity chromatography, and preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

9.
Female rats were administered oral contraceptives and the levels of sialic acid on platelet membrane and granule glycoproteins were compared to controls using a sialic acid assay and a fluorescein-conjugated wheat germ agglutinin binding assay and also by measuring the binding of 125I-labelled wheat germ agglutinin to glycoprotein bands from platelets separated by polyacrylamide electrophoresis. The contraceptive-treated rats showed increased levels of glycoprotein sialylation which may partly explain the altered physiological function of the platelets.  相似文献   

10.
Subcellular fractions, enriched in sarcoplasmic reticulum or in cell membrane, were separated from one another. Starting material was a microsomal pellet (15–40 × 1000g) obtained by differential centrifugation from the uteri of close-to-term pregnant cows. A microsomal fraction enriched in ATP-dependent calcium accumulation was shown to contain sarcoplasmic reticulum and cell membrane. Only 8% or less of the protein in this fraction could be recovered, using affinity chromatography on Sepharose 6MB wheat germ agglutinin. The small yields did not allow extensive characterization. A method was developed to separate sarcoplasmic reticulum from cell membrane using discontinuous sucrose density gradient centrifugation. Protein was collected at the 24–28, the 28–33, and the 33–45% sucrose interfaces. Characterization was by enzyme assays and by specific receptor assay. ATP-dependent calcium accumulation was fourfold greater in the 24–28% sucrose layer than in the 33–45% layer. In contrast, 5′-nucleotidase was more than threefold as high in the 33–45% sucrose layer as in the 24–28% layer. Ouabain-inhibited p-nitrophenylphosphatase doubled and ouabain-inhibited Na,K-ATPase tripled in the 28–33% layer, compared with the 24–28% layer, specific ouabain binding was also doubled in the 28–33% sucrose layer. 125I-Labeled wheat germ agglutinin binding was greatest in the 33–45% sucrose layer. It is concluded that the 24–28% layer consists primarily of sarcoplasmic reticulum, whereas the 28–33 and the 33–45% layers are concentrated in the cell membrane. Specific prostaglandin (PGE2) binding was found to be a property of the cell membrane.  相似文献   

11.
Previous biochemical characterizations of the cholecystokinin (CCK) receptor have used the "long" probe 125I-Bolton-Hunter-CCK-33 since it was the only CCK analogue with high affinity and high specific radioactivity which possessed an amino group available for chemical cross-linking. These studies have consistently identified a major binding protein of approximately 81 kilodaltons and have identified several minor proteins which were obtained under different cross-linking conditions and in different laboratories. Because the receptor-binding region of CCK-33 (carboxyl-terminal heptapeptide) is so far removed from the radiolabel and from available amino groups (positions 1 and 11), this probe carries potential for proteolytic cleavage of label from receptor and for labeling "near neighbors" instead of the binding site. We therefore designed two "short" probes for the CCK receptor. 125I-Bolton-Hunter-Lys-Gly-CCK-8 has an epsilon-amino group available for cross-linking. 125I-Tyr-[Thr28,Nle31]CCK-25-33 has an alpha-amino group for cross-linking and has the major advantage of being labeled by oxidative means, unique for CCK derivatives. Both radioiodinated decapeptides were purified by reverse-phase high pressure liquid chromatography to yield specific radioactivity of 2,000 Ci/mmol; demonstrated saturable, specific, and high affinity binding to rat pancreatic plasma membranes; and retained full biological activity to stimulate amylase secretion. Using a variety of cross-linking methods, these probes each identified the same Mr = 85,000-95,000 protein in rat pancreatic plasmalemma, and CCK-8 competed for this labeling in a concentration-dependent manner (IC50 = 1 nM). No change in apparent mobility of this band was observed under reducing or nonreducing conditions, suggesting lack of covalent attachment to other subunits. The Mr = 85,000-95,000 species migrated differently on sodium dodecyl sulfate gels than any of the components previously identified using 125I-Bolton-Hunter-CCK-33, confirming the novel nature of this binding protein. These short probes should be very useful for further characterization of CCK receptors on this and other tissues.  相似文献   

12.
The structural characteristics and glycoprotein nature of the human growth hormone (hGH) receptor in cultured lymphocytes (IM-9 cell line) were studied with the use of a bifunctional reagent (disuccinimidyl suberate) to couple 125I-hGH covalently to intact cells. After cross-linking, the hormone-receptor complexes were analysed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. A single band of Mr 140,000 was identified under reducing conditions. The labelling of this band was blocked by unlabelled hGH but not by insulin, ovine prolactin, bovine or ovine growth hormones. The Mr 140,000 band was immunoprecipitated by either anti-hGH antibody or by a monoclonal antibody against rat liver growth hormone receptor. In the absence of reductant two major bands of Mr 270,000 and 140,000 were found. On two-dimensional gel electrophoresis, with the first dimension in the absence of reductant and the second in its presence, the Mr 270,000 complex generated the Mr 140,000 band. The nature of the oligosaccharide chains of the receptor was studied by treatment with different glycosidases. The electrophoretic mobility of the Mr 140,000 receptor complex was markedly increased after digestion with endoglycosidase F but showed no or little change after digestion with endoglycosidase H. The Mr 140,000 band was also sensitive to neuraminidase treatment. In addition the 125I-hGH-receptor complex was adsorbed by immobilized wheat germ agglutinin and to a smaller extent by immobilized concanavalin A, lentil lectin, ricin I and ricin II. In conclusion, taking into account that hGH is a Mr 22,000 polypeptide, the binding subunit of the GH receptor in human IM-9 lymphocytes has an Mr of approx. 120,000. The native receptor may exist as a homodimer of the binding subunit formed by disulphide bonds. Furthermore, the GH receptor subunit contains asparagine N-linked type of oligosaccharide chains. Most, if not all, of these chains are of the complex type and appear to be sialylated whereas no high-mannose type chains are detectable in the mature form of the receptor.  相似文献   

13.
Excessive absorption of intestinal cholesterol is a risk factor for atherosclerosis. This report examines the effect of cholecystokinin (CCK) on plasma cholesterol level and intestinal cholesterol absorption using the in vivo models of C57BL/6 wild-type and low density lipoprotein receptor knock-out (LDLR−/−) mice. These data were supported by in vitro studies involving mouse primary intestinal epithelial cells and human Caco-2 cells; both express CCK receptor 1 and 2 (CCK1R and CCK2R). We found that intravenous injection of [Thr28,Nle31]CCK increased plasma cholesterol levels and intestinal cholesterol absorption in both wild-type and LDLR−/− mice. Treatment of mouse primary intestinal epithelial cells with [Thr28,Nle31]CCK increased cholesterol absorption, whereas selective inhibition of CCK1R and CCK2R with antagonists attenuated CCK-induced cholesterol absorption. In Caco-2 cells, CCK enhanced CCK1R/CCK2R heterodimerization. Knockdown of both CCK1R and CCK2 or either one of them diminished CCK-induced cholesterol absorption to the same extent. CCK also increased cell surface-associated NPC1L1 (Niemann-Pick C1-like 1) transporters but did not alter their total protein expression. Inhibition or knockdown of NPC1L1 attenuated CCK-induced cholesterol absorption. CCK enhanced phosphatidylinositide 3-kinase (PI3K) and Akt phosphorylation and augmented the interaction between NPC1L1 and Rab11a (Rab-GTPase-11a), whereas knockdown of CCK receptors or inhibition of G protein βγ dimer (Gβγ) diminished CCK-induced PI3K and Akt phosphorylation. Inhibition of PI3K and Akt or knockdown of PI3K diminished CCK-induced NPC1L1-Rab11a interaction and cholesterol absorption. Knockdown of Rab11a suppressed CCK-induced NPC1L1 translocation and cholesterol absorption. These data imply that CCK enhances cholesterol absorption by activation of a pathway involving CCK1R/CCK2R, Gβγ, PI3K, Akt, Rab11a, and NPC1L.  相似文献   

14.
Seven integral proteins (CE 9, HA 21, HA 116, HA 16, HA 4, HA 201, and HA 301) were isolated from rat hepatocyte plasma membranes by immunoaffinity chromatography on monoclonal antibody-Sepharose. Six of the proteins (all but HA 16) exhibit domain-specific localizations (either bile canalicular or sinusoidal/lateral) about the hepatocyte surface. We identified three of these protein antigens as leucine aminopeptidase (HA 201), dipeptidyl peptidase IV (HA 301), and the asialoglycoprotein receptor (HA 116). We also developed 125I-lectin blotting procedures that, when used in conjunction with chemical and glycosidase treatments, permitted a comparison of the types of oligosaccharides present on the seven proteins. All seven are sialoglycoproteins, based upon the effects of prior neuraminidase and periodate-aniline-cyanoborohydride treatments of blots on labeling by 125I-wheat germ agglutinin. 125I-labeled Ricinus communis agglutinin I and 125I-peanut agglutinin blotting of the desialylated proteins revealed few if any conventional O-linked oligosaccharides, suggesting that the sialyl residues represent termini of N-linked complex-type oligosaccharides. Depending upon the protein, we estimated the presence of 2-26 N-linked oligosaccharides/polypeptide chain from the Mr reductions accompanying chemical or enzymatic deglycosylation. Three of these mature plasma membrane proteins (HA 21, HA 116, and HA 4) have both high mannose-type and complex-type oligosaccharides on every copy of their polypeptide chains. The labeling of these three proteins by 125I-concanavalin A was sensitive to treatment with endoglycosidase H, and each exhibited a quantitative reduction in Mr after the treatment, as assessed independently by 125I-wheat germ agglutinin blotting. At this level of analysis, we were unable to discern differences in the types of oligosaccharides present on these seven glycoproteins that correlate with their patterns of expression within the plasma membrane domains of this polarized epithelial cell.  相似文献   

15.
The labelling of α1-acid glycoprotein (AGP) with (3H)-sodium borohydride was compared to the labelling with (125I)-sodium iodide by the chloramine T method in view to its use in a radioimmunoassay. The tritium labelling allowed to reach a high specific radioactivity similar to that obtained with iodide ((3H)-AGP: 29.8 mCi/mg; (125I)-AGP: 30.5 mCi/mg). Each mole of sialic acid residue of AGP contains one atom of tritium. The stability of (3H)-AGP was better than that of (125I)-AGP as indicated by its immunoreactivity as a function of time. Immunoreactivities and standard curves were similar for the two tracers but affinity of antiserum was higher for (125I)-AGP than for (3H)-AGP. Tritium labelling by (3H)-borohydride will be very useful for glycoprotein antigens which cannot be labelled with (125I)-iodide.  相似文献   

16.
125I-CCK was crosslinked with ultraviolet light to its receptor on pancreatic plasma membranes. The predominant labeled species following polyacrylamide gel electrophoresis had a molecular weight of 120,000 in the absence, and 80,000 in the presence of the reducing agent dithiothreitol. The Mr = 120,000 labeled band could be extracted, reduced and converted to Mr = 80,000. Moreover, peptide mapping with Staph aureus V8 protease showed a similar pattern for the 120,000 and 80,000 dalton bands. The crosslinked receptor could be solubilized with Triton X-100, absorbed to wheat germ agglutinin and eluted with N-acetylglucosamine. The results indicate, therefore, that the CCK receptor is a glycoprotein with subunits coupled by disulfide bonds.  相似文献   

17.
Abstract: The structural requirements for the selective binding of cholecystokinin-8 (CCK-8)-related peptides to peripheral (CCKA) receptors are not sufficiently understood. In this study, the interaction of a series of newly shortened analogues of CCK-8 with both receptor subtypes was analyzed by displacement studies using [3H]-CCK-8 and 125l-Bolton-Hunter (BH)-CCK-8 as radioligands. The pentapeptide derivative of CCK-8, succinyl-Tyr (SO3H)-Met-Gly-Trp-Met-phenethylamide, was found to bind selectively with high affinity to the CCKA receptor. The replacement of Met28 and/or Met31 by norleucine and of L-Trp30 by its D-analogue had no significant effect on the binding properties of the peptide. Further C-terminal shortening resulted in a drastic loss of affinity and selectivity of the CCK receptor binding.  相似文献   

18.
The presence of intranuclear and acrosomal lectin binding sites in spermatids and spermatozoa of the mosquito Culex quinquefasciatus was analysed. Direct and indirect lectin-gold techniques were used on LR White-embedded cells. The nuclear compartment was the structure most intensely labelled. Early spermatid nucleus showed moderate labelling for peanut agglutinin (PNA), Griffonia simplicifolia IB4 (GS-IB4) and Ricinus communis agglutinin (RCA), and light labelling for the other lectins tested. The sperm nucleus was intensely labelled by all lectins. The acrosome, an enzyme-containing structure, was labelled by some lectins. The anterior acrosomal region was labelled by PNA, while the proximal acrosomal region was labelled by PNA and G. simplicifolia II (GS II) lectins, and showed the presence of fucose residues with the use of Ulex europaeus I (UEA-I) lectin. The spermatozoa stored in the spermatheca showed the same pattern of labelling as that observed in spermatozoa localized in testis and seminal vesicles for all lectins tested. Carbohydrate residues in the nuclear compartment may be involved with the process of chromatin condensation. In the acrosomal region these residues may play a role in the process of spermoocyte interaction.  相似文献   

19.
The structure of prolactin (PRL) receptor in the rabbit mammary gland was examined using a receptor-specific monoclonal antibody (MAb). The PRL receptor preparation used was purified by making use of a PRL-affinity column. MAb inhibited the binding of PRL to the receptor, in a dose-dependent manner and completely at a high concentration. Using the receptor directly labelled by 125I, the preparation was incubated with MAbs and the immune complex was collected by Pansorbin and examined by SDS/polyacrylamide-gel electrophoresis. The autoradiography showed that three species with apparent Mr values of 77,000, 41,000 and 25,000 specifically reacted with MAbs. The pattern changed little in the presence or absence of dithiothreitol. Western blot analysis showed that two species (Mr 77,000 and 41,000) reacted with MAb. Affinity labelling of the receptor with labelled PRL revealed three bands with Mr values of 96,000, 60,000 and 43,000 on SDS gels. The high-Mr complex (Mr greater than 200,000) was always present at the top of the gel. These results show that the mammary gland contains at least three PRL-binding subunits. The differences in Mr before and after PRL binding were close to the Mr of PRL. This would suggest that each PRL binding subunit reacts with one PRL molecule.  相似文献   

20.
Summary Progestin-binding sites in uteri and oviducts of estrogen-treated and untreated 8-day-old mice were studied by thaw-mount autoradiography with [125I]progestin. In the untreated uteri, nuclear concentration of radiolabelled progestin was observed in all tissues of the uterus, with strongest nuclear labelling in luminal and glandular epithelia and in stroma. In the estrogen-treated uteri, the degree of labelling was markedly augmented in stroma and muscle, but much reduced in the luminal and glandular epithelia, compared to untreated uteri. In untreated oviducts, nuclear labelling was observed in stroma and muscle in all regions and in epithelium in the isthmic and uterine regions. The epithelium in infundibular and ampullar regions was only scarcely labelled. The estrogen-treatment augmented the labelling in stroma and muscle of the oviduct as in the uterus, but the labelling in epithelium was not affected. These results indicate that estrogen-treatment induces progesteron receptor differentially among tissue compartments both in the uterus and oviduct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号