首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Toll-like receptors (TLRs), evolutionarily conserved innate, play important roles in the development of autoimmunity. TLRs proteins are localized on the cell surface or in endosomes and play critical roles in innate immune responses against different pathogens. Aberrant stimulation of the innate immune system through intracellular TLRs may lead to hyperactive immune responses and contribute to the pathogenesis of hepatocellular carcinoma (HCC). HCC is the seventh most common cancer and the third leading cause of cancer deaths worldwide, and innate immune takes a most important role in HCC. There was no review to sum up the role of TLRs gene polymorphism in HCC. This review was performed to sum up the role of TLRs gene polymorphism in HCC.  相似文献   

2.
3.
Abstract

Lung cancer is a leading cause of death world-wide and the long-term survival rate for patients with lung cancer is one of the lowest for any cancer. Toll-like receptors (TLRs), evolutionarily conserved innate, are expressed in a wide variety of tissues and cell types, and they play key role in the innate immune system. TLRs have been found to be expressed by some kinds of tumor cells. However, what is the biological function of TLRs on tumor cells and whether human lung cancer cells can express TLRs remain to be fully understood. This review was performed to sum up the role of TLRs in lung cancer.  相似文献   

4.
Abstract

Toll-like receptors (TLRs) are pattern-recognition receptors that recognize microbial/vial-derived components that trigger innate immune response, which indicate these molecules play a role in host defense against infection. The infection often precedes numerous disorders including glomerular diseases (glomerulonephritis (GN)). It is reported that TLRs are also involved in the risk and progression of GN, and TLRs may be potential therapeutic targets for GN. To date, a number of studies have found that TLRs are involved in the pathogenesis of GN. There is a paucity of reviews in the literature discussing signaling pathways and gene expression for TLRs in GN. This review was performed to provide a relatively complete signaling pathway flowchart for TLRs to the investigators who were interested in the roles of TLRs in the pathogenesis of GN. In the past decades, some studies were also performed to explore the association of TLRs gene expression with the risk of GN. However, the role of TLRs in the pathogenesis of GN remains controversial. Here, the signal transduction pathways of TLRs and its role of gene expression in the pathogenesis of GN were reviewed.  相似文献   

5.
The toll-like receptors (TLRs) are the sentinel factor of the innate immunity, which are essential for host defense. These receptors detect the presence of conserved molecular patterns of potentially pathogenic microorganisms and contribute in both, cellular as well as humoral immune responses. Leishmania is an intracellular pathogen that silently invades host immune system. After phagocytosis, it divides and proliferates in the harmful environment of host macrophages by down-regulating its vital effector functions. In leishmaniasis, the outcome of the infection basically relies on the skewed balance between Th1/Th2 immune responses. Lots of work have been done and on progress but still characterization of either preventive or prophylactic candidate antigen/s is far from satisfactory. How does Leishmania regulate host innate immune system? Still it is unanswered. TLRs play very important role during inflammatory process of various diseases such as cancer, bacterial and viral infections but TLR signaling is comparatively less explained in leishmanial infection. In the context to Th1/Th2 dichotomy, identification of leishmanial antigens that modulate toll-like receptor signaling will certainly help in the development of future vaccine. This review will initially describe global properties of TLRs, and later will discuss their role in the pathogenesis of leishmaniasis.  相似文献   

6.

Background  

Toll-like receptors (TLRs) play an essential role in the innate immune system by initiating and directing immune response to pathogens. TLRs are expressed in the human endometrium and their regulation might be crucial for the pathogenesis of endometrial diseases.  相似文献   

7.
Role of toll-like receptors in tissue repair and tumorigenesis   总被引:1,自引:0,他引:1  
Toll-like receptors (TLRs) play a critical role in host defense from microbial infection. TLRs recognize conserved molecular structures produced by microorganisms and induce activation of innate and adaptive immune responses. The inflammatory responses induced by TLRs play an important role TLRs not only in host defense from infection, but also in tissue repair and regeneration. This latter function of TLRs can also contribute to tumorigenesis. Here we review recent progress in understanding the role of TLRs in cancer development.  相似文献   

8.
Recent evidence highlighted the role of Toll-like receptors (TLRs) as key recognition structures of the innate immune system. The activation of TLRs initiates the production of inflammatory cytokines, chemokines, tissue destructive enzymes, and type I interferons. In addition, TLR signalling plays an important role in the activation and direction of the adaptive immune system by the upregulation of costimulatory molecules of antigen presenting cells. Considering the important role of TLR signalling as a critical link between innate and adaptive immunity it has been proposed that a dysregulation in TLR signalling might be associated with autoimmunity. In this review, recent studies on TLR signal transduction pathways activated by corresponding ligands are summarized and evidence for a possible role of TLR signalling in the pathogenesis of rheumatoid arthritis is discussed.  相似文献   

9.
The innate immune system senses pathogens largely through signals initiated by a collection of phylogenetically related proteins known as "Toll-like receptors" (TLRs), of which 10 representatives are encoded in the human genome. Our understanding of the sensing role played by the TLRs began with the positional cloning of a spontaneous mutation (Lps(d)) in the gene encoding the mammalian lipopolysaccharide (LPS) receptor. Other key innate immunity proteins have been disclosed by germline mutagenesis, and are discussed in the present review.  相似文献   

10.
An anuran amphibian, South African clawed frog (Xenopus laevis), is used to study the immune system, as it possesses a set of acquired immune system represented by T and B lymphocytes and the immunoglobulins. The acquired immune system is impaired throughout the larva and the metamorphosis stage in the amphibians. On the other hand, the role of innate immune system in the tadpole remains unclear. Recently, insect Toll protein homologues, namely, Toll-like receptors (TLRs), have been identified as sensors recognizing microbe-pattern molecules in vertebrates. Whole-genome analysis of Xenopus tropicalis supported the existence of the tlr genes in the frog. In this study, we annotated 20 frog tlr gene nucleotide sequences from the latest genome assembly version 4.1 on the basis of homology and identified cDNAs of the predicted frog TLR proteins. Phylogenetic analysis showed that the repertoire of the frog TLRs consisted of both fish- and mammalian-type TLRs. We showed that the frog TLRs are constitutively expressed in the tadpole as well as in the adult frog. Our results suggest that tadpoles are protected from microbes by the innate system that includes TLRs, despite impaired acquired immune system in tadpoles. This is the first report on the properties of TLRs in the most primitive terrestrial animals like amphibia. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
TLRs是一类古老的天然模式识别分子,通过识别病毒的PAMPs,活化依赖和非依赖于MyD88的信号通路,诱导IFNs、促炎性细胞因子和趋化因子等分子的释放和表达,清除病毒的感染;同时,病毒为了感染宿主,采用多种免疫逃避策略干扰机体TLRs的信号,尤其调节MyD88、NF-κB、TRIF和IRFs等重要信号分子,以逃避机体天然PRRs的监视、识别和清除。因此,本文重点以VACV、HCV和HIV为例,介绍病毒感染对宿主TLRs模式识别与免疫应答信号的调节,以进一步理解病毒与宿主相互作用的复杂性,为病毒病的有效防治提供理论依据。  相似文献   

12.
Toll-like receptors (TLRs) play an important role in the induction and regulation of the innate immune system or adaptive immune responses. Genetic variations within human TLRs have been reported to be associated with rheumatoid arthritis (RA). This study was conducted to investigate correlation between SNP of downstream mononucleotide in signal transduction of Toll-like receptors and predisposing genes of RA. There was obviously correlative between single nucleotide polymorphism and predisposing genes of RA. G-type of IL-1RAP rs766442 may be protecting genes of RA, while T-type alleles of IL-6R rs11265618 and IL-1RAP rs766442 may be susceptible genes of RA. In conclusion, the studies on the nucleis acid polymorphism in TLRs signal pathway contribute to disclose genes’ influence on the attack mechanism of RA, early diagnosis and treatment of RA.  相似文献   

13.
Growing numbers of studies have shown that circular RNAs (circRNAs) can function as regulatory factors to regulate the innate immune response, cell proliferation, cell migration, and other important processes in mammals. However, the function and regulatory mechanism of circRNAs in lower vertebrates are still unclear. Here, we discovered a novel circRNA derived from the gene encoding Bcl-2-like protein 1 (BCL2L1) gene, named circBCL2L1, which was related to the innate immune responses in teleost fish. Results indicated that circBCL2L1 played essential roles in host antiviral immunity and antibacterial immunity. Our study also identified a microRNA, miR-30c-3-3p, which could inhibit the innate immune response by targeting inflammatory mediator TRAF6. And TRAF6 is a key signal transduction factor in innate immune response mediated by TLRs. Moreover, we also found that the antiviral and antibacterial effects inhibited by miR-30c-3-3p could be reversed with the expression of circBCL2L1. Our data revealed that circBCL2L1 functioned as a competing endogenous RNA (ceRNA) of TRAF6 by competing for binding with miR-30c-3-3p, leading to activation of the NF-κB/IRF3 inflammatory pathway and then enhancing the innate immune responses. Our results suggest that circRNAs can play an important role in the innate immune response of teleost fish.  相似文献   

14.
IntroductionPrevalence of an abnormal Papanicolaou smear was significantly increased in lupus patients in cross-sectional studies, associated with a higher prevalence of high-risk human papillomavirus (HPV) infection. The nucleic acid-specific Toll-like receptors (TLRs) locate at the endolysosomal compartments and trigger the induction of cytokines for the innate immune response. This study evaluated whether abnormal host innate immune response in lupus patients may enhance HPV persistence.MethodsProtein levels of TLRs 3, 7, 8 and 9 in cervical epithelial cells of lupus patients and controls with or without HPV infection were assessed using flow cytometry. Characteristics associated with the differential expression of TLRs in systemic lupus erythematosus (SLE) were elucidated. The effect and interferon-stimulated genes (ISGs) (ISG15 and Mx-1) gene expressions were then measured in oncogenic HeLa (HPV18), CaSki (HPV) and C33A (HPV negative) cell lines using flow cytometry and quantitative real-time PCR. Ex vivo productions of cytokines and interferon-gamma (IFN-γ) upon TLR ligands stimulations were subsequently measured using cytometric bead array and ELISA.ResultsFor subjects with HPV infection, levels of TLR3 and TLR7 were significantly lower in lupus patients compared with controls. Significantly decreased TLRs 7, 8 and 9 levels were observed in HPV-negative SLE compared to healthy controls. For SLE with and without HPV infection, TLR7 and 9 levels were significantly lower in infected SLE than those in HPV-negative patients. Independent explanatory variables associated with down-regulation of TLR7 level included HPV infection and a higher cumulative dose of prednisolone; while a higher cumulative dose of hydroxychloroquine and HPV infection were associated with down-regulation of TLR9 level. In cervical cell lines, TLRs 3, 7, 8, 9 protein levels and antiviral ISG15 and Mx-1 gene expressions were inhibited in two oncogenic HPV types. Functional data showed that the induction of pro-inflammatory cytokines by TLR ligands (R837, ssRNA and ODN2395) was greatly impaired in CaSki and HeLa than C33A cells.ConclusionsIn conclusion, prednisolone and TLR antagonist (hydroxychloroquine) may down-regulate protein levels of TLR7 and TLR9 in lupus patients, thereby decreasing the innate immune response against HPV infection. Upon infection, HPV further down-regulate TLR7 and 9 levels for viral persistence. Furthermore, reduction of nucleic acid-sensing TLRs 7, 8 and 9 in carcinogenic HPVs ensures that the expression of inducible pro-inflammatory cytokines is minimized to prevent the expression of antiviral ISGs (ISG15 and Mx-1) on a biologically relevant antiviral response.  相似文献   

15.

Background  

Toll-like receptors (TLRs) play an important role in innate immunity by sensing a variety of pathogens and inducing acquired immunity. To test our hypothesis that dysregulation of innate immune responses acts to trigger carcinogenesis, we studied the expression of TLR2 and 4 in sporadic human colorectal cancer tissue.  相似文献   

16.
Innate immune system is the first line of host defense against invading microorganisms. It relies on a limited number of germline-encoded pattern recognition receptors that recognize conserved molecular structures of microbes, referred to as pathogen-/microbe-associated molecular patterns (PAMPs/MAMPs). Bacterial cell wall macroamphiphiles, namely Gram-negative bacteria lipopolysaccharide (LPS), Gram-positive bacteria lipoteichoic acid (LTA), lipoproteins and mycobacterial lipoglycans, are important molecules for the physiology of bacteria and evidently meet PAMP/MAMP criteria. They are well suited to innate immune recognition and constitute non-self signatures detected by the innate immune system to signal the presence of an infective agent. They are notably recognized via their lipid anchor by Toll-like receptors (TLRs) 4 or 2. Here, we review our current knowledge of the molecular bases of macroamphiphile recognition by TLRs, with a special emphasis on mycobacterial lipoglycan detection by TLR2.  相似文献   

17.
Toll-like receptors and their role in animal reproduction   总被引:1,自引:0,他引:1  
Toll-like receptors (TLRs) are evolutionarily conserved innate immune receptors that recognize pathogen specific molecular pattern (PAMPs) in an efficient, non-self-reactive manner and initiate specific immune signaling that culminates in triggering antigen-specific adaptive responses. Different TLR genes in domestic animal species have been characterized and accumulating evidence from recent studies indicates an extended role for TLR signaling in reproductive physiology. In females, TLRs have been implicated in the regulation of ovulation, fertilization, gestation and parturition, as well as in pathological conditions such as endometritis and mastitis. In males, TLRs play a role in steroidogenesis and spermatogenesis. Use of TLR agonists has also been shown to be effective in the treatment of certain reproductive tract infections. Moreover, gene polymorphisms in TLRs have been associated with mastitis providing evidence that TLRs can potentially be exploited as markers in future breeding programs. The aim of this review is to provide a comprehensive treatise on role of TLRs in male and female reproductive physiology and associated pathology in domestic livestock.  相似文献   

18.
Urinary tract infections (UTIs), which are mainly due to uropathogenic Escherichia coli (UPEC), occur via the retrograde ascent of the bacteria along the urinary tract system. The adhesion and invasion mechanisms of UPEC have been extensively studied in bladder epithelial cells, but less is known about the role of renal tubule epithelial cells (RTEC) in renal antibacterial defences. This review considers recent advances in the understanding of the role of RTECs in inducing an innate immune response mediated by Toll-like receptors (TLRs) in experimental UTI. Collecting duct cells are a preferential site of adhesion of UPEC colonizing the kidneys. Epithelial TLR4 activation induces an inflammatory response and the recruitment of lipid rafts to the plasma membrane, both of which facilitate the transcytosis of non-cytolytic UPEC strains across intact collecting duct cell layers to invade the renal interstitium. Arginine vasopressin, which regulates water absorption in the collecting duct, also acts as a potent modulator of the TLR4-mediated intrarenal innate response caused by UPEC. The role of epithelial TLR5 in renal host defences is also discussed. These findings highlight the role of RTECs in triggering the innate immune response in the context of ascending UTIs.  相似文献   

19.
Mononuclear phagocytes are crucial components of the innate host defense system. Cells such as macrophages and monocytes phagocytose and process pathogens, produce inflammatory mediators, and link the innate and the adaptive immune systems. The role of innate immune receptors such as Toll-like receptors (TLRs) in the recognition of pathogens is critical for mounting a precise and targeted immune response. This review focuses attention on the development of monocytes and macrophages, various populations of macrophages, and the expression and function of TLRs on macrophages.  相似文献   

20.
Toll-like receptors (TLRs) are innate immune cells receptors. They are expressed on leukocytes, epithelial cells, and more particularly on placental immune cells and chorion trophoblast. Upregulation of innate immune response occurs during normal pregnancy, but its excessive activity is involved in the pathology of pregnancy complications including pregnancy-induced hypertension and pre-eclampsia (PE). The recent studies about the overmuch inflammatory responses and aberrant placentation are associated with increased expression of TLRs in PE patients. This review has tried to focus on the relationship between some activities of TLRs and the risk of preeclampsia development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号