共查询到20条相似文献,搜索用时 15 毫秒
1.
To predict structural and energetic effects of point mutations on ligand binding is of considerable interest in biochemistry and pharmacology. This is not only useful in connection with site-directed mutagenesis experiments, but could also allow interpretation and prediction of individual responses to drug treatment. For G-protein coupled receptors systematic mutagenesis has provided the major part of functional data as structural information until recently has been very limited. For the pharmacologically important A2A adenosine receptor, extensive site-directed mutagenesis data on agonist and antagonist binding is available and crystal structures of both types of complexes have been determined. Here, we employ a computational strategy, based on molecular dynamics free energy simulations, to rationalize and interpret available alanine-scanning experiments for both agonist and antagonist binding to this receptor. These computer simulations show excellent agreement with the experimental data and, most importantly, reveal the molecular details behind the observed effects which are often not immediately evident from the crystal structures. The work further provides a distinct validation of the computational strategy used to assess effects of point-mutations on ligand binding. It also highlights the importance of considering not only protein-ligand interactions but also those mediated by solvent water molecules, in ligand design projects. 相似文献
2.
Gonzalo Allende Vicent Casadó Josefa Mallol Rafael Franco Carme Lluis Enric I. Canela 《Journal of neurochemistry》1993,60(4):1525-1533
Abstract: The influence of pH on the equilibrium dissociation constant and on kinetic association and dissociation constants was studied for adenosine receptor agonist L-N6-[adenine-2,8-3H, ethyl-2-3H]phenylisopropyladenosine ([3H]R-PIA) and antagonist 8-cyclopentyl-1,3-[3H]-dipropylxanthine ([3H]DPCPX). Two ionizable groups, of pK 7.0 and pK 7.4, are involved in the [3H]R-PIA associations with high- and low-affinity states of the receptor, and another group, of pK 6.0, is involved in the association with the low-affinity state. No ionizable group is involved in the dissociation process for the high-affinity state, whereas two ionizable groups, of pK 6.0 and 6.5, are involved in the low-affinity state. For [3H]DPCPX, three ionizable groups (pK 6.0, 7.4, and 8.0) are involved in the association process and only one group, (pK 6.0), is involved in the dissociation step. The apparent pK values obtained agree with histidine residues. We thus studied the effect of diethylpyrocarbonate (DEP), which reacts irreversibly with histidine residues, on agonist and antagonist binding to A1 adenosine receptors from pig brain cortical membranes. DEP treatment of membrane reduced the affinity (KD) and the total binding (R) of the agonist and the antagonist. Membrane preincubation with unlabeled ligand (R-PIA or DPCPX) prevented the effect of DEP modification observed when the same ligand, but with label, is added to the same membranes, but did not prevent the DEP modification on different, labeled ligand. The pattern of protective action of R-PIA, DPCPX, adenosine, and guanylylimidodiphosphate in DEP treatment and the displacement curves of radiolabeled agonist and antagonist by both unlabeled ligands indicated that the interaction site for agonist and antagonist binding is the same, although the complete mechanisms for recognition and binding differ. 相似文献
3.
4.
5.
6.
David R. Borcherding Nelsen L. Lentz Philip M. Weintraub Mark W. Dudley Roberta Secrest Philip R. Kastner 《Nucleosides, nucleotides & nucleic acids》2013,32(10):2175-2191
Abstract Three novel nucleosides 1, 2, and 3 were prepared that contained side chains at the 2-position of adenosine. Compound 1 was shown to be the most selective A2a receptor agonist reported to date having an A1/A2 ratio of 2400. In addition, compound 1 was shown to reduce blood pressure in rats and dogs with only minimal effects on heart rate. 相似文献
7.
Douglas D. Lopes Erick F. Poletti Renata F. F. Vieira Guita N. Jubilut Laerte Oliveira Antonio C. M. Paiva Shirley Schreier Clovis R. Nakaie 《International journal of peptide research and therapeutics》2008,14(2):121-126
Angiotensin II (Ang II) and its transmembrane AT1 receptor were selected in order to test an innovative strategy that might allow the assessment of the agonist binding site
in the receptor molecule. With the use of the 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) paramagnetic
probe, a biologically active agonist (TOAC1-Ang II), as well as an inactive control (TOAC4-Ang II) analogs were mixed in solution with various synthesized AT1 fragments. Comparative intermolecular interactions, as estimated by analyzing the EPR spectra of solutions, suggested the
existence of an agonist binding site containing a sequence composed of portions of the N-terminal (13-17) and the third extracellular
loop (266-278) fragments of the AT1 molecule. Therefore, this combined EPR-TOAC approach shows promise as an alternative for use also in other applications related
to specific intermolecular association processes.
In memoriam of Professor Paiva. 相似文献
8.
Abstract: The pH dependency of the binding of ligands to adenosine A2a receptors in rat striatal membranes was examined. For those agonists sensitive to adenosine deaminase a solubilised membrane preparation was used. A two- to fourfold increase in affinity was observed for CGS-21680, 5'- N -ethylcarboxamidoadenosine, adenosine, 3'-deoxyadenosine, 5'-deoxyadenosine, inosine, and N 6 -methoxypurine riboside on lowering the ambient pH from 7.0 to 5.5. In contrast, no such pH dependency was observed with 2'-deoxyadenosine, although 2'-methoxyadenosine binding was pH dependent. This effect on the affinity of CGS-21680 was reduced by diethylpyrocarbonate and restored by hydroxylamine and implied a pK value of 7.0 for the histidine residue involved. No such dependence was observed with cyclopentyltheophylline or dimethylpropargylxanthine. It is concluded that one of the histidines conserved in the adenosine receptor binding site acts as a hydrogen bond donor to the oxygen of the 2'-hydroxyl group of adenosine agonists. 相似文献
9.
Rikke Bergmann Kristine Kongsbak Pernille Louise S?rensen Tommy Sander Thomas Balle 《PloS one》2013,8(1)
We present a full-length α1β2γ2 GABA receptor model optimized for agonists and benzodiazepine (BZD) allosteric modulators. We propose binding hypotheses for the agonists GABA, muscimol and THIP and for the allosteric modulator diazepam (DZP). The receptor model is primarily based on the glutamate-gated chloride channel (GluCl) from C. elegans and includes additional structural information from the prokaryotic ligand-gated ion channel ELIC in a few regions. Available mutational data of the binding sites are well explained by the model and the proposed ligand binding poses. We suggest a GABA binding mode similar to the binding mode of glutamate in the GluCl X-ray structure. Key interactions are predicted with residues α1R66, β2T202, α1T129, β2E155, β2Y205 and the backbone of β2S156. Muscimol is predicted to bind similarly, however, with minor differences rationalized with quantum mechanical energy calculations. Muscimol key interactions are predicted to be α1R66, β2T202, α1T129, β2E155, β2Y205 and β2F200. Furthermore, we argue that a water molecule could mediate further interactions between muscimol and the backbone of β2S156 and β2Y157. DZP is predicted to bind with interactions comparable to those of the agonists in the orthosteric site. The carbonyl group of DZP is predicted to interact with two threonines α1T206 and γ2T142, similar to the acidic moiety of GABA. The chlorine atom of DZP is placed near the important α1H101 and the N-methyl group near α1Y159, α1T206, and α1Y209. We present a binding mode of DZP in which the pending phenyl moiety of DZP is buried in the binding pocket and thus shielded from solvent exposure. Our full length GABAA receptor is made available as Model S1. 相似文献
10.
Hang Xiao Hai-Ying Shen Wei Liu Ren-ping Xiong Ping Li Gang Meng Nan Yang Xing Chen Liang-Yi Si Yuan-Guo Zhou 《PloS one》2013,8(4)
Renal interstitial fibrosis (RIF) is the common pathological process of chronic kidney diseases leading inevitably to renal function deterioration. RIF and its preceding epithelial-mesenchymal transition (EMT) are commonly triggered by an early occurring renal inflammation. However, an effective approach to prevent EMT and RIF is still lacking and of urgent need. Recently, the adenosine A2A receptor (A2AR) emerges as a novel inflammation regulator, therefore manipulation of A2AR may suppress the EMT process and as such protect against RIF. To test this hypothesis we applied a unilateral ureteral obstruction (UUO) model of RIF on A2AR knockout mice and their wild-type littermates, combined with the intervention of a selective A2AR agonist, CGS 21680. On days 3, 7 and 14 post-UUO we evaluated the effects of A2AR manipulation on the molecular pathological progresses of RIF, including the cellular component of interstitial infiltration, expression of profibrotic factors, cellular biomarkers of EMT, and collagen deposition of extracellular matrix. Our data demonstrated that activation of A2AR significantly suppressed the deposition of collagen types I and III, reduced the infiltration of CD4+ T lymphocytes, and attenuated the expression of TGF-β1 and ROCK1, which in turn inhibited and postponed the EMT progress. Conversely, genetic inactivation of A2AR exacerbated the aforementioned pathological processes of UUO-induced RIF. Together, activation of A2AR effectively alleviated EMT and RIF in mice, suggesting A2AR as a potential therapeutic target for the treatment of RIF. 相似文献
11.
12.
13.
†Mikhail M. Soloviev ‡Ketevan Abutidze §Ian Mellor ¶Peter Streit †Eugene V. Grishin §Peter N. Usherwood Eric A. Barnard 《Journal of neurochemistry》1998,71(3):991-1001
Abstract: Two subunits from Xenopus , XenNR1G and the "short" subunit XenU1, have previously been coexpressed to form a unitary (NMDA/non-NMDA type) glutamate receptor. We now show that an antibody to XenNR1G or an antibody to XenU1 precipitates the binding sites of both XenNR1G and XenU1, with the recombinant subunits or with solubilised Xenopus brain membranes, i.e., the combination occurs in vivo. The expressed XenU1 subunits are in the cell membrane and oriented correctly. XenU1 binds not only kainate with high affinity ( K D 1.2 n M at 25°C), but also the glycine site antagonist 5,7-dichlorokynurenic acid (DCKA). DCKA, GTP, or GTPγS displaces competitively all of the bound [3 H]kainate, but glycine has no effect. The results suggest that a common binding site for kainate, DCKA, and GTP can exist on XenU1. In the XenNR1G/XenU1 complex, the kainate affinity is lowered eightfold, whereas the DCKA affinity is considerably increased ( K D 147 n M ). Only 18% of the binding to the complex has the properties of the NMDA receptor glycine site, the rest being due to switching of the high-affinity kainate site of XenU1 (low-affinity DCKA) to a high-affinity DCKA (low-affinity kainate) conformation. Surprisingly, a mammalian NR2 subunit can also combine with XenU1, and this introduces similar reciprocal changes in the binding of kainate and DCKA. The combined evidence suggests a common basic mode of agonist site formation in different subunit types of the ionotropic glutamate receptors. 相似文献
14.
15.
16.
The bindings of Mg2+ to the F1 portion of Escherichia coli H+-ATPase and its isolated alpha and beta subunits were studied with 8-anilinonaphthalene-1-sulfonate (ANS). The fluorescence of ANS increased upon addition of F1 or its alpha subunit or beta subunit, as reported previously (M. Hirano, K. Takeda, H. Kanazawa, and M. Futai (1984) Biochemistry 23, 1652-1656). The fluorescence of ANS bound to F1 or its beta subunit increased significantly with further addition of Mg2+, whereas that of the alpha subunit increased only slightly. Ca2+ and Mn2+ had similar effects on the fluorescence of ANS with F1 and its beta subunit. The Mg2+-induced fluorescence enhancement (delta F) was high at an alkaline pH and was lowered by addition of ethylenediaminetetraacetic acid. Dicyclohexylcarbodiimide and azide had no effect on the delta F. Binding analysis showed that the concentration dependence of Mg2+ on the fluorescence enhancement of the beta subunit is similar to that of F1. These results suggest that both the beta subunit and F1 have binding sites for Mg2+ and that the delta F observed with F1 may be due to the binding of Mg2+ to the beta subunit. 相似文献
17.
Microelectrophoretic studies of the binding of a number of commonly used hydrophobic amine drugs to liposomes demonstrated the existence of relatively large surface potentials associated with binding of the protonated forms of the drugs. A theoretical treatment based on Langmuir adsorption isotherms and the Gouy-Chapman theory of the diffuse double layer allows estimation of drug-binding constants from electrophoretic mobility data. Such constants allow calculation of the charge effects arising from drug binding in more complex membrane systems, and it is shown that shifts in the apparent Ca+ affinity of the (Ca2+ + Mg2+)-ATPase of sarcoplasmic reticulum in the presence of hydrophobic amine drugs are readily explicable in terms of the electrostatic effects of drug binding. 相似文献
18.
19.
蛋白激酶Cα相互作用蛋白1(PICK1) 是从线虫到人的所有生物中非常保守的一类存在于细胞质中的膜结合蛋白,在蛋白质转运,以及细胞内信号转导过程中发挥重要作用.通过基因重组技术获得PICK1及其截短的 N-PDZ(1~110 残基)和 BAR-C(128~416残基)重组蛋白,结合变性与非变性聚丙烯酰胺凝胶电泳,以及分子排阻层析,表明溶液中的PICK1主要以二聚体形式存在.利用荧光光谱分析PICK1与金属离子Ca2+和Mg2+的结合情况.结果表明,在0.02 mol/L Hepes, pH 7.2,随着2种金属离子的不断滴加,PICK1在338 nm 处的最大荧光强度逐渐降低,PICK1与Ca2+结合常数为Ka1=(2.34±0.20)×10.6 L/mol-1,Ka2=(7.75±0.62)×10.5 L/mol-1,而Mg2+结合常数为Ka=(5.00±0.40)×10.6 L/mol-1.另外,对PICK1的N端区域N-PDZ和C端区域BAR-C的重组片段与金属离子Ca2+和Mg2+结合情况进一步分析表明,Ca2+既能与PICK1的N 端N-PDZ结合,又可与C端BARC结合,而Mg2+只结合在PICK1的N-PDZ区域.比较Ca2+或Mg2+对PICK1结合脂质的影响,显示Ca2+能明显增强蛋白和脂质的结合. 相似文献
20.
The interaction of human visinin-like protein 1 (VILIP1) and visinin-like protein 3 (VILIP3) with divalent cations (Mg2+, Ca2+, Sr2+ and Ba2+) was explored using circular dichroism and fluorescence measurement. These results showed that the four cations each induced a different subtle change in the conformation of VILIPs. Moreover, VILIP1 and VILIP3 bound with Ca2+ or Mg2+ in a cooperative manner. Studies on the truncated mutants showed that the intact EF-3 and EF-4 were essential for the binding of VILIP1 with Ca2+ and Mg2+. Pull-down assay revealed that Ca2+ and Mg2+ enhanced the intermolecular interaction of VILIPs, and led to the formation of homo- and hetero-oligomer of VILIPs. Together with previous findings that Ca2+-dependent localization of VILIPs may be involved in the regulation of distinct cascades and deprivation of Ca2+-binding capacity of VILIPs did not completely eliminate their activity, it is likely to reflect that Mg2+-bound VILIPs may play a role in regulating the biological function of VILIPs in response to a concentration fluctuation of Ca2+ in cells. 相似文献