首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
A common feature of nuclear receptor ligand binding domains (LBD) is a helical sandwich fold that nests a ligand binding pocket within the bottom half of the domain. Here we report that the ligand pocket of glucocorticoid receptor (GR) can be continuously extended into the top half of the LBD by binding to deacylcortivazol (DAC), an extremely potent glucocorticoid. It has been puzzling for decades why DAC, which contains a phenylpyrazole replacement at the conserved 3-ketone of steroid hormones that are normally required for activation of their cognate receptors, is a potent GR activator. The crystal structure of the GR LBD bound to DAC and the fourth LXXLL motif of steroid receptor coactivator 1 reveals that the GR ligand binding pocket is expanded to a size of 1,070 Å3, effectively doubling the size of the GR dexamethasone-binding pocket of 540 Å3 and yet leaving the structure of the coactivator binding site intact. DAC occupies only ~50% of the space of the pocket but makes intricate interactions with the receptor around the phenylpyrazole group that accounts for the high-affinity binding of DAC. The dramatic expansion of the DAC-binding pocket thus highlights the conformational adaptability of GR to ligand binding. The new structure also allows docking of various nonsteroidal ligands that cannot be fitted into the previous structures, thus providing a new rational template for drug discovery of steroidal and nonsteroidal glucocorticoids that can be specifically designed to reach the unoccupied space of the expanded pocket.  相似文献   

4.
5.
V Perreau  A Sarrieau  P Mormède 《Life sciences》1999,64(17):1501-1515
Corticosteroids receptors were characterized and compared in central and peripheral tissues of two pig breeds, the Meishan (MS) and the Large White (LW) pigs, that display differences in the basal activity and stress-induced reactivity of the hypothalamic-pituitary-adrenal (HPA) axis. In vitro kinetic experiments on kidney and liver cytosols from adrenalectomized pigs allowed to identify two distinct corticosteroid receptors referred to as mineralocorticoid (MR) and glucocorticoid (GR) receptors. The binding specificities were determined for kidney and hippocampal MR and for liver and hippocampal GR. In hippocampus and peripheral tissues, cortisol showed a greater affinity for MR than for GR. As already described in the dog, mouse and human, dexamethasone and progesterone display a moderate affinity for MR. Putative differences in corticosteroid receptors binding capacities and affinities were investigated by saturation binding studies in specific regions implicated in the regulation of HPA axis (hippocampus and pituitary). The MS pigs evidenced higher densities of hippocampal MR, while LW pigs had higher densities of pituitary GR. Thus, this study suggests that a difference in the MR/GR balance in hippocampus and pituitary could be implicated in the different HPA activity between MS and LW pigs.  相似文献   

6.
7.
8.
9.
The potential role of excitatory amino acids in the regulation of brain corticosteroid receptors was examined using systemic administration of kainic acid. Administration of kainic acid (5, 10, and 15 mg/kg) to 24-h adrenalectomized rats that were killed 3 h later produced large, dose-related decreases in glucocorticoid receptors (GR) in hippocampus (23-63%), frontal cortex (22-76%), and striatum (41-49%). Kainic acid did not decrease hypothalamic GR. Hippocampal mineralocorticoid receptors (MR) were also markedly decreased (50-71%) by kainic acid. Significant decreases in corticosteroid receptors could be detected as soon as 1 h after kainic acid (10 mg/kg) administration. Decreases in hippocampal, cortical, and hypothalamic GR as well as hippocampal MR were observed 24 h after administration of kainic acid (10 mg/kg) to adrenalectomized rats. Kainic acid (10 mg/kg) also significantly decreased hippocampal GR and MR as well as GR in the other three brain regions when administered to adrenal-intact rats that were subsequently adrenalectomized and killed 48 h after drug administration. The kainic acid-induced decreases in hippocampal GR and MR binding were due to decreases in the maximum number of binding sites (Bmax) with no change in the apparent affinity (KD). Kainic acid when added in vitro did not displace the GR and MR radioligands from their respective receptors. These studies demonstrate that excitatory amino acids play a prominent role in the regulation of hippocampal corticosteroid receptors. In addition, the data indicate that noncorticosterone factors are involved in corticosteroid receptor plasticity.  相似文献   

10.
Corticosteroid derivatives coupled in the C3, C7 or C17 position with a long aliphatic chain were synthesized in order to select a suitable ligand for the preparation of a biospecific affinity adsorbent for mineralocorticoid receptor purification. The affinity of these derivatives for mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) was explored in rabbit kidney cytosol. In this model, aldosterone bound to a single class of receptors with high affinity (Kd 1 nM) and mineralocorticoid specificity. RU26988, a highly specific ligand for GR, did not compete for these sites. The C7 and C17 positions were found to be of crucial importance in the steroid's interaction with the mineralocorticoid receptors, since the linkage of a long side chain in these positions induced complete loss of affinity. Hence, deoxycorticosterone no longer bound to MR after 17 beta substitution with a 9-carbon aliphatic chain. This loss of affinity was not observed for glucocorticoids. The 17 beta nonylamide derivative of dexamethasone still competed for GR. Increasing the length of the C7 side of the spirolactone SC26304 suppressed its affinity for MR. Finally, C3 was an appropriate position for steroid substitution. The 3-nonylamide of carboxymethyloxime deoxycorticosterone bound to MR but not to GR, and therefore constitutes a suitable ligand for the preparation of a mineralocorticoid adsorbent.  相似文献   

11.
12.
AimsMineralocorticoid receptor (MR) blockade ameliorated insulin resistance with improvements in adipocytokine dysregulation, inflammation, and excess of reactive oxygen species (ROS) in obese adipose tissue and adipocytes, but its mechanism has not been clarified. The 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), producing active glucocorticoids, is highly expressed in adipocytes and glucocorticoids bind to MR with higher affinity than to glucocorticoid receptor (GR). We investigated whether glucocorticoids effect on adipocytokines and ROS through MR in adipocytes. In addition, fat distributions of MR and GR were investigated in human subjects.Methods and ResultsCorticoid receptors and their target genes were examined in adipose tissue of obese db/db mice. 3T3-L1 adipocytes were treated with glucocorticoids, H2O2, MR antagonist eplerenone (EP), GR antagonist RU486 (RU), MR-siRNA, and/or N-acetylcysteine. Human adipose tissues were obtained from seven patients who underwent abdominal surgery. The mRNA levels of MR and its target gene were higher in db/db mice than in control db/m + mice. In 3T3-L1 adipocytes, glucocorticoids, similar to H2O2, caused the dysregulation of mRNA levels of various genes related to adipocytokines and the increase of intracellular ROS. Such changes were rectified by MR blockade, not by GR antagonist. In human fat, MR mRNA level was increased in parallel with the increase of body mass index (BMI) and its increase was more significant in visceral fat, while there were no apparent correlations of GR mRNA level to BMI or fat distribution.ConclusionGlucocorticoid-MR pathway may contribute to the obesity-related adipocytokine dysregulation and adipose ROS.  相似文献   

13.
Glucocorticoid hormones such as corticosterone (CORT) play crucial roles in many physiological processes. CORT''s actions are primarily mediated via binding to two receptors (glucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs)) in different target tissues. CORT receptors can be independently regulated from circulating hormone titres, from tissue to tissue and even within different regions of the same tissue type. Increasing evidence has shown relationships between circulating CORT and melanin-based pigmentation in skin and feathers, yet to our knowledge, there have been no studies of CORT receptors in the skin of melanized ornaments. Male house sparrows (Passer domesticus) have a black, melanized bib, and evidence suggests that bib size is an important intraspecific signal. We examined the relationship between bib area and tissue sensitivity to CORT by quantifying GR and MR in bib skin and in adjacent paler-feathered belly skin (as a control tissue) at different life-history stages using radioligand binding assays. Males with larger bibs relative to their life-history stage had less GR in bib skin, but not belly skin, than males with smaller bibs. These results suggest a connection between the size of a melanin-based ornament and the underlying tissue''s responsiveness to CORT.  相似文献   

14.
Corticosteroids and the brain   总被引:5,自引:0,他引:5  
Mineralocorticoid (MR) and glucocorticoid receptors (GR) are expressed in the central nervous system. Radioligand binding studies, autoradiography, immunocytochemistry and in situ hybridization have shown that MR and GR are found in abundance in neurons of the limbic system (hippocampus), a structure involved in mood, affect and subtle control of the hypothalamic-pituitary-adrenal (HPA) axis. In the hippocampus MR binds corticosterone (CORT) as well as aldosterone (ALDO) with high affinity. MR seems mainly occupied by CORT in the face of its 2-3 order higher circulating concentration. GR binds CORT with a 6-10-fold lower affinity. MR and GR gene expression, as well as the native receptor proteins, seem to be controlled in a coordinative manner. When GR is down-regulated by excess homologous steroid, MR appears to be increased. Down regulation of MR reduces GR as well. MR and GR display a differential ontogenetic pattern. Ontogeny, particularly that of GR, can be permanently influenced when animals are exposed during the first post-natal week of maternal deprivation, handling, CORT or ACTH1-24 injections. These MR and GR changes persist into senescence and have been proposed to result in altered CORT responsiveness, stress regulation, behavioural adaptation and brain aging.  相似文献   

15.
Expression of the vitellogenin genes in avian and amphibian liver is regulated by estrogens. The DNA elements mediating estrogen induction of the various vitellogenin genes of chicken and Xenopus encompass one or more copies of a 13-mer palindromic sequence called the estrogen-responsive element (ERE). Here we show that upon incubation with the purified estrogen receptor (ER) from calf uterus the Xenopus vitellogenin A2 gene yields a DNase-I footprint over the ERE between -331 and -319. This element does not mediate the response to glucocorticoids or progestins in T47D cells. The three guanine residues in each half of the palindrome are protected against methylation by dimethylsulfate after incubation with ER, but not with glucocorticoid (GR) or progesterone (PR) receptors. In contrast, the chicken vitellogenin II gene exhibits multihormonal regulation by estrogens, progestins, and glucocorticoids in T47D and MCF7 cells. Regulation is mediated by the DNA region between -721 and -591 that contains four binding sites for hormone receptors, as demonstrated by DNase-I footprints and methylation protection experiments. The two distal and most proximal binding sites are recognized by ER, GR, and PR, whereas the central binding site is only bound by ER and GR. At suboptimal concentrations, estrogens and progestins or glucocorticoids act synergistically. In experiments using a DNA fragment containing an ERE adjacent to a glucocorticoid-responsive element/progesterone-responsive element, ER and PR bind synergistically to their corresponding sites, perhaps explaining the functional synergism of both hormones. Thus, two very different regulatory elements are used to mediate estrogen induction of related genes in chickens and amphibians.  相似文献   

16.
17.
18.
19.
We have recently shown that both ursodeoxycholic acid (UDCA) and tauroursodeoxycholic acid (TUDCA) prevent transforming growth factor beta1 (TGF-beta1)-induced hepatocyte apoptosis by modulating the E2F-1/p53/Bax pathway. In addition, activation of glucocorticoid (GR) and mineralocorticoid receptors (MR) inhibits apoptosis in various systems. UDCA induces a ligand-independent activation of the GR, thus potentially regulating a number of targets. In this study, we investigated the role of GR and MR during TGF-beta1-induced hepatocyte apoptosis, and identified additional antiapoptotic targets for UDCA. Our results showed that in primary hepatocytes, TGF-beta1 induced 40-50% decreases in gr and mr mRNA expression (p < 0.01), together with up to 10-fold reductions in their protein levels (p < 0.01). Notably, pretreatment with UDCA resulted in a significant upregulation of nuclear steroid receptors (p < 0.05), which coincided with 2- and 3-fold increases in the level of GR and MR nuclear translocation, respectively, when compared with that of TGF-beta1 alone (p < 0.05). Similarly, TUDCA induced GR and MR nuclear translocations (p < 0.05) and markedly prevented MR protein changes associated with TGF-beta1 (p < 0.05) without affecting GR protein levels. Moreover, when interference RNA was used to inhibit GR and MR, UDCA no longer protected hepatocytes against TGF-beta1-induced apoptosis. In fact, the protective effect of UDCA in TGF-beta1-associated caspase activation decreased from 65 to <10% when GR or MR function was blocked. Finally, the TGF-beta1-induced E2F-1/Mdm-2/p53 apoptotic pathway, normally inhibited by UDCA, was not regulated by the bile acid after GR or MR silencing. These results demonstrate that UDCA protects against apoptosis through an additional pathway that involves nuclear receptors GR and MR as key factors. Further, the E2F-1/Mdm-2/p53 apoptotic pathway appears to be a prime target for UDCA-induced steroid receptor activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号