首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat ventricular myocardial membanes contain muscarinic acetylcholine receptors which can be identified by binding of the muscarinic antagonist (-)-[3H]quinuclidinyl benzilate. Scatchard analysis of saturation binding data revealed binding to a single class of non-cooperative sites (0.693 pmol/mg protein) with high affinity (i.e. with an equilibrium dissociation constant of 0.24 nM). Competition binding curves of the agonist carbamylholine were shallow (with a Hill coefficient, nH of 0.71) for membranes of untreated rats, suggesting the presence of two receptor subpopulations with different agonist affinity. These curves were steeper (nH = 0.86) for adrenalectomized animals and more shallow (nH = 0.62) for hydrocortisone-treated animals. In contrast, both treatments did not affect the total receptor number. This suggests that corticosteroids are required for the myocardial muscarinic receptors to adopt high agonist affinity. However, the inhibition of adenylate cyclase by muscarinic agonists disappeared after both corticosteroid treatment and adrenalectomy. But agonist receptor binding could still be modulated by guanine nucleotides. This indicates that both high and low affinity froms of muscarinic receptors induced by altered corticosteroid states retain functional coupling with the inhibitory nucleotide binding site, but are uncoupled from the adenylate cyclase catalytic subunit, C.  相似文献   

2.
Abstract

In this study we looked for evidence regarding a correlation between M2-muscarinic receptor binding affinity and ligand intrinsic activity. Guanine nucleotide-binding protein-coupled receptors have been shown to exist in both a high affinity and a low affinity, agonist state. The agonist [3H]Oxotremorine-M, was used to determine the affinity of compounds for the high affinity state and the antagonist, [3H]N-methylscopolamine, plus GppNHp, was used to determine the affinity for the low agonist state. The magnitude of the difference in the affinity a compound has for the high versus the low agonist state of the receptor has been related to the intrinsic activity of the compound. NMS/Oxo-M ratios were established for muscarinic agonists, partial agonists and antagonists. NMS/Oxo-M ratios varied from 1695 for the agonist carbachol to 1.9 for the antagonist AFDX-116 with intermediate values for the partial agonists oxotremorine-M, pilocarpine and RS86 (233, 36 and 17 respectively). Intrinsic activity was assessed by receptor-mediated Gi-protein GTPase activity. Indeed, a close correlation (r=0.92) was found between the NMS/Oxo-M ratios of the ligands on the one hand, and their ability to activate the M2-receptor coupled Gi-protein on the other.  相似文献   

3.
The relative affinities of various muscarinic drugs in the antagonist ([3H]N-methyl scopolamine ([3H]NMS)) and agonist ([3H]Oxotremorine-m ([3H]OXO-M)) binding assays using a mixture of tissues containing M1–M4 receptor subtypes have been determined. [3H]NMS bound with high affinity (Kd=25±5.9 pM; n=3) and to a high density (Bmax=11.8±0.025 nmol/g wet weight) of muscarinic receptors. [3H]OXO-M appeared to bind to two binding sites with differing affinities (Kd1=2.5±0.1 nM; Kd2=9.0±4.9 M; n=4) and to a different population of binding sites (Bmax1=5.0±0.26 nmol/g wet weight; Bmax2=130±60 nmol/g wet weight). Well known antagonists exhibited high affinity for [3H]NMS binding but a lower affinity for [3H]OXO-M binding. The opposite was true for acetylcholine and other known agonists. However, pilocarpine and McN-A-343 had similar affinities for sites labeled by both radioligands. Using the ratios of antagonist-to-agonist binding affinities, it was possible to group compounds into apparently distinct full agonist (ratios of 180–665; e.g. carbachol, muscarine, OXO-M, OXO-S and arecoline), partial agonist (ratios of 14–132; e.g. McN-A-343, pilocarpine, aceclidine, bethanechol, OXA-22 and acetylcholine) and antagonist (ratios of 0.22–1.9; e.g. atropine, NMS, pirenzepine, methoctramine, 4-DAMP and p-fluorohexahydrosialo-difenidol) classes. These data suggest that the NMS/OXO-M affinity ratios using a mixture of M1–M4 muscarinic receptors may be a useful way to screen and group a large number of compounds into apparent agonist, partial agonist, and antagonist classes of cholinergic agents.  相似文献   

4.
Muscarinic receptor stimulation elicits two distinct biochemical responses in embryonic chick heart cells: inhibition of catecholamine-stimulated cyclic AMP formation and stimulation of phosphoinositide (PhI) hydrolysis. We observe two major differences in the effects of agonists on these responses. First, carbachol and oxotremorine both inhibit cyclic AMP formation, but only carbachol stimulates PhI hydrolysis. Second, the dose-response relationships for the cyclic AMP and PhI responses differ; the half-maximal concentrations of carbachol needed to inhibit cAMP accumulation and stimulate PhI hydrolysis are 2 X 10(-7) and 2 X 10(-5) M, respectively. We carried out radioligand binding studies on intact chick heart cells to determine whether these data could be explained in terms of different agonist binding states of the muscarinic receptor. In intact cells, carbachol competes for [3H]quinuclidinyl benzilate-binding sites with high and low affinity, while oxotremorine shows only high affinity binding. We suggest that the receptor state common to both agonists is the state associated with inhibition of adenylate cyclase, while the very low affinity binding site seen only with carbachol is associated with the PhI response. We also consider the possibility that both responses are caused by a single receptor state that is efficiently coupled to adenylate cyclase inhibition and inefficiently coupled to PhI hydrolysis. Whichever mechanism is correct, our findings demonstrate that muscarinic receptors coupled to adenylate cyclase and the PhI response can be differentiated by virtue of their sensitivity to agonist and the efficiency with which some agonists induce receptor change and elicit receptor-mediated biochemical responses.  相似文献   

5.
The rat M1 muscarinic receptor gene was cloned and expressed in a rat cell line lacking endogenous muscarinic receptors. Assignment of the cloned receptors to the M1 class was pharmacologically confirmed by their high affinity for the M1-selective muscarinic antagonist pirenzepine and low affinity for the M2-selective antagonist AF-DX-116. Guanylyl imidodiphosphate [Gpp(NH)p] converted agonist binding sites on the receptor, from high-affinity to the low-affinity state, thus indicating that the cloned receptors couple to endogenous G-proteins. The cloned receptors mediated both adenylate cyclase inhibition and phosphoinositide hydrolysis, but by different mechanisms. Pertussis toxin blocked the inhibition of adenylate cyclase (indicating coupling of the receptor to inhibitory G-protein), but did not affect phosphoinositide turnover. Furthermore, the stimulation of phosphoinositide hydrolysis was less efficient than the inhibition of adenylate cyclase. These findings demonstrate that cloned M1 receptors are capable of mediating multiple responses in the cell by coupling to different effectors, possibly to different G-proteins.  相似文献   

6.
Abstract

Gallamine and d-tubocurarine inhibited (3H)N-methylscopolamine ((3H)NMS) binding to rat cardiac muscarinic receptors with I50 values of 0.7 μM and 22 μM, respectively. They decreased the association and dissociation rates of the two ligands (3H)NMS and (3H)Oxotremorine M ((3H)Oxo-M).

Gallamine interaction with muscarinic receptors was markedly inhibited by (3H)NMS and (3H)Oxo-M binding to the receptors. We were unable to demonstrate (3H)NMS or (3H)Oxo-M binding to the muscarinic receptor-gallamine complex.

By contrast, d-tubocurarine interaction with rat cardiac muscarinic receptors was facilitated by (3H)Oxo-M binding and only slightly inhibited by (3H)NMS binding to muscarinic binding sites. Furthermore, (3H)NMS and (3H)Oxo-M bound to the receptor-d-tubocurarine complex, indicating that the latter drug interacted with an allosteric site on cardiac muscarinic receptors but did not recognize the muscarinic binding site (at concentrations below 1 mM).  相似文献   

7.
Abstract

Cross-linking of [125I]helodermin to human SUP-T1 lymphoblasts with bis[2-(succinimidooxycarbonyloxy)ethyl]sulfone (BSOCOES) revealed a 63 K binding protein. This cross-linking was inhibited by helodermin and VIP. In cells submitted for 3–4 days to 0.2 μg/ml tunicamycin, the Mr of an increasing proportion of helodermin-preferring receptors was reduced to 50 K and the total number of receptors was decreased by about 50%, without alteration in binding affinity and specificity. In parallel, the VIP-mediated adenylate cyclase stimulation was reduced by 30% with no change in NaF-, Gpp[NH]p-, and PGE1-stimulations. We conclude that a proper N-glycosylation of helodermin-preferring VIP receptors is required for normal receptor targeting and turnover but not for ligand binding and adenylate cyclase coupling.  相似文献   

8.
9.
The submandibular glands of neonatal and adult rats express muscarinic cholinergic receptors. Receptor occupancy initiates signaling through activation of phospholipase C, hydrolysis of inositol phospholipids, and calcium mobilization. The increased cytoplasmic [Ca2+] activates ion transport pathways, resulting in secretion of primary saliva. We have previously shown that muscarinic receptors are present in the gland of neonates and that they couple effectively to inositol trisphosphate production and Ca2+ mobilization but that the monovalent ion transport paths are poorly activated. To characterize age-related differences in signal transduction further, we examined the coupling of muscarinic receptors to G-proteins by determining the effect of GTP on the IC50 for competition by the muscarinic agonist carbachol with the radiolabeled antagonist, 3H-quinuclidinyl benzylate. Data were fit to one-site and two-site models, and in all cases the two-site model provided the better fit. Using the two-site model, a substantial GTP-induced shift from high affinity to low affinity binding was observed in membranes from adults, whereas more of the receptors were already in the low affinity form in the membranes from neonates, and little additional shift was induced by GTP. These results suggest differences in the G-protein coupling of muscarinic receptors in submandibular cells of adult and early postnatal rats that may be associated with differences in the content, affinity, or properties (i.e., posttranslational modifications) of G-proteins as the cells mature. © 1996 Wiley-Liss, Inc.  相似文献   

10.
Pertussis toxin, PT, abolishes inhibitory regulation of adenylate cyclase by cell surface receptors. Inhibitors of adenylate cyclase in GH3 cells, namely somatostatin and the muscarinic cholinergic agonist carbachol, lower the cytosolic free Ca2+ concentration. [Ca2+]i and cause hyperpolarization. These responses are selectively abolished by PT. It is concluded that the effects of somatostatin and carbachol to lower [Ca2+]i and to hyperpolarize are secondary to their inhibitory action on adenylate cyclase. In contrast, PT does not impair the TRH induced rise in [Ca2+]i in GH3 cells demonstrating that the coupling of TRH receptors to Ca2+ mobilization is not mediated by a PT substrate.  相似文献   

11.
Pertussis toxin selectively modifies the function of Ni, the inhibitory guanine nucleotide binding protein of the adenylate cyclase complex. In chick heart membranes, guanine nucleotide activation of Ni resulted in a decrease in the apparent affinity of the muscarinic receptor for the agonist oxotremorine, inhibition of basal adenylate cyclase activity, and the attenuation of adenylate cyclase by oxotremorine. Treatment of chicks with pertussis toxin caused the covalent modification of 80-85% of cardiac Ni. After this treatment Gpp(NH)p had no effect on muscarinic receptor affinity and GTP stimulated basal adenylate cyclase activity. In contrast, the GTP-dependent attenuation of adenylate cyclase caused by muscarinic receptors was unaffected.  相似文献   

12.
Abstract

The influence of sodium was studied on hormone and guanine nucleotide-induced stimulation and inhibition of adenylate cyclase and on ß-adrenoceptor binding in various membrane systems. Sodium exerted almost identical effects on stimulation and inhibition of adenylate cyclase by various stimulatory and inhibitory hormones in all of the systems studied. The potencies of the hormones and of GTP to increase or to decrease the enzyme activity were reduced by sodium ions, without changing the maximal degree of adenylate cyclase stimulation or inhibition. Stimulation and inhibition of adenylate cyclase by the stable GTP analog, GTPγS, was affected in an identical manner by sodium, causing a retardation in the onset without a change in final stimulation or inhibition by the analog. Similar to the well-known reduction in α2-adrenoceptor affinity for agonists, sodium also reduced the apparent affinity of ß-ad-renoceptors for the agonist, isoproterenol. It is concluded that sodium exerts identical effects on Ns and Ni, inhibiting the activation process of these two coupling components of the adenylate cyclase.  相似文献   

13.
Abstract: The cholinergic agonist carbachol, epinephrine, and the opiate morphine all inhibit prostaglandin E1 (PGE1)-stimulated adenylate cyclase in homogenates from the neuroblastoma-glioma hybrid NG108-15. Pretreatment of the hybrid with 100 μ M carbachol resulted in the rapid loss (desensitization) of the carbachol inhibition of adenylate cyclase (tM1/2< 3 min). The desensitization of the carbachol inhibition was blocked by 0.1 μ M atropine. Pretreatment with carbachol (1–24 h) did not significantly affect the inhibition of adenylate cyclase by either epinephrine or morphine, nor did it alter the PGE1-stimulated activity, that is, no supersensitization was observed. Cholate extracts of the particulate fraction from either carbachol-desensitized or of control NGlOS-15 were able to reconstitute adenylate cyclase activities of the coupling proteins (G/F)-deficient cyclymphoma cell membranes with equal efficacy. These results suggested that the coupling proteins of the adenylate cyclase were not altered by the carbachol pretreatment and that desensitization occurs at the receptor or at a receptor-associated level. However, the possibility remained that specific domains of the G/F, which interact only with muscarinic receptors, were altered.  相似文献   

14.
Transection of the fimbria/fornix, producing a 75% reduction in the activity of the cholinergic marker choline-o-acetyltransferase (CAT EC. 2.3.1.6) in rat hippocampus, did not change the binding characteristics of the non-subtype selective, muscarinic cholinergic receptor antagonist ligand [3H](−)quinuclidinyl benzilate {[3H](−)QNB}. Pirenzepine competition for [3H](−)QNB binding in the hippocampus was best described by a computer derived model assuming two binding sites of high affinity (putative M1 receptors) and low affinity (putative M2 receptors). There was no change in the proportion of high and low affinity pirenzepine binding sites in the hippocampus following cholinergic deafferentation. Thus, these data provide no evidence for a discrete localization of either putative subtype of muscarinic receptor discriminated by pirenzepine restricted to the terminals of CAT containing neurons innervating the rat hippocampus.Chronic scopolamine treatment produced a 48% increase in the Bmax of [3H](−)QNB binding in the hippocampus, but again there was no change in the proportions of the sites discriminated by pirenzepine demonstrating that both putative subtypes were regulated identically. Similarly, carbachol competition for [3H](−)QNB was unaltered following cholinergic deafferentation or chronic scopolamine treatment. Furthermore, similar guanylyl-5′-imidodiphosphate [Gpp(NH)p] modulation of the proportions of high and low affinity carbachol binding sites was found in the hippocampus following transection of the fimbria/fornix or chronic scopolamine treatment. Thus there is no adaptation of receptor-effector coupling following these treatments that is reflected by changes in receptor recognition site characteristics.Carbachol competition for [3H]pirenzepine binding to putative M1 receptors in the hippocampus was biphasic and was also modulated by Gpp(NH)p. In the brainstem, there was a homogeneous population of putative M2 [3H](−)QNB binding sites having low affinity for pirenzepine. Carbachol competition for these binding sites was also biphasic and modulated by guanine nucleotides. Thus, both putative M1 and M2 muscarinic receptors, as defined by high or low affinity for pirenzepine respectively, may mediate their effects in rat brain via a guanine nucleotide regulatory subunit.  相似文献   

15.
Guanine nucleotides and Na+ are known to regulate ligand binding to cardiac muscarinic receptors, which are netagively couple to the adenylate cyclase system. In the present study, we found that NH4+ was more potent than Na+ or other monovalent cations in regulating the affinity of the muscarinic receptor for agonists and antagonists. The effect of NH4+ (or Na+) on the binding of the antagonist [3H]quinuclidinyl benzilate (QNB) to muscarinic receptors in homogenates of embryonic chick hearts depended on the assay buffer used. NH4+ increased Kd in phosphate buffer or histidine and increased Bmax in Tris. NHf4+ (0.1 M) increased the IC50 value for actylcholine inhibition of [3H]QNB binding 20-fold compared to 3–4-fold with 0.1 M Na+ or K+. Furthermore, NH4+ could substitute for and was more potent than Na+ in producing synergistic effects with Gpp[NH]p to reduce the affinity of the receptor of acetylcholine. Tris depressed these effects. Gpp[NH]p plus 0.4 M NH4Cl totally converted the receptor population to a low affinity agonist state and increased the IC50 for acetylcholine by more than 2000-fold. Two conclusions can be made from the present results. First, NH4+ appears to be the most potent effector yet studied of the monovalent cation site of the muscarinic receptor system. Second, the use of Tris in muscarinic receptor ligand binding assays will produce anomalous results concerning the properties of both agonist antagonist binding to the receptor.  相似文献   

16.
Summary Studies with the atypical muscarinic antagonist pirenzepine provide convincing evidence for the classification of muscarinic acetylcholine receptors (mAChRs) into two subtypes, M1 and M2. The present study examines the heterogeneity of the M2 subtype employing the newly developed competitive muscarinic antagonist, AFDX-116. Comparison of the binding affinities of pirenzepine, atropine, and AFDX-116 to mAChRs in microsomes from the rabbit cerebral cortex, heart, and iris smooth muscle shows that iris mAChRs, which are pharmacologically of the M2 subtype, can be distinguished from M2 cardiac receptors based on their affinity for AFDX-116. These results are consistent with the hypothesis that the M2 receptor subtype consists of a heterogeneous population of receptors.Abbreviations mAChRs Muscarinic Acetylcholine Receptors - CCh Carbachol - NMS N-Methylscopolamine - AFDX-116 11-[[2-[(diethylamino)methyl]-1-piperidinyl]acetyl]-5,11-dihydro-6Hpyrido[2,3-b][1,4]benzodiazepine-6-one  相似文献   

17.
Receptor binding studies (?)-[3H]dihydroalprenolol as the ligand revealed, in adrenalectomized rat fat cells, a 50% decrease in the number of β-adrenergic receptors. er cell with no change in the receptor affinity for this ligand. Adrenalectomy caused no change in the binding affinity for isoproterenol of both high affinity and low affinity populations of the β-adrenergic receptors. Guanine nucleotide sensitivity of the agonist binding to β-receptors was also unaltered by adrenalectomy. Adrenalectomy caused a 30–40% decrease in the maximal response of adenylate cyclase to (?)-isoproterenol only when guanine nucleotides were present in the assay, without altering the (?)-isoproterenol concentration giving half-maximal adenylate cyclase stimulation (Kact values). The maximal response of adenylate cyclase to Gpp(NH)p also was lower in adrenalectomized membranes, indicating a defect at the guanine nucleotide regulatory site. Removal of adenosine by addition of adenosine deaminase failed to reverse the decreased adenylate cyclase response to isoproterenol in adrenalectomized rats. However, in intact fat cells, in which cyclic AMP accumulation in response to isoproterenol was decreased by adrenalectomy, removal of adenosine almost completely corrected this defect. These results indicate that the observed changes in the number of β-adrenergic receptors and in the ability of guanine nucleotides to stimulate adenylate cyclase, though explaining the decreased adenylate cyclase responsiveness to catecholamines, do probably not contribute significantly to the mechanism by which adrenalectomy decreases the lipolytic responsiveness of adipocyte to catecholamines. In addition, this study also suggests that the increased sensitivity to adenosine of lipolysis reported in adipocytes from adrenalectomized rats may result from an action of adenosine at a post-adenylate cyclase step, possibly on the cyclic AMP phosphodiesterase.  相似文献   

18.
Abstract

The pharmacological characteristics of muscarinic receptor (mAChR) subtypes in canine left ventricular membranes (LVM) were determined using [3H]quinuclidinyl benzilate ([3H]QNB) and [3H] N-methyl scopolamine ([3H]NMS) as ligands. Binding of [3H]QNB and [3H]NMS was saturable with respect to the radioligand concentrations. Analysis of binding isotherms by Scatchard plot showed that [3H]QNB and [3H] NMS bound to an apparently homogeneous population of mAChRs in LVM, with KD values of 390 ± 100 and 285 ± 34 pM and Bmax values of 240 ± 20 and 133 ± 9 fmol/mg protein, (n=6), respectively. The Hill coefficients for [3H]QNB and [3H]NMS binding were 0.95 ± 0.02 and 0.99 ± 0.01, respectively. Based on the competitive inhibition of [3H] ligand binding, atropine and NMS as well as the selective M1 antagonist PZ revealed no selectivity for these mAChRs. PZ competed with [3H]QNB or [3H]NMS for a single binding site with a Ki value of 0.23 ± 0.03 μM and 0.62 ± 0.10 μM, (n = 6), respectively, which is close to the values of M2 or M3 receptors. The data indicate that the M1 receptor subtype did not exist in canine LVM. Competition of [3H] ligand binding with selective M2 antagonists, AF-DX 116 and methoctramine and the selective M3 antagonists, 4-DAMP and hexahydrosiladifenidol, gave a best fit for a two-binding site model. The inhibition of carbachol-mediated phosphoinositide hydrolysis by PZ, AF-DX 116 and 4-DAMP, generated an affinity profile for this response also dissimilar to that described for the classical cardiac M2 response. Although no other muscarinic receptor mRNA has been detected in this tissue, these data suggest the presence of a second population of muscarinic sites, which may signify an M2 receptor diversity.  相似文献   

19.
Treating membranes from rat heart with phospholipase C (phosphatidylcholine choline-phosphohydrolase) fromClostridium perfringens increased the affinity of muscarinic acetylcholine receptors (M2) for the agonists carbachol and oxotremorine. The affinity for antagonists was not affected. Phospholipase C activity, i.e., the cleavage of polar heads of membrane phospholipids, led to the disappearance of the guanine nucleotide-dependent rightward shift of the isotherm for agonist binding. The treatment of tracheal smooth muscle with phospholipase C led to a decrease in the maximum contractile effect of muscarinic (M2) stimulation with no modification of the agonist EC50, i.e., to the uncoupling of the stimulation-contraction process. These results demonstrate that when phospholipid polar heads are hydrolysed by phospholipase C, M2 receptors are uncoupled from G proteins, which enhances their affinity for agonists but prevents information transfer.  相似文献   

20.
Cultured rat glioma C6 cells exfoliate membrane vesicles which have been termed ‘exosomes’ into the culture medium. The exosomes contained both stimulatory and inhibitory GTP-binding components of adenylate cyclase (the stimulatory, Gs, and the inhibitory, Gi, regulatory components) and β-adrenergic receptors but were devoid of adenylate cyclase activity. It was therefore apparent that the catalytic component of adenylate cyclase was either not exfoliated or was inactivated during the exfoliation process. The presence of Gs or Gi in the exosomes was detected by ADP ribosylation using [α-32P]NAD in the presence of cholera or pertussis toxins, respectively. The exosomal concentration of each of the two components was estimated to be about one fifth of that of the cell membrane when expressed on a per mg protein basis. Exosomal Gs was almost as active as the membrane-derived Gs in its ability to reconstitute NaF- and guanine nucleotide-stimulated adenylate cyclase activity in membranes of S49 cyc cells, which lack a functional Gs. The ability of exosomal Gs to reconstitute isoproterenol-stimulated activity, however, was much lower than that of membrane Gs. The density of β-adrenergic receptors in the exosomes was much less than that found in the membranes. Although the exosomal receptors bound the antagonist iodocyanopindolol with the same affinity as receptors from the cell membrane, the affinity for the agonist isoproterenol was 13- to 18-fold lower in the exosomes. In addition, this affinity was not modulated by GTP in the exosomes. Thus, exfoliated β-adrenergic receptors seem to be impaired in their ability to couple to and activate Gs. This was directly tested by coupling the receptors to a foreign adenylate cyclase using membrane fusion. The fusates were then assayed for agonist-stimulated activity. While significant stimulation of the acceptor adenylate cyclase was obtained using C6 membrane receptors, the exosomal receptors were completely inactive. Thus during exfoliation, there appear to be changes in the components of the β-adrenergic-sensitive adenylate cyclase that results in a nonfunctional system in the exosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号