首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Several neuropeptides have been shown to regulate the function of cells involved in immune response and inflammation. Neurotensin is a 13 amino acid neuropeptide localized primarily to the nervous system and gut. Neurotensin also stimulates mast cell degranulation and enhances phagocytic and cytolytic capability of macrophages, suggesting that this peptide regulates inflammatory and immune responses. Fibroblasts play an important role in inflammation and tissue healing, and these processes may be regulated by several neuropeptides that have been shown to bind to fibroblasts. However neurotensin receptors have not been identified on fibroblasts. Human embryonic lung fibroblasts (HELF) were examined for binding and biological effects of neurotensin. 125I-neurotensin binding to adherent and confluent human embryonic lung fibroblasts (HELF), plated in 12mm diameter wells was specific and saturable. Computer-assisted resolution of the binding data demonstrated two classes of binding sites: a high affinity, low capacity site (Kd = 1.6×10?11 M, 19.5×107 sites/well), and a low- affinity, high-capacity site (Kd = 10?8 M, 4×109 sites/well). Neurotensin stimulated immediate, transient, dose-dependent increases of cytosolic calcium in HELF (threshold dose: 1011 M), suggesting release of calcium from intracellular stores. The novel finding of neurotensin receptors on fibroblasts provides further support for this neuropeptide's role as a regulator of inflammatory and immune responses.  相似文献   

2.
Iodination of [Trp11]neurotensin, a neurotensin analogue in which tyrosine 11 has been substituted by a tryptophan, led to the incorporation of one or two iodine atoms on the single tyrosine residue in position 3. Both mono- and diiodinated derivatives were purified by ion exchange chromatography and their biological activity in an in vitro bioassay involving rat ileum was found to be similar to that of native neurotensin. The 125I-labeled monoiodo derivative of [Trp11]neurotensin bound specifically and reversibly to rat brain synaptic membranes. The binding isotherm was biphasic and could be described by postulating the existence of two different classes of independent binding sites with dissociation constants of 0.1 and 4.7 nM. The specificity of a series of neurotensin analogues for both high and low affinity binding sites was the same as that previously observed in other neurotensin radioreceptor assays. The low affinity binding sites appeared to be similar to the single class of sites described in other binding studies. The high affinity binding sites which were not previously detected might represent either a new class of neurotensin receptors or a high affinity state for a fraction of a single population of neurotensin receptors.  相似文献   

3.
Abstract

The cells of the human IM-9 lymphocyte-derived line contain a sub-population of insulin binding sites which differ from classical insulin binding sites in their higher binding affinity for insulin-like growth factor II (IGF-II) and insulin-like growth factor I (IGF-I). These atypical insulin binding sites are identified on IM-9 cells by [125I]IGF-II binding.

To determine whether the atypical and classical insulin receptors of IM-9 cells were subject to different modes of in vivo regulation, we treated IM-9 cells with agents known to alter the surface expression of insulin receptors - insulin, dexamethasone and monensin. We then measured insulin and IGF-II binding to the surface of the washed cells.

Pretreatment of IM-9 cells with 1 μM insulin for 20 h at 37°C induced a 44–48% decrease in the number of high affinity insulin binding sites, but no change in the number of IGF-II binding sites. In contrast, the surface expression of both insulin and IGF-II binding sites (classical and atypical insulin receptors) increased 1.3 to 1.7-fold after treatment with dexamethasone (200 nM) and decreased 30 to 45% after monensin (1 μM). These results suggest that atypical and classical insulin receptors are differentially susceptible to down-regulation by insulin.  相似文献   

4.

Background

Purification of recombinant membrane receptors is commonly achieved by use of an affinity tag followed by an additional chromatography step if required. This second step may exploit specific receptor properties such as ligand binding. However, the effects of multiple purification steps on protein yield and integrity are often poorly documented. We have previously reported a robust two-step purification procedure for the recombinant rat neurotensin receptor NTS1 to give milligram quantities of functional receptor protein. First, histidine-tagged receptors are enriched by immobilized metal affinity chromatography using Ni-NTA resin. Second, remaining contaminants in the Ni-NTA column eluate are removed by use of a subsequent neurotensin column yielding pure NTS1. Whilst the neurotensin column eluate contained functional receptor protein, we observed in the neurotensin column flow-through misfolded NTS1.

Methods and Findings

To investigate the origin of the misfolded receptors, we estimated the amount of functional and misfolded NTS1 at each purification step by radio-ligand binding, densitometry of Coomassie stained SDS-gels, and protein content determination. First, we observed that correctly folded NTS1 suffers damage by exposure to detergent and various buffer compositions as seen by the loss of [3H]neurotensin binding over time. Second, exposure to the neurotensin affinity resin generated additional misfolded receptor protein.

Conclusion

Our data point towards two ways by which misfolded NTS1 may be generated: Damage by exposure to buffer components and by close contact of the receptor to the neurotensin affinity resin. Because NTS1 in detergent solution is stabilized by neurotensin, we speculate that the occurrence of aggregated receptor after contact with the neurotensin resin is the consequence of perturbations in the detergent belt surrounding the NTS1 transmembrane core. Both effects reduce the yield of functional receptor protein.  相似文献   

5.
Abstract: Transfected Chinese hamster ovary cells were used as a model for the study of the desensitization of the neurotensin receptor at the second messenger level. Stimulation with nanomolar concentrations of neurotensin elicited rapid rises in the cytosolic calcium concentration ([Ca2+]i), which remained elevated throughout the peptide application. A significant response was already detected with neurotensin concentrations as low as 0.01 nM. This high efficiency of neurotensin in mediating this calcium response contrasts with the nanomolar affinity of the peptide for its receptor measured in binding experiments. Evidence indicated that the initial elevation of the [Ca2+]i resulted from release of Ca2+ from intracellular stores, whereas the sustained response involved an influx of extracellular origin. Return to the basal level was only reached after extensive washing of the peptide or its displacement with the neurotensin receptor antagonist SR48692. After washing, further stimulations were still able to mediate an increase in the [Ca2+]i, indicating an apparent absence of rapid desensitization of the intracellular signaling pathway that mediates calcium mobilization. In contrast with this absence of response desensitization, the neurotensin receptors were found to internalize after stimulation with the peptide. This internalization was maximal after 30 min and accounted for ~70% of the number of neurotensin binding sites located at the cell surface. These results indicate that despite the functional properties of the rat neurotensin receptor present in Chinese hamster ovary cells after transfection, the intracellular signaling pathway triggered by stimulation with neurotensin seems to be resistant to desensitization. This might be related to the high efficiency of the intracellular signaling pathway coupled to the neurotensin receptor observed in these cells. A possible absence of desensitization of the neurotensin receptor itself is also discussed.  相似文献   

6.
S Ahmad  E E Daniel 《Peptides》1991,12(3):623-629
We have previously characterized the neurotensin receptors on the circular smooth muscle (CM) of the canine small intestine (1). In the present studies, using radioligand binding technique, neurotensin receptors were localized on the membranes from deep muscular (DMP) and the submucous plexus while no binding was observed on either the longitudinal smooth muscle or myenteric plexus membranes. The high affinity binding sites (Kd 0.1-0.2 nM) on DMP membranes were similar to those on CM; the low affinity component was of much lower affinity (Kd approximately 40 nM). DMP had 4-6 times higher density of binding sites than the CM. The recognition properties of DMP receptors were similar to those on the CM and reduced sulfhydryl groups were required for the binding activity. The action of neurotensin on the contractility of the canine small intestine, therefore, appears to be through a direct action on the circular smooth muscle and through the prejunctional action on the DMP neurons through distinct receptors. Thiol groups in the neurotensin receptors may be important for the receptor function.  相似文献   

7.
Neurotensin receptors were solubilized from mouse brain using the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS). The binding of 125I-labeled [Tyr3]neurotensin to the soluble fraction was time-dependent, saturable, and reversible. Unlabeled neurotensin and its analogues acetylneurotensin (8-13), neurotensin (9-13), and neurotensin (1-12) competitively antagonized the binding of 125I-labeled [Tyr3]neurotensin to CHAPS-solubilized extracts with relative potencies similar to those observed with membrane-bound receptors. Scatchard analysis of equilibrium binding data indicated that the soluble extract contained a single class of neurotensin binding sites with a Kd of 0.36 nM and a Bm of 63 fmol/mg. As already observed with membrane-bound receptors, the affinity of neurotensin for the soluble binding activity was decreased by Na+ ions. By contrast, soluble receptors were no longer sensitive to GTP and the antihistamine drug levocabastine. A molecular weight of about 100,000 was determined for soluble neurotensin receptors both under native conditions by gel filtration on Ultrogel AcA 34 and under denaturating conditions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis after photoaffinity labeling.  相似文献   

8.
The effect of neurotensin on binding characteristics of dopamine D1 receptors was examined in the rat striatal membranes through radioreceptor assay. Neurotensin or its analogs were added to incubation medium of[3H]SCH 23390 saturation or dopamine/[3H]SCH 23390 inhibition experimental systems. Neurotensin did not modulate D1 antagonist binding but converted a part of D1 agonist high affinity binding sites to a low affinity state. Neurotensin8–13 had the same potency as neurotensin itself, whereas neurotensin1–8 had only weak activity in modulating D1 agonist binding. GTP and neurotensin had the same effect on D1 agonist binding. However, when both neurotensin and GTP were added, the result was the same as with either alone.

These data suggest that neurotensin modulates the functional state of D1 receptors probably via a GTP binding protein in the rat striatum.  相似文献   


9.
The binding and biological activities of neurotensin and two analogues, [Trp11]-neurotensin and xenopsin, in which a tryptophan replaces the neurotensin residue Tyr11, were compared in rat and guinea-pig. The binding activity of the three peptides was measured as their ability to inhibit the binding of [3H]neurotensin to rat and guinea-pig brain synaptic membranes. Their biological activities were measured as their effects on the contractility of rat and guinea-pig ileal smooth muscle preparations. In binding as well as biological assays, it was found that [Trp11]-neurotensin and xenopsin were as potent as neurotensin in the rat. In contrast, the two analogues were about 10 times less potent than neurotensin in the guinea-pig. These findings reveal differences between rat and guinea-pig neurotensin receptors. Such species-related differences in neurotensin receptors should be considered when comparing the activity of neurotensin analogues in assays using tissue preparations from various animal species.  相似文献   

10.
Abstract

The binding of the antagonist IBE 2254 (IBE) to α -adrenergic receptors was characterized on intact DDT smooth muscle cells. IBE binding was rapid, reversible, stable and saturable: Bmax = 113000±13000 recetors/cell, K = 110±13 pM (n = 25). Saturation and competition experiments analysed by non linear curve fitting indicated a single population of binding sites with a pharmacological profile typical for α-adrenergic receptors. Antagonists competed for IBE binding sites in the following order: prazosin > phentolamine = phenoxybenzamine > yohimbine. The rank order for agonists was clonidine > epinephrine > norepinephrine > phenylephrine. There was a significant correlation between IBE binding to intact cells, DDT1 membranes and rat cortex membranes. Neither agonists nor antagonists showed noticeable changes in their affinity for IBE binding on either system. There was also a good correlation between IBE binding and breakdown of phosphoinositides (PI) measured in intact cells.  相似文献   

11.
A multivalent ligand system was constructed by coimmobilization of two kinds of peptide ligands, enkephalin and neurotensin derivatives having a dioctadecyl group, on dimyristoylphosphatidylcholine (DMPC) liposomes. The enkephalin derivatives are Tyr-D -Ala-Gly-Trp-Leu- (Sar-Sar-Pro)n-[N(C18H37)2] (Enk3nD, n=0, 1, 2), where a dioctadecyl group was connected to the C-terminal side of enkephalin directly or through a hydrophilic and flexible spacer chain of different lengths. The neurotensin derivatives are Ac-Glu[N(C18H37)2]-(Sar-Sar-Pro)n-Arg-Arg-Pro-Tyr-Ile-Leu-OH (D3nNT, n=0, 1, 2, 3). The derivatives were spontaneously immobilized on DMPC liposomes by overnight incubation. The receptor affinity of the enkephalin derivatives became significantly higher upon immobilization on liposomes. The highest affinity was obtained for the δ receptor by Enk6D immobilized on DMPC liposomes. This affinity is higher than that of enkephalinamide. Neurotensin derivatives coimmobilized with large amounts of Enk3D on DMPC liposomes show higher affinity than the neurotensin derivatives immobilized alone. The effect of Enk3D on the receptor affinity of the coimmobilized neurotensin derivative disappeared by the addition of [Ala2, MePhe4, Gly-ol5]enkephalin (DAGO). Therefore, the receptor affinity of a peptide hormone is altered by immobilization on DMPC liposomes and by coimmobilization with other peptide hormones. It was confirmed by fluorescent microscopy that the multivalent ligand system binds to receptors without release of the bound ligands from DMPC liposomes.  相似文献   

12.
Evidences indicate the relationship between neurotensinergic and dopaminergic systems. Neurotensin inhibits synaptosomal membrane Na+, K+-ATPase activity, an effect blocked by SR 48692, antagonist for high affinity neurotensin receptor (NTS1) type. Assays of high affinity [3H]-ouabain binding (to analyze K+ site of Na+, K+-ATPase) show that in vitro addition of neurotensin decreases binding. Herein potential interaction between NTS1 receptor, dopaminergic D2 receptor and Na+, K+-ATPase was studied. To test the involvement of dopaminergic D2 receptors in [3H]-ouabain binding inhibition by neurotensin, Wistar rats were administered i.p.with antipsychotic drugs haloperidol (2 mg/kg) and clozapine (3, 10 and 30 mg/kg). Animals were sacrificed 18 h later, cerebral cortices harvested, membrane fractions prepared and high affinity [3H]-ouabain binding assayed in the absence or presence of neurotensin at a 10 micromolar concentration. No differences versus controls for basal binding or for binding inhibition by neurotensin were recorded, except after 10 mg/kg clozapine. Rats were administered with neurotensin (3, 10 y 30 μg, i.c.v.) and 60 min later, animals were sacrificed, cerebral cortices harvested and processed to obtain membrane fractions for high affinity [3H]-ouabain binding assays. Results showed a slight but statistically significant decrease in binding with the 30 μg neurotensin dose. To analyze the interaction between dopaminergic D2 and NTS1 receptors, [3H]-neurotensin binding to cortical membranes from rats injected with haloperidol (2 mg/kg, i.p.) or clozapine (10 mg/kg) was assayed. Saturation curves and Scatchard transformation showed that the only statistically significant change occurred in Bmax after haloperidol administration. Hill number was close to the unit in all cases. Results indicated that typical and atypical antipsychotic drugs differentially modulate the interaction between neurotensin and Na+, K+-ATPase. At the same time, support the notion of an interaction among dopaminergic and neurotensinergic systems and Na+, K+-ATPase at central synapses.  相似文献   

13.
Abstract

Mononuclear leucocytes (MNL) were isolated from blood of 11 healthy blood donors. Lymphocyte subsets were sorted in a Cytofluorograf after direct (B cells) or indirect immunofluorescence labeling with monoclonal antibodies directed against the phenotypes of T -, T helper (Th) - and T suppressor (Ts) cells. The sorted cells were incubated with (±)125iodocyanopindolol ([125I]CYP) for the determination of beta-adrenergic receptors. Beta-adrenergic receptors on B cells were increased two-fold (3700 sites/cell, p<0.004) and had a lower affinity (dissociation constant KD 40pM, p<0.03) when compared with T cells (1400 sites/cell, KD 17pM). Receptors on Th- and Ts cells showed a similar binding capacity, but Ts cells had a slightly higher [125I]CYP binding affinity (KD 13 pM) than Th cells (KD 27 pM, p<0.02). The different densities and affinities of beta-adrenergic receptors in human lymphocyte subsets, as assessed by antagonist binding should be considered in the interpretation of receptor alterations of unfractionated MNL, which may occur simultaneously to changes of the blood leucocyte distribution.  相似文献   

14.
It has previously been shown that neurotensin binds to high-affinity receptors in the adenocarcinoma HT29 cell line, and that receptor occupancy leads to inositol phosphate formation. The present study was designed to investigate further the effects of neurotensin on calcium mobilization and protein kinase C (PKC) activation in HT29 cells, and to assess the role of GTP-binding proteins (G-proteins) in the neurotensin response. Direct measurements of cytosolic Ca2+ variations using the fluorescent indicator quin 2 showed that neurotensin (0.1-1 microM) elicited Ca2+ transients in HT29 cells. These transients occurred after the neurotensin-stimulated formation of Ins(1,4,5)P3, as measured by means of a specific radioreceptor assay. In addition, the peptide induced a decrease in the 45Ca2+ content of cells previously equilibrated with this isotope. The peptide effect was rapid, long-lasting and concentration-dependent, with an EC50 of 2 nM. Phorbol 12-myristate 13-acetate (PMA) inhibited by 50% the neurotensin effects on both intracellular Ca2+ and inositol phosphate levels. The inhibition by PMA was abolished in PKC-depleted cells. Pertussis toxin had no effect on either the Ca2+ or inositol phosphate responses to neurotensin. Epidermal growth factor (EGF) receptors which are present in HT29 cells have been shown to be down-regulated through phosphorylation by PKC in a variety of systems. Here, PMA markedly (70-80%) inhibited EGF binding to HT29 cells. Scatchard analysis revealed that PMA abolished the high-affinity component of EGF binding, an effect that was totally reversed in PKC-depleted cells. In contrast, neurotensin slightly (10-20%) inhibited EGF binding to HT29 cells, and its effect was only partly reversed by PKC depletion. Neurotensin had no detectable effect on sn-1,2-diacylglycerol levels in HT29 cells, as measured by a specific and sensitive enzymic assay. In membranes prepared from HT29 cells, monoiodo[125I-Tyr3]neurotensin bound to a single population of receptors with a dissociation constant of 0.27 nM. Sodium and GTP inhibited neurotensin binding in a concentration-dependent manner. Maximal inhibition reached 80% with Na+ and 35% with GTP.IC50 values were 20 mM and 0.2 microM for Na+ and GTP respectively. Li+ and K+ were less effective than Na+ and the effects of GTP were shared by GDP and guanosine-5'-[beta gamma- imido]triphosphate but not by ATP. Scatchard analysis of binding data indicated that Na+ and GTP converted the high-affinity neurotensin-binding sites into lower affinity binding sites. The properties of the effects of Na+ and GTP on neurotensin-receptor interactions are characteristic of those receptors which interact with G-proteins.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Abstract

Specific binding sites for somatostatin have been detected in cytosolic fraction of bovine cystic duct mucosa. At 37°C, the interaction of 125I-Tyr11-somatostatin with cytosolic fraction was rapid, reversible, specific and saturable. At equilibrium, the binding of tracer was competitively inhibited by native peptide in the 1 nM to 2 µ M range of concentrations. Scatchard analysis of binding data suggested the presence of two distinct classes of somatostatin binding sites: a class with a high affinity (Kd = 7.8 ± 0.3 nM) and a low capacity (1.3 ± 0.3 pmol somatostatin/mg protein) and a class with a low affinity (Kd = 129.1 ± 2.0 nM) and a high capacity (43.5 ± 6.7 pmol somatostatin/mg protein). The binding sites were shown to be highly specific for somatostatin since neuropeptides present in cystic duct such as Leu-enkephalin, neurotensin, substance P and vasoactive intestinal peptide did practically not show competition. These findings suggest that somatostatin could contribute to the regulation of the functions of the cystic duct mucosa in physiological and pathological conditions.  相似文献   

16.
17.
Abstract

Amiloride and its analogues displace the adenosine A, receptor ligands [3H]CPDPX and [3H]PIA from their binding sites in calf brain membranes in a GTP-insensitive manner. High [NaCl] or low pH reduces the affinity of amiloride for A, receptors, whereas the affinity of [3H]CPDPX is not affected. Notwithstanding this difference in modulation, the interaction between amiloride and A, receptors appears competitive in nature. The structure-affinity relationships differ from those for classic amiloride-sensitive Na' transport systems, indicating that a coupling between the A, receptor and one of these systems is very unlikely. Amiloride and its analogues may reprcsent a novel class of A, receptor antagonists.  相似文献   

18.
Abstract

We have studied the binding of [3H]-NPY and the newly developed non-peptide Y1 receptor antagonist [3H]-BIBP3226 to intact SK-N-MC cells and CHO-K1 cells transfected with the human NPY Y1 receptor gene i.e. CHO-Y1 cells. Whereas the association and dissociation of the specific [3H]-NPY binding was slow, the binding kinetics of [3H]-BIBP3226 binding was very rapid. Saturation binding of both radioligands reveal the presence of an apparently homogeneous population of high affinity binding sites in both cell lines. The corresponding equilibrium dissociation constants are similar for the two cell lines and are close to those obtained from previous competition binding experiments. The specific binding of both radioligands was completely and with high affinity displaced by BIBP3226 and its inactive (S)-enantiomer BIBP3435 was much less potent. Whilst the NPY Y1 agonists NPY, PYY and [Leu31-Pro34]-NPY completely and potently displaced [3H]-NPY binding, they could only displace 70 to 80 % of the [3H]-BIBP3226 binding sites in CHO-Y1 and SK-N-MC cells. A possible explanation can be that only part of the receptors are G-protein coupled. In agreement pertussis toxin was found to reduce high affinity [3H]-NPY binding sites in CHO-Y1 cells whereas [3H]-BIBP3226 binding parameters remained unchanged.  相似文献   

19.
Abstract

Insulin and IGF-I affect in vitro ovarian stromal and follicular cell function in several species. We previously characterized insulin receptors on human granulosa cells obtained from in vitro fertilization procedures but were unable to demonstrate specific binding of IGF-I.

Following modification of the assay conditions, we now report specific, high affinity IGF-1 binding sites on human granulosa cells. Substitution of equimolar concentrations of sucrose for sodium chloride in the buffer solution increased binding of IGF but not insulin in equilibrium assays. Maximal specific IGF-I binding was 2.69 ± 0.30%/105 cells (SEM, n=9) with half-maximal inhibition of binding at 2 ng/ml IGF-I. Unlabeled insulin recognized the type I IGF receptor with low affinity. An IGF-I receptor monoclonal antibody (αIR-3) inhibited 125I-IGF-I but not 125I-insulin binding. Affinity crosslinking followed by SDS/PAGE under reducing conditions revealed IGF-I binding at a molecular weight compatible with the αsubunit of the type I IGF receptor and with a pattern of inhibition by various ligands that paralleled the equilibrium binding assays.

IGF-I receptors are present on freshly isolated human ovarian granulosa cells obtained following pharmacologic stimulation with gonadotrophin according to the protocols of in vitro fertilization. The biologic function of these receptors currently is being investigated.  相似文献   

20.
Abstract

Glucocorticoid receptors in murine erythroleukaemic cells were studied in relation to hexamethylene bisacetamide (HMBA) induced differentiation. Specific binding of dexamethasone was measured. A single class of saturable, high affinity binding sites was demonstrated in intact cells; with cell homogenates or fractions binding was low and could not be reliably quantified. Receptor binding in whole cell suspensions was lower in cells which had been treated with HMBA (36.5 +- 8.2 pmol/g protein) than in untreated controls (87.9 +- 23.6 pmol/g protein); dissociation constants were similar in treated (2.7 nM) and untreated cells (2.5 nM). Dexamethasone, hydrocortisone, corticosterone and progesterone competed with tritium-labelled dexamethasone for receptor binding sites; cortisone, deoxycorticosterone and oestradiol had little effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号