首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rat reticulocytes contain an isoproterenol-sensitive adenylate cyclase activity which is lost with maturation to erythrocytes despite no change in the density of β-adrenergic receptors. To explore this observation, a cytosol factor, previously shown to be important in the expression of catecholamine-sensitive adenylate cyclase in the reticulocyte, was compared to a cytosol factor obtained in a similar manner from mature erythrocytes. The cytosol factor from reticulocytes augmented isoproterenol-responsive adenylate cyclase activity in reticulocyte and erythrocyte membranes half-maximally at 0.7 ± 0.1 (SEM) and 1.1 ± 0.3 μg/ml, respectively. These concentrations of reticulocyte-derived cytosol factor were significantly lower (P < 0.01) than those concentrations of the factor from erythrocytes necessary to augment isoproterenol-responsive adenylate cyclase activity in reticulocyte (9.7 ± 2.3) and erythrocyte (7.5 ± 1.0) membranes. Cytosol factor from reticulocytes also caused greater total isoproterenol responsiveness than that from erythrocytes both in reticulocyte (784 ± 107 vs 525 ± 65 pmol/mg protein) and in erythrocyte membranes (54 ± 6 vs 36 ± 3); P < 0.05. Neither reticulocyte nor erythrocyte cytosol factor affected the concentration at which isoproterenol half-maximally stimulated adenylate cyclase in either set of membranes. However, the cytosol factor from reticulocytes markedly decreased the binding affinity of isoproterenol for β receptors in reticulocytes from 0.8 ± 0.2 to 6.9 ± 1.4 μm; P < 0.001. This reticulocyte factor had no significant effect on the binding affinity of isoproterenol for erythrocyte membranes. Erythrocyte factor did not change the binding affinity for isoproterenol in either reticulocyte or erythrocyte membranes.  相似文献   

2.
Abstract

We have shown that binding of 3H-dihydroalprenolol ([3H] DHA) to DDT1 MF-2 cells and cell membranes was of high affinity, saturable, stereoselective and reversible. The [3H]DHA dissociation constants were 0.63 ± 0.15 nM (n=6) and 0.83 ± 0.04 nM (n=5) for intact cells and cell membranes, respectively, with a binding site concentration for cells of 27,300 ± 5,200 sites/ cell (n=6) and for membranes 468 ± 24 fmoles/mg protein (n=5). The order of agonist competition for the [3H]-DHA binding site of DDT1 cell membranes was isoproterenol (Ki = 0.20 ± 0.07 μM) > epinephrine (Ki = 0.4 ± 0.2 μM) > norepinephrine (Ki = 66.5 ± 5.15 μM) consistent with a β2-selective receptor interaction. Zinterol, a β2-selective antagonist, (Ki = 0.05 ± 0.01 μM) was 18x more effective than metoprolol, a β1-selective antagonist (Ki = 0.9 ± 0.1 μM), in competing for the DHA binding site. A nonlinear iterative curve fitting analysis of zinterol and metoprolol binding isotherms indicated that (p>0.05) DDT1 cells possess a pure population of β2-adrenergic receptors. Finally, we have shown that DDT1 MF-2 cell β2-adrenergic receptor is functionally coupled to adenylate cyclase via a G/F protein complex as demonstrated in part by a guanine nucleotide requirement for isoproterenol stimulation of adenylate cyclase activity. In addition, guanine nucleotide mediated a reduction in the affinities of isoproterenol and epinephrine for the [3H]DHA binding site.  相似文献   

3.
We have investigated alterations in beta-adrenergic receptors in rat myocardial membranes derived from hypothyroid and hyperthyroid animals. (-)Isoproterenol competition curves with (-)[3H]dihydroalprenolol revealed that isoproterenol binds to the beta-adrenergic receptor with two distinct affinity states having high (KH) and low (KL) dissociation constants. In the presence of guanine nucleotides the isoproterenol competition curve steepened and had a higher EC50 (50% displacement). This was due to a transition of the high affinity state to a uniformly low affinity state. Using computer modeling of these competition curves, we have demonstrated that in hyperthyroidism, the isoproterenol curve in the absence of guanine nucleotides is shifted to the left with the EC50 changing from 180 ± 40 to 80 ± 20 nM (p < .02). The fold shift (4 fold) in KH (nM) 30 ± 9 to 7 ± 2 (p < .001) is greater than that (1.6 fold) in KL (nM) 595 ± 56 to 376 ± 34 (p < .001) such that the KL/KH ratio shifted from 20 ± 3 to 54 ± 9 (p < .001). The ratio, KL/KH, for a particular agonist appears to be related to its efficacy in activating adenylate cyclase.There was no significant alteration in any of these parameters in hypothyroid animals. Receptor number was decreased in hypothyroidism, 16 ± 3 fmol/mg protein (p < .03) and increased in hyperthyroidism 44 ± 4 (p < .03) compared to control 26 ± 2.In the rat heart agonist affinity and receptor number are modulated in hyperthyroidism, but only receptor number in hypothryoidism. Thus thyroid hormone can modify not only receptor number but agonist affinity as well.  相似文献   

4.
The cardiac β-adrenergic coupled adenylate cyclase system was examined in young and old male Wistar rats. The concentration of binding sites for (?) 3H-DHA in membranes prepared from cardiac ventricles was 21.1 ± 2.78 (SD) fmoles/mg protein in 3–4 month old rats (young rats) and 31.2 ± 2.20 fmoles/mg protein in 24 month old rats (old rats). The dissociation constant, KD was 4.3 ± 1.8 nM and 6.7 ± 1.7 nM for young and old rats, respectively. Various compounds were used to study the characteristics of activation of adenylate cyclase in homogenates from cardiac ventricles. Basal adenylate cyclase was reduced 30% in old animals compared to young (6.1 pmoles/min/mg protein in 24 month vs. 8.6 pmoles/min/mg protein in 3–4 month). (?)Isoproterenol (10?5M) alone stimulated adenylate cyclase greater than two-fold in young rats (10.6 pmoles/min/mg protein above basal) and this stimulation was 34% lower in old animals. GppNHp (100 μM), fluoride (10 mM), and forskolin (100 μM) activation of adenylate cyclase above basal was reduced 38, 37, and 34%, respectively, in the old animals. No significant changes between the two groups were noted in the apparent affinity of GppNHp either alone or in the presence of (?)isoproterenol nor in the affinities of catecholamine agonists for activation of cyclase. These results suggest a reduction in the amount of functional regulatory protein or possibly cyclase in 24 month old rat ventricular tissue compared to 3–4 month old tissue. However, this data does not rule out the possibility of altered molecular interactions of a full complement of regulatory protein (s) with β-adrenergic receptor and/or catalytic adenylate cyclase.  相似文献   

5.
Abstract

The influence of sodium was studied on hormone and guanine nucleotide-induced stimulation and inhibition of adenylate cyclase and on ß-adrenoceptor binding in various membrane systems. Sodium exerted almost identical effects on stimulation and inhibition of adenylate cyclase by various stimulatory and inhibitory hormones in all of the systems studied. The potencies of the hormones and of GTP to increase or to decrease the enzyme activity were reduced by sodium ions, without changing the maximal degree of adenylate cyclase stimulation or inhibition. Stimulation and inhibition of adenylate cyclase by the stable GTP analog, GTPγS, was affected in an identical manner by sodium, causing a retardation in the onset without a change in final stimulation or inhibition by the analog. Similar to the well-known reduction in α2-adrenoceptor affinity for agonists, sodium also reduced the apparent affinity of ß-ad-renoceptors for the agonist, isoproterenol. It is concluded that sodium exerts identical effects on Ns and Ni, inhibiting the activation process of these two coupling components of the adenylate cyclase.  相似文献   

6.
To test the hypothesis that guanine nucleotides activate adenylate cyclase by a covalent mechanism involving pyrophosphorylation of the enzyme, we studied the effect of a novel GTP analog, guanosine 5′, α-β-methylene triphosphate (Gp(CH2)pp), with a methylene bond in the α-β-position that is stable to enzymatic hydrolysis. Gp(CH2)pp was as effective as GTP in stimulating rat reticulocyte adenylate cyclase in the presence of isoproterenol. Previously only guanine nucleotides with modified terminal phosphates such as guanylyl 5′-imidodiphosphate (Gpp(NH)p) were thought capable of causing persistent activation of adenylate cyclase. Gp(CH2)pp, however, caused persistent activation of rat reticulocyte and turkey erythrocyte adenylate cyclase. We conclude that guanine nucleotides do not activate adenylate cyclase by a pyrophosphorylation mechanism and that a modified γ-phosphate is not essential in guanine nucleotides for generation of the irreversibly-activated enzyme state.  相似文献   

7.
Influence of cholera toxin on the regulation of adenylate cyclase by GTP.   总被引:6,自引:0,他引:6  
In the presence of NAD+, cholera toxin activates adenylate cyclase in membranes of S49 mouse lymphoma cells. The following evidence supports the hypothesis that the toxin acts by inhibiting a specific GTPase associated with a guanyl nucleotide regulatory component of hormone-responsive cyclase: 1. GTP alone markedly stimulates cyclase activity in toxin-treated, but not in untreated membranes; 2. The poorly hydrolyzable GTP analog, guanosine 5′-(β,γ-imino) triphosphate (Gpp(NH)p), stimulates cyclase equally well in toxin-treated and untreated membranes; 3. Cyclase activation by isoproterenol plus GTP persists in toxin-treated membranes, but not in controls, after addition of propranolol; 4. GTP is a more potent competitive inhibitor of the irreversible activation of cyclase by Gpp(NH)p in toxin-treated than in untreated membranes.  相似文献   

8.
A 100 000 × g soluble, supernatant fraction obtained from the hemolysate of rat reticulocytes was studied for its effect upon catecholamine-sensitive adenylate cyclase activity in reticulocyte membranes. The supernatant material, devoid of adenylate cyclase activity itself, amplified isoproterenol-dependent activity in responsive membranes and was an essential requirement for the expression of hormone sensitivity in membranes rendered unresponsive to isoproterenol alone. The increment in catecholamine-associated activity conferred upon reticulocyte membranes by the supernatant material was β-adrenergic because it did not affect basal or fluoride-related activity and was completely inhibited by propranolol. Guanine nucleotides were present in the supernatant but could account for only a fraction of the total activity because the supernatant was able to cause greater stimulation than maximal concentrations of GTP and when specified concentrations of exogenous GTP were compared with equivalent nucleotide concentrations in the supernatant, the supernatant always led to greater activity. The supernatant was resolved into protein- and nucleotide-containing components by ion-exchange chromatography. Each component was approximately one-half as active in amplifying catecholamine-dependent adenylate cyclase as the unresolved, crude supernatant material. The activity eluted in the first peak of the DEAE chromatogram was resistant to alkaline phosphatase, sensitive to trypsin, not dialyzable and contained no detectable concentrations of GTP or GDP. In contrast, the activity eluted in the second peak of the DEAE chromatogram was sensitive to alkaline phosphatase, resistant to trypsin, completely dialyzable and contained both GTP (30 μM) and GDP (10 μM) in significant concentrations. Neither the crude supernatant not its two active components affected the binding of [125I]-iodohydroxybenzylpindolol to reticulocyte membranes. These observations establish in rat reticulocytes the presence of protein and guanine nucleotide constituents which have independent influences upon the catecholamine-responsive adenylate cyclase of reticulocyte membranes.  相似文献   

9.
Noradrenaline maximally stimulates adenylate cyclase activity in brown adipocytes from foetal rats by 400%. Isoproterenol maximally stimulates the adenylate cyclase activity by 600%. The differences observed in the dose-response curves of adenylate cyclase activity to isoproterenol or noradrenaline were prevented in the presence of clonidine (a alpha 2-agonist) or yohimbine (alpha 2-antagonist) respectively. (3H)-clonidine binds specifically to brown fat membranes saturable (from 1.75 to 20 nM). Scatchard analysis revealed a Bmax of 22 fmol/mg and a KD of 10 nM.  相似文献   

10.
The mechanisms by which forskolin stimulates adenylate cyclase activity in turkey erythrocyte membranes and is influenced by manganese and Gpp(NH)p were studied. Forskolin-dependent adenylate cyclase activity in particulate turkey erythrocyte membranes is enhanced following preincubation of membranes with isoproterenol and GMP (cleared membranes). In contrast, solubilization of turkey erythrocyte membranes, previously cleared, renders them relatively refractory to forskolin but not to Gpp(NH)p. Whereas adenylate cyclase activity due to the simultaneous presence of forskolin and Mn2+ in particulate turkey erythrocyte membranes is additive, their copresence becomes synergistic after solubilization. The apparent Kact for forskolin activation of adenylate cyclase is not influenced by clearance or by the presence of Mn2+ in particulate turkey erythrocyte membranes. Following solubilization, the Vmax for forskolin-dependent adenylate cyclase activation determined in the presence of Mn2+ is also independent of clearance. Forskolin activation of turkey erythrocyte adenylate cyclase appears to be influenced at sites in addition to the catalytic unit.  相似文献   

11.
Epinephrine-promoted release of [3H]guanylylimidodiphosphate ([3H]Gpp(NH)p) from human platelet membranes has been used to probe the interactions between alpha2-adrenergic recpetors and Ni, the guanine nucleotide binding protein that couples those receptors to an inhibition of adenylate cyclase activity. We show here that ADP, which also acts through specific platelet receptors to inhibit adenylate cyclase activity, also promotes the release of [3H]Gpp(NH). The amount of [3H]Gpp(NH)-release elicited by epinephrine and by ADP together is equal to the sum of the amounts released by the two agents acting individually. Furthermore the maximal amounts of [3H]Gpp(NH)-release elicited by each of the two agents approximates the numbers of receptors for ADP and epinephrine present in the platelet membranes. These results suggest that the two receptor types interact with distinct portions of the pool of Ni molecules and that each receptor initiates guanine-nucleotide exchange on a single molecule of Ni.  相似文献   

12.
Progesterone treatment induces the meiotic maturation of Xenopus laevis oocytes. Previous evidence indicates that this hormonal effect may be due to inhibition of oocyte adenylate cyclase. The present work studies several aspects of the mechanism of adenylate cyclase inhibition by this hormone. Forskolin greatly stimulates oocyte adenylate cyclase in the absence of guanine nucleotides and this activity is not sensitive to progesterone inhibition. In addition the forskolin-activated enzyme is not inhibited by a wide range of guanine nucleotide, in the presence or absence of hormone. The time course of cAMP synthesis catalyzed by oocyte adenylate cyclase in the presence of guanyl-5′l-imidodiphosphate (Gpp(NH)p) shows an initial lag period that does not depend on the concentration of Gpp(NH)p. Progesterone causes a very significant increase in the hysteresis of the reaction, at least doubling the half-time of enzyme activation. The hormonal effect on the lag cannot be reversed by saturating concentrations of Gpp(NH)p. Progesterone also decreases the steady-state rates of the reaction. This effect, however, depends on the concentration of Gpp(NH)p. High concentrations of Gpp(NH)p almost completely reverse the inhibition of the steady-state rates. Progesterone does not inhibit if it is added to the reaction after the initial lag period. Guanosine-5′-O-(2-thiodiphosphate) (GDP-β-S) is an efficient competitive inhibitor of Gpp(NH)p activation of adenylate cyclase. Progesterone inhibition is observed at all concentrations of GDP-β-S and is potentiated at high ratios of GDP-β-S to Gpp(NH)p. These data indicate that progesterone inhibits by interfering with the activation of the Ns subunit of the enzyme by guanine nucleotides, rather than through a mechanism involving a separate Ni subunit.  相似文献   

13.
Desensitization of catecholamine stimulated adenylate cyclase (AC) activity is demonstrated in membranes derived from turkey erythrocytes pre-treated with isoproterenol. Membranes from desensitized cells had a loss in maximal catecholamine stimulated adenylate cyclase activity of 104 +/- 13 (pmols/mg protein/10', p less than .001) compared with controls. When adenylate cyclase was maximally stimulated with NaF or Gpp(NH)p, the decrements were 84 +/- 19 (p less than .005) and 92 +/- 32 (p less than .05) pmol/mg protein/10' respectively. There was no change in beta-adrenergic receptor number in membranes derived from treated cells. While the molecular mechanism accounting for the desensitization is uncertain, the data is consistent with the hypothesis that there is a lesion distal to the beta-adrenergic receptor, possibly involving the nucleotide site or the catalytic subunit of adenylate cyclase, causing the desensitization in the isoproterenol treated cells.  相似文献   

14.
The diterpene forskolin has been reported to activate adenylate cyclase in a manner consistent with an interaction at the catalytic unit. However, some of its actions are more consistent with an interaction at the coupling unit that links the hormone receptor to the adenylate cyclase activity. This report adds support to the latter possibility. Under conditions that lead to stimulation of adenylate cyclase in turkey erythrocyte membranes by GTP, forskolin also becomes more active. Additional evidence to support an influence of forskolin upon adenylate cyclase via the GTP-coupling protein N includes the following: (i) forskolin, at submaximal concentrations, leads to enhanced sensitivity and responsiveness of isoproterenol-dependent adenylate cyclase activity in turkey erythrocyte membranes; (ii) under specified conditions, the nucleotide GDP, an inhibitor of the stimulating nucleotide GTP and its analog, guanyl imidodiphosphate (Gpp(NH)p), also markedly inhibits the action of forskolin; (iii) both Gpp(NH)p and forskolin are associated with a decrease in agonist affinity for the beta-adrenergic receptor. However, actions of forskolin in the turkey erythrocyte are not identical to those of GTP: (i) forskolin is never as potent as Gpp(NH)p in activating adenylate cyclase; (ii) the magnitude of synergism between isoproterenol and forskolin is not equal to that observed with isoproterenol and Gpp(NH)p; (iii) at high concentrations, forskolin inhibits antagonist binding to the beta-receptor. Forskolin appears to have several sites of action in the turkey erythrocyte membrane, including an influence upon the adenylate cyclase regulatory protein N.  相似文献   

15.
The maturing rat reticulocyte was used as a model system in which to study developmental changes in the protein components of hormone-sensitive adenylate cyclase. Plasma membranes from rat erythrocytes display 10 to 20% of the adenylate cyclase activity and 30 to 50% of the beta-adrenergic receptors which are measured in membranes from rat reticulocytes, as noted by others. Reticulocyte membranes also display equal activities in response to (-)-isoproterenol in the presence of either GTP or GTP gamma S, whereas erythrocyte membrane adenylate cyclase is twice as active in the presence of isoproterenol plus GTP gamma S as in the presence of isoproterenol plus GTP. We have studied this system in greater detail by developing or applying independent assays for the catalytic protein (C) and the guanine nucleotide-binding regulatory protein (G/F) of adenylate cyclase. C was assayed in membranes by its intrinsic Mn2+-stimulated activity. It was also measured by reconstituting membranes with saturating amounts of GTP gamma S-activated G/F, yielding an operationally defined Vmax for the catalyst. By either assay, reticulocytes display about 3-fold greater C activity than do erythrocytes. G/F was assayed by its ability to confer GTP gamma S-stimulated activity upon C (which was supplied by membranes of cyc- S49 lymphoma cells). This assay indicates that reticulocyte membranes contain about 3 times as much G/F as do erythrocyte membranes. Cholera toxin and [32P]NAD were used to [32P]ADP-ribosylate the 45,000- and 52,000-dalton subunits of G/F. Total incorporation of 32P into these subunits decreased 3- to 4-fold with reticulocyte maturation. The ratio of label in the 52,000-dalton peptide to that in the 45,000-dalton peptide decreased from 0.29 in reticulocyte membranes to 0.14 in erythrocyte membranes. The apparently coordinate decrease in the amounts of C, G/F, and beta-adrenergic receptors suggest that the stoichiometry between these components is maintained during maturation, and may account for the decrease in adenylate cyclase in the membranes. However, the qualitative changes in responsiveness to hormones in the presence of GTP or GTP gamma S may be related to loss or proteolysis of the 52,000-dalton subunit of G/F.  相似文献   

16.
Abstract: Western blot analysis, using subtype-specific anti-G protein antibodies, revealed the presence of the following G protein subunits in human neuroblastoma SH- SY5Y cells: Gaα, Giα1, Gjα2, Gcα, Gzα, and Gβ. Differentiation of the cells by all-trans-retinoic acid (RA) treatment (10 μmol/L; 6 days) caused substantial alterations in the abundance of distinct G protein subunits. Concomitant with an enhanced expression of μ-opioid binding sites, the levels of the inhibitory G proteins Giα1 and Gjα1 were found to be significantly increased. This coordinate up-reg- ulation is accompanied by functional changes in μ-opioid receptor-stimulated Iow-Km GTPase, μ-receptor-mediated adenylate cyclase inhibition, and receptor-independent guanosine 5′-(βγ-imido)triphosphate [Gpp(NH)p; 10 nmol/ L]-mediated attenuation of adenylate cyclase activity. In contrast, increased levels of inhibitory G proteins had no effect on muscarinic cholinergic receptor-mediated adenylate cyclase inhibition. With respect to stimulatory receptor systems, a reciprocal regulation was observed for prosta- glandin E1 (PGE1) receptors and Gsα, the G protein subunit activating adenylate cyclase. RA treatment of SH-SY5Y cells increases both the number of PGE1 binding sites and PGE1 stimulated adenylate cyclase activity, but significantly reduced amounts of Gzα were found. This down- regulation is paralleled by a decrease in the stimulatory activity of Gzα as assessed in S49 cyc- reconstitution assays. However, the reduction in Gaα levels had no effect on both intrinsic and receptor-independent-activated [Gpp(NH)p or forskolin; 100 μtmol/L each] adenylate cyclase, suggesting that the amount of Gzα is in excess over the functional capacity of adenylate cyclase in SH-SY5Y cell membranes. Additional quantitative changes were found for Gzα, Gcα, and Gβ subunits. In contrast, neuronal differentiation in the presence of 12-O-tetradecanoylphor- bol 13-acetate (16 nmol/L; 6 days) failed to affect G protein abundance. Our results provide evidence for a specific RA effect on the abundance of distinct G protein sub- units in human SH-SY5Y neuroblastoma cells. These alterations might contribute to functional changes in transmembrane signaling pathways associated with RA-in- duced neuronal differentiation of the cells.  相似文献   

17.
Teratocarcinoma cells in culture offer an in vitro system for studying certain aspects of embryonic differentiation. To gain some insight into regulatory systems that might be operative during early development, we have characterized the alterations that occur in the hormonal responsiveness of the F9 embryonal carcinoma cell membrane adenylate cyclase with differentiation. Adenylate cyclase of F9 cells is stimulated in the presence of 10 μM GTP by calcitonin, prostaglandin E1, (?) isoproterenol, and epinephrine, while parathyroid hormone is only slightly effective. Of these active hormones, calcitonin is the most potent stimulator of cyclic AMP production. Exposure of F9 cells to retinoic acid induces differentiation to parietal endodermal cells. Basal, GTP-, and fluoride-stimulated adenylate cyclase activities show a progressive increase with the retinoic acid-induced change to the endodermal phenotype. Differentiation to the endodermal cell type markedly alters the adenylate cyclase response to calcitonin and parathyroid hormone; the cyclase of endodermal cells exhibits a low response to calcitonin while parathyroid hormone dramatically enhances cyclic AMP formation. Treatment of the retinoic acid-generated endodermal cells with dibutyryl cyclic AMP converts these cells to a type exhibiting neural-like morphology. The adenylate cyclase system of these cells is only stimulated by parathyroid hormone, prostaglandin E1, isoproterenol, and epinephrine. Calcitonin responsiveness has been lost in these cells. These variations in calcitonin and parathyroid hormone responsiveness suggest a possible regulatory role for these hormones during embryonic development. Further more, the results indicate that changes in adenylate cyclase hormonal responsiveness might serve as useful markers during early stages of differentiation.  相似文献   

18.
Adipocyte membranes from diabetic (db/db) animals showed marked elevations in the levels of α-subunits for Gi-1 which were almost twice those in membranes from their normal, lean littermates. In contrast, no apparent differences were noted for levels of the α-subunits of Gi-2 and Gi-3, and 42 and 45 kDa forms of Gs and for G-protein β-subunits. Adenylate cyclase specific activity was similar in membranes from both normal and diabetic animals under basal conditions and also when stimulated by optimal concentrations of either NaF or forsckolin. In contrast, the ability of isoprenaline, glucagon and secretin to stimulate adenylate cyclase activity was greater in membranes from normal animals compared with membranes from diabetic animals. Receptor-mediated inhibition of adenylate cyclase, as assessed using PGE1 and nicotinate, was similar using membranes from both sources, but PIA (phenylisopropyladenosine) was a slightly more effective inhibitor in membranes from diabetic animals. A doubling in the expression of G1-1 thus appears to have little discernible effect upon the inhibitory regulation of adenylate cyclase.  相似文献   

19.
Abstract

Rat adipocytes possess typical beta1 adrenoceptors that can be identified by 125I-cyanopindolol binding but the receptor mediating isoprenaline adenylate cyclase activation possesses properties quite unlike beta1 or beta2 receptors. Separation of these sites has been attempted using the photoaffinity antagonist para-amino-benzyl-carazolol. Preincubation of rat reticulocyte and adipocyte membranes with this agent followed by washing induced a concentration-dependent loss of specific 125I-cyanopindolol sites in both tissues, though the maximal loss was apparently greater in the reticulocyte. However, the loss of sites in both tissues induced a different effect on isoprenaline-stimulated adenylate cyclase. In the reticulocyte, the loss of specific sites was accompanied by an equivalent fall in the maximal stimulation of adenylate cyclase. In the adipocyte there were no significant effects of receptor site loss on the isoprenaline dose-response curve. It is suggested that this data supports the concept that an atypical beta-adrenoceptor, with relatively low affinity for many antagonists, mediates catecholamine-stimulated adenylate cyclase (and lipolysis) in the adipocyte.  相似文献   

20.
Despite the presence of a similar number of glucagon and VIP receptors in liver membranes, VIP induces a negligeable stimulation of adenylate cyclase when compared with glucagon effect. In order to elucidate these discrepancies, the effects of guanine nucleotides on the VIP and glucagon-responsive adenylate cyclase of liver were compared using pure ATP as substrate. 10?8 M VIP accounted for a 1.5-fold increase of basal activity. In the presence of GTP or Gpp(NH)p (10?9 to 10?5 M), the level of cAMP production induced by VIP was no more than additive. In contrast, Gpp(NH)p potentiated the effect of glucagon on liver adenylate cyclase. These discrepancies are not explained by a difference in the peptide binding process. These data suggest that, in liver membranes, a GTP-binding protein N2 is associated with the glucagon-sensitive adenylate cyclase, but is not detected for VIP. It is suggested that N2 appears to be specific for the peptidic receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号