首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Analgesia, opiate receptor binding, and neurochemical effects of kyotorphin (tyrosine-arginine) were studied in the rat. It was found that while kyotorphin, in vivo, causes naloxone reversible analgesia, and affects dopamine metabolism and acetylcholine turnover in the same manner as do morphine and other opiate agents, the dipeptide does not bind to mu, delta or kappa opiate receptors in vitro. Taken together, these data support the concept that there is an indirect action of kyotorphin on opiate receptors.  相似文献   

2.
The pentapeptide leucine enkephalin induced down-regulation of enkephalin receptors in neuroblastoma-glioma NG108-15 hybrid cells in a reversible fashion, whereas the stable enkephalin analogue, d-Ala2-Met-enkephalinamide (AMEA), and the potent opiate alkaloid, etorphine, had a prolonged effect. The opiate alkaloid, morphine, which has low affinity to δ-type enkephalin receptors of these cells did not induce down-regulation, whereas AMEA decreased the binding of both opiate agonists and antagonists but had no effect on the binding of the α2-adrenergic ligand, [3H]yohimbine. From several experiments that were designed to remove the tightly bound AMEA, and from experiments with solubilized receptor we ruled out the possibility that the decreased binding capacity of enkephalin-treated cells reflects only receptor masking. The study suggests that down-regulation of enkephalin receptors that may also occur in vivo can account for some of the abnormal physiological responses of subjects treated chromically with opiates. However, since opiates from the morphine type can induce opiate tolerance in vivo, but not down-regulation of enkephalin receptors in the cultured cells, we suggest that down-regulation of δ-type opiate receptors may not be prerequisite for the development of the physiological tolerance/dependence on these alkaloids.  相似文献   

3.
We have developed a radioreceptor assay for opiates based on the ability of the plasma and CSF content of these drugs to compete for the binding of 3H-buprenorphine to opiate receptors in rat forebrain membranes. Since plasma proteins significantly inhibit total 3H-buprenorphine binding, and sodium ions reduce the affinity of opiate agonists for the receptor, it was necessary to extract opiates into an organic solvent (ether). The radioreceptor assay is particularly sensitive to buprenorphine and morphine, detecting these compounds at low picogram levels. The assay is simple to perform since 50 samples can be processed in a day, and is specific in that other drugs employed during anaesthesia such as benzodiazepines do not compete with 3H-buprenorphine for the opiate receptor. The extraction and binding techniques described should be applicable to other 3H-ligands which have high affinity for opiate receptors.  相似文献   

4.
Context: Ginsenoside Rb1 improves insulin sensitivity and glucose uptake in muscle cells via different signaling pathways; however, it is not clear that it has any effect on leptin signaling in skeletal muscle.

Objectives: The aim of this study was to investigate the effect of ginsenoside Rb1 on leptin receptors expression and main signaling pathways of leptin (STAT3, PI3 kinase and ERK kinase) in C2C12 skeletal muscle cells.

Materials and methods: C2C12 myotubes were incubated with various concentrations of Rb1 (0.1, 1 and 10?μM) for different incubation times (1–12?h). Leptin receptors expression and GLUT-4 translocation were analyzed using realtime PCR and western blot analyses, respectively. PI3 and ERK kinases were blocked using their specific inhibitors (wortmannin and PD98059) in the presence and absence of RB1 to determine the main signaling pathway related to leptin receptor activation in C2C12 cells.

Results: Rb1 could maximally stimulate both leptin receptors (OBRa and OBRb) mRNA and protein expression and phosphorylation of STAT3, PI3K and ERK2 in C2C12 myotubes at 10?μM for 3?h. Rb1 induced GLUT4 translocation was inhibited by the silencing of OBRb mRNA, demonstrated that glucose uptake was mediated via leptin receptor activation. GLUT4 recruitment to the cell surface induced by Rb1 was inhibited by wortmannin, an inhibitor of PI3K in combination with OBRb siRNA, but not by PD98059 an ERK2 kinase-1 inhibitor, indicating that GLUT4 translocation induced by Rb1 was associated with the leptin receptor upregulation and subsequent activation of PI3K.

Conclusions: Our results suggest that Rb1 promote translocation of GLUT4 by upregulation of leptin receptors and activation of PI3K.  相似文献   

5.
Certain endogenous opioid peptides, which structurally resemble potential enkephalin precursors (pro-enkephalins), were tested for their interaction with μ-, δ- and κ-type of opiate receptors. These studies employed the technique of the development of tolerance towards selective opioid agonists on the isolated guinea-pig ileum and mouse vas deferens preparations. Additionally, binding studies in rat brain homogenate were performed to determine the affinity of these compounds towards different receptor sites in the CNS. These investigations revealed that dynorphin1–13 and α-neo-endorphin1–8 may preferentially interact with the κ-type of opiate receptors, dynorphin1–9 exhibits both δ- and κ-agonistic activity and met-enkephalin-Arg6-Phe7 is a ligand with selectivity for δ-receptors.  相似文献   

6.
Abstract

[3H]-(?)-bremazocine was displaced from guinea-pig brain membrane homogenates by three compounds having different specificity to opiate receptor subpopulations. A three site receptor model showed the best fit of the calculated to the measured value for the opiate mu (DAla2, MePhe4, Gly(ol)5-enkephalin) and the delta specific compound (DAla2, DLeu5-enkephalin). Computer modelling of data from displacement curves with the opiate kappa specific compound U-50.488H favored a two site receptor model.  相似文献   

7.
Using [3H]naloxone at a concentration of 4.5 nm , the potent opiate agonist etorphine as well as the potent antagonist diprenorphine displace only about 75% of specific naloxone binding P2 fractions from rat whole forebrain, without additive effect. Several other opiates and antagonists completely displace specific naloxone binding. This indicates that etorphine and diprenorphine specifically bind to one and the same naloxone binding site (type I) while leaving another naloxone binding site (type II) unaffected. Type I binding sites are much more thermo-labile than type II. [3H]Naloxone binding to type I sites is unaffected by incubation temperature in the range 10 to 25°C. while binding type II sites decreases rapidly with increasing incubation temperature, no specific type II binding being detectable at or above 20°C. The two naloxone receptor types also differ with respect to pH dependence, and affinity for naloxone with types I and II having affinity constants (Kd) of 2 and 16 nm , respectively, at 0°C. The two binding sites have different regional distributions with high relative levels of type II receptors in cerebellum and low relative levels in pons-medulla and striatum. In whole rat brain there are about 4 times as many type II receptors as type I. These results suggest that naloxone and several other opiate agonists and antagonists bind to two distinct receptor types which are probably not agonist/antagonist aspects of the same receptor.  相似文献   

8.
Cationic local anesthetics inhibit competitively the stereospecific binding of naltrexone and etorphine on the mouse brain opiate receptor. In contrast, the inhibition produced by benzocaine, a non-cationic local anesthetic, is non-competitive. It is suggested that the cationic group of local anesthetics interacts with a specific anionic binding site on the opiate receptor and that there are certain structural similarities between the receptors for both types of drugs. It is evident from these studies that several drugs can unspecifically modify the pharmacologic effects of opiates and that they could be useful tools to further characterize the opiate receptor.  相似文献   

9.
The effects of prolyl-leucyl-glycinamide and cyclo (leucyl-glycine) on morphine-induced antinociception in mice and on in vitro binding of 3H-ligands for opiate receptor subtypes (μ, δ and κ) the mouse brain homogenate were determined. Subcutaneous administration of either of the above peptides (1, 2, and 4 mg/kg) 10 min prior to the injection of morphine did not affect morphine-induced antinociception as evidenced by the identical ED50 values of morphine in vehicle and peptide treated groups. The binding of 3H-dihydromorphine and 3H-naloxone ( μ receptors), 3HDAla2DLeu5-enkephalin (δ receptors), and 3H-ethylketocyclazocine (κ receptors) to opiate receptors in the mouse brain homogenate was also unaffected by both the peptides over a large concentration range. It is concluded that these peptides do not interact with brain opiate receptors.  相似文献   

10.
V Olgiati  R Quirion  W D Bowen  C B Pert 《Life sciences》1982,31(16-17):1675-1678
Recent evidence suggests that the Type 1 opiate receptor (in rat striatal patches) is a mobile receptor which is able to adopt a mu, delta, or kappa opiate receptor ligand selectivity pattern under appropriate conditions. In this paper, we have investigated such a possibility for Type 2 opiate receptors which are visualized diffusely over rat striatum. Ligand selectivity analysis suggested that the Type 2 opiate binding site is equivalent to a delta opiate receptor. The auto-radiographic distribution of Type 2 opiate binding sites is diffuse over most areas of rat brain. Thus, Type 2 opiate binding sites are different from Type 1 opiate receptors which are very discretely distributed in rat brain. Our results suggest that Type 2 opiate receptors, unlike Type 1 opiate receptors, are receptors locked in a delta-like ligand selectivity conformation.  相似文献   

11.
The mouse vas deferens has served as a useful bioassay for examining the properties of opiate receptor subtypes. However, recent data indicate that the response of the vas deferens to opiates may be mediated by one or more of the several opiate receptors found in this preparation. Although a number of techniques can be utilized to assess the relative contribution of these receptors to the response of the mouse vas deferens to opiates (e.g., selective tolerance and naloxone antagonism studies), a radiolabeled-binding technique would provide an independent means of more completely characterizing the opiate receptor profiles in this preparation. Up to the present, however, there has been only limited success in developing a binding assay utilizing crude membrane fractions of the mouse vas deferens. To circumvent these problems, we have developed a binding technique utilizing the intact vas deferens. In contrast to results obtained with membrane fractions, we found highly specific (90–95%) and saturable binding of d-[2-3H]alanine, 5-d-leucine enkephalin, a ligand selective for delta opiate receptors, to the intact vas. Scatchard analyses indicated a single class of binding sites with an apparent Kd of 1.5 nm and a Bmax of approximately 12 pmol/2 vas. The selectivity of binding was also examined. Naltrexone was 40 times less potent than unlabeled 2-d-alanine, 5-d-leucine enkephalin in displacing binding, whereas morphine and ethylketocyclazocine were 300 and 500 times less effective, respectively. This technique, coupled with the mouse vas deferens bioassay, should provide a more complete characterization of opioid receptor populations than has heretofore been possible.  相似文献   

12.
The concentration of opiate receptors in the brains of mice was determined by means of a naloxone-binding assay. The strains of mice used in these experiments were C57BL/6By, BALB/cBy, their reciprocal F1 hybrids, and 7 recombinant-inbred strains derived by inbreeding from the F2 generation. These strains could be divided into 3 groups on the basis of the number of opiate receptors: high (CXBH); low (CXBK); and intermediate (all the other strains). The difference in stereospecific binding of naloxone reflects a difference in the total number of receptor sites rather than in the affinity for the drug. The recombinantinbred strains also differ in their analgesic response to morphine, as previously determined by the tail-flick assay. The differences in the number of opiate receptors are not enough to account for the genetic difference in analgesic responsiveness. Both these parameters appear to be under different genetic control, and at least 2 genetic determinants may be involved in regulating the level of opiate receptors.  相似文献   

13.
The influence of polycomponent solutions of agonists of opiate mu-, delta, chi- and sigma-receptors (morphine, D-Ala2, D- Ley5 -enkephalin, bremazocine, SKF 10,047) and of met-enkephalin on the habituation of orthodromic evoked potential in the visual cortical area was studied in turtles. Interaction between the different types of opiate receptors was observed at their combined activation. The interaction resulted in an enhancement or attenuation of modulation of separate phases of evoked potential habituation which differed from simple sum of effects during isolated activation of each type of receptors.  相似文献   

14.
Abstract

Mutations of G protein-coupled receptors can increase their constitutive (agonist-independent) activity. Some of these mutations have been artificially introduced by site-directed mutagenesis, others occur spontaneously in human diseases. The analysis of the constitutively active G protein-coupled receptors has provided important informations about the molecular mechanisms underlying receptor activation and drug action.  相似文献   

15.
Opioid peptides and opiate drugs such as morphine, mediate their analgesic effects, but also undesired side effects, mostly through activation of the mu opioid receptor. However, delta- and kappa-opioid receptors can also contribute to the analgesic effects of opioids. Recent findings showed that simultaneous activation of multiple opioid receptors may result in additional analgesia with fewer side effects. Here, we evaluated the pharmacological profile of our formerly developed mixed mu/kappa-opioid receptor ligands, Dmt-c[D-Lys-Phe-Phe-Asp]NH2 (C-36) and Dmt-c[D-Lys-Phe-p-CF3-Phe-Asp]NH2 (F-81). The ability of these peptides to cross the blood–brain barrier was tested in the parallel artificial membrane permeability (PAMPA) assay. On the basis of the hot-plate test in mice after central and peripheral administration, analog F-81 was selected for the anti-nociceptive and anti-inflammatory activity assessment after peripheral administration.  相似文献   

16.
Opiate-sensitive feeding behavior has now been demonstrated in a number of species. We sought information on which opioid receptors might be involved in the observed feeding behaviors. Guinea pigs are known to have higher concentrations of the opioid kappa receptor than any other laboratory animal, so we compared the feeding suppressive potency of the general opiate antagonist, diprenorphine to that of the relatively more mu-specific antagonist, naloxone in that species. We found that diprenorphine was over twenty times more effective than naloxone in suppressing feeding in guinea pigs, suggesting the importance of receptors other than mu in feeding initiation in the guinea pig. Confirmatory evidence for the role of kappa receptors was sought, but not found, in comparisons of the effectiveness of different types of opiate agonists in promoting feeding in these animals. These agonists suppressed, rather than stimulated feeding. We conclude that no feeding stimulatory effects of opiates can be demonstrated in guinea pigs. This observation may indicate that opioids play little role in the natural regulation of feeding in this species or that opioids result in prolonged sedation during which the animals fail to eat. The greater feeding suppressive potency of diprenorphine, a general opiate antagonist, versus naloxone, a mu-preferential antagonist, indicates that to whatever extent opiates are involved in guinea pig feeding, the opiate effect is probably not a mu receptor effect.  相似文献   

17.
Radioiodinated derivatives of the metabolically stable enkephalin analogues, [DAla2,Leu5]- and [DAla2,DLeu5]-enkephalin, have been prepared. Such derivatives show sterospecific binding to receptors in brain homogenates and some neuroblastoma cell lines such as NG108-15 and N4TG1. The relative effects of levorphanol and dextrorphan and Na+ and Mn++ ions on enkephalin binding in brain and cells indicate that the iodinated derivatives are interacting with opiate receptors. Levorphanol is considerably more potent in displacing specifically bound enkephalin than dextrorphan. Sodium ions at physiological concentrations decrease enkephalin binding whereas manganese ions enhance it. Unlabelled monoiodo derivatives retain high potency in the guinea-pig ileum, mouse vas deferens and receptor binding assays. Unlabelled diiodo derivatives show far lower potency in these assays. It is concluded that radio-iodinated derivatives containing one iodine per molecule retain high affinity for the opiate receptor but diiodo derivatives do not.  相似文献   

18.
19.
20.
Abstract

Neuropeptide Y (NPY), receptors belong to the G-protein coupled receptor superfamily. NPY mediates several physiological responses, such as blood pressure, food intake, sedation. These actions of NPY are mediated by six receptor subtypes denoted as Y1-Y5 and y6. Modeling of receptor subtypes and binding site identification is an important step in developing new therapeutic agents. We have attempted to model the three NPY receptor types, Y1, Y4, and Y5 using homology modeling and threading methods. The models are consistent with previously reported experimental evidence. To understand the interaction and selectivity of NPY analogues with different neuropeptide receptors, docking studies of two neuropeptide analogues (BVD10 and BVD15) with receptors Y1 and Y4 were carried out. Results of the docking studies indicated that the interaction of ligands BVD10 and BVD15 with Y1 and Y4 receptors are different. These results were evaluated for selectivity of peptide analogues BVD10 and BVD15 towards the receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号