首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vasoactive intestinal polypeptide (VIP) interaction with a 94% pure preparation of monocytes isolated from human peripheral blood was studied by direct binding technique using 3-[125I]tyrosyl-VIP as a tracer ligand. Scatchard analysis of binding data was compatible with two classes of binding sites, one with Kd = 0.25 nM and maximal binding capacity of 16 fmol/10(6) cells, and another one with Kd = 25 nM and maximal binding capacity of 180 fmol/10(6) cells. The binding was time-, temperature-, and pH-dependent and was saturable, reversible, and specific. This study has demonstrated that human monocytes have high affinity/low capacity as well as low affinity/high capacity binding sites for VIP. No specific VIP binding was found in pure preparations of human granulocytes, platelets or erythrocytes.  相似文献   

2.
3.
The properties of the specific receptors for vasoactive intestinal peptide (VIP) in rat liver plasma membranes have been studied by using 125I-VIP as a tracer. The binding of the peptide was a reversible, saturable and specific process, as well as time and temperature dependent. Peptide inactivation was also dependent on time and temperature and remained relatively low in the standard conditions used, as it happened in the inactivation of the binding sites. The binding data were compatible with the existence of two classes of VIP receptors: a high affinity (Kd = 4.2 x 10(-10) M) and low binding capacity (1.5 pmol VIP/mg protein) class and another one of low affinity (Kd = 1.7 x 10(-7) M) and high binding capacity (38.6 pmol VIP/mg protein). The specificity of the binding sites of VIP was established from the fact that binding of 125I-VIP was inhibited by native VIP and by 60-fold higher concentrations of secretin but not by the parent hormone glucagon, by insulin or somatostatin at concentrations as high as 10(-6) M.  相似文献   

4.
The binding of vasoactive intestinal peptide (VIP) and stimulation of adenylate cyclase were studied in bovine thyroid plasma membranes. The binding depended on time, temperature and was saturable and specific. Binding studies suggested the presence of two classes of binding sites: a class with high affinity (Kd = 13 nM) and low capacity (6411 sites/pg), and a class with low affinity (Kd = 480 nm) and high capacity (105,300 sites/pg) at 15 degrees C. Secretin, glucagon, insulin and somatostatin did not displace the tracer from the membranes. VIP stimulated cyclic AMP production. Maximal cyclic AMP production (2-fold above basal values) was observed with 100 nM VIP and half-maximal response was obtained at 5 nM VIP at 15 degrees C.  相似文献   

5.
Ligand-induced receptor oligomerization is an established mechanism for receptor-tyrosine kinase activation. However, numerous receptor-tyrosine kinases are expressed in multicomponent complexes with other receptors that may signal independently or alter the binding characteristics of the receptor-tyrosine kinase. Nerve growth factor (NGF) interacts with two structurally unrelated receptors, the Trk A receptor-tyrosine kinase and p75, a tumor necrosis factor receptor family member. Each receptor binds independently to NGF with predominantly low affinity (K(d) = 10(-9) m), but they produce high affinity binding sites (K(d) = 10(-11) m) upon receptor co-expression. Here we provide evidence that the number of high affinity sites is regulated by the ratio of the two receptors and by specific domains of Trk A and p75. Co-expression of Trk A containing mutant transmembrane or cytoplasmic domains with p75 yielded reduced numbers of high affinity binding sites. Similarly, co-expression of mutant p75 containing altered transmembrane and cytoplasmic domains with Trk A also resulted in predominantly low affinity binding sites. Surprisingly, extracellular domain mutations of p75 that abolished NGF binding still generated high affinity binding with Trk A. These results indicate that the transmembrane and cytoplasmic domains of Trk A and p75 are responsible for high affinity site formation and suggest that p75 alters the conformation of Trk A to generate high affinity NGF binding.  相似文献   

6.
Thrombin receptors define responsiveness of cholesterol-modified platelets   总被引:4,自引:0,他引:4  
The microviscosity of human platelet membranes was changed by incubating platelets with liposomes containing various ratios of cholesterol and lecithin. Binding of 125I-thrombin to the modified platelets was measured together with platelet aggregation and secretion. In cholesterol-normal platelets (mole ratio of cholesterol to phospholipid (C:PL) = 0.553; eta = 2.40 poise), weighted nonlinear least squares curve fitting indicated that a model involving two classes of sites was adequate to describe the binding isotherm (K1 = 8.3 X 10(8) M-1; R1 = 150 sites/platelet; K2 = 6.4 X 10(6) M-1; R2 = 16,000 sites/platelet). In cholesterol-enriched platelets (C:PL = 0.857; eta = 3.05 poise), the apparent affinities for the two classes of sites decreased to 55 and 53%, respectively, while the binding capacities increased to 170 and 160%, respectively. In contrast, in the cholesterol-depleted platelets (C:PL = 0.435; eta = 2.03 poise), the affinities increased to 220 and 180%, respectively, while the binding capacities decreased to 53 and 46%, respectively. In cholesterol-enriched, cholesterol-normal, and cholesterol-depleted platelets, the thrombin concentrations required for half-maximal aggregation were 0.17, 0.35, and 0.52 nM, respectively, while the values for half-maximal secretion of [14C]serotonin were 0.17, 0.40, and 0.55 nM, respectively. Plots of receptor occupancy versus biological response showed that maximum response in cholesterol-enriched, cholesterol-normal, and cholesterol-depleted platelets occurred with occupancy of 30, 50, and 70% of the high affinity sites, respectively. In all three treatment groups, occupancy of 40-50 high affinity sites results in 50% aggregation. These results show that (i) modification of platelet membrane microviscosity results in changes in the number and affinity of both high and low affinity thrombin receptors, (ii) the change in receptor number rather than affinity is the determinant for platelet responsiveness, and (iii) the changes in membrane microviscosity do not appear to alter the coupling between occupied receptor and subsequent bioresponse.  相似文献   

7.
Specific binding sites for somatostatin have been characterized in cytosolic fraction of rat intestinal mucosa by using 125I-labelled Tyr11-somatostatin and a variety of physicochemical conditions. The binding depended on time, temperature and pH, and was reversible, saturable and specific. At apparent equilibrium, the specific binding of 125I-Tyr11-somatostatin was competitively inhibited by native somatostatin in the 1 nM-4 microM concentration range. Binding studies suggested the presence of two classes of binding sites: a class with high affinity (Kd = 0.07 microM) and low capacity (4.6 pmol/mg protein) and a class with low affinity (Kd = 1.05 microM) and high capacity (277 pmol/mg protein) at 25 degrees C. Somatostatin exhibited competitive inhibition of tracer binding, while neuropeptides such as neurotensin, substance P, Leu-enkephalin, and vasoactive intestinal peptide were ineffective. The presence of somatostatin binding sites in cytosolic fraction of intestinal mucosa, together with the known occurrence of somatostatin in D-cells and nerve endings in the small intestine, strongly suggest that this peptide may be involved in the physiology and physiopathology of intestinal epithelium.  相似文献   

8.
The binding of insulin-like growth factor I (IGF I) on red blood cells has been studied in 13 children aged 8 months to 11 years and in 10 adults. The Scatchard analysis showed a curvilinear regression. In adults, the specific binding was 4.1% of the tracer, the mean number of high affinity receptor sites per cell (Ro1) being 0.88 (K1 = 10.74 nM-1) and the mean number of low affinity receptors sites (Ro2) per cell being 7.14 (K2 = 0.37 nM-1). In children the specific binding ranged from 3 to 6.5%. Ro1 ranged from 0.40 to 3.13 (K1 from 3.48 to 13.61 nM-1). Ro2 ranged from 2.88 to 17.25 (K2 from 0.03 to 0.65 nM-1). The most striking fact was the close positive correlation between the specific binding and the age of children (r = 0.914, P less than 0.001). These data suggest that the high growth velocity of young children, concomitant with the low plasma levels of IGF I which are physiological during infancy and early childhood, does not result from an increased binding of IGF I to cell receptors.  相似文献   

9.
Two distinct affinity binding sites for IL-1 on human cell lines   总被引:3,自引:0,他引:3  
We used two human cell lines, NK-like YT-C3 and an EBV-containing B cell line, 3B6, as models to study the receptor(s) for IL-1. Two distinct types of saturable binding sites were found on both cell lines at 37 degrees C. Between 1 pM and 100 pM of 125I-IL-1-alpha concentration, saturable binding sites were detected on the YT-C3 cells with a K of 4 x 10(-11) M. The K found for the IL-1-alpha binding sites on 3B6 cells was 7.5 x 10(-11) M. An additional binding curve was detected above 100 pM on YT-C3 cells with a K of 7 x 10(-9) M and on 3B6 cells with a K of 5 x 10(-9) M. Scatchard plot analysis revealed 600 sites/cell with high affinity binding and 7000 sites/cell with low affinity for YT-C3 cells and 300 sites/cell with high affinity binding and 6000 sites/cell with low affinity for 3B6 cells. At 37 degrees C, the internalization of 125I-labeled IL-1 occurred via both high and low affinity IL-1R on both YT-C3 and 3B6 cells, whereas the rates of internalization for high affinity binding sites on YT-C3 cells were predominant in comparison to that of low affinity binding sites. In chemical cross-linking studies of 125I-IL-1-alpha to 3B6 and YT-C3 cells, two protein bands were immunoprecipitated with Mr around 85 to 90 kDa leading to an estimation of the Mr of the IL-1R around 68 to 72 kDa. In similar experiments, the Mr found for the IL-1R expressed on the murine T cell line EL4 was slightly higher (around 80 kDa). Whether these distinct affinity binding sites are shared by a single molecule or by various chains remains to be elucidated.  相似文献   

10.
The gamma-aminobutyric acid type A receptor (GABA(A)R) carries both high (K(D) = 10-30 nm) and low (K(D) = 0.1-1.0 microm) affinity binding sites for agonists. We have used site-directed mutagenesis to identify a specific residue in the rat beta2 subunit that is involved in high affinity agonist binding. Tyrosine residues at positions 62 and 74 were mutated to either phenylalanine or serine and the effects on ligand binding and ion channel activation were investigated after the expression of mutant subunits with wild-type alpha1 and gamma2 subunits in tsA201 cells or in Xenopus oocytes. None of the mutations affected [(3)H]Ro15-4513 binding or impaired allosteric interactions between the low affinity GABA and benzodiazepine sites. Although mutations at position 74 had little effect on [(3)H]muscimol binding, the Y62F mutation decreased the affinity of the high affinity [(3)H]muscimol binding sites by approximately 6-fold, and the Y62S mutation led to a loss of detectable high affinity binding sites. After expression in oocytes, the EC(50) values for both muscimol and GABA-induced activation of Y62F and Y62S receptors were increased by 2- and 6-fold compared with the wild-type. We conclude that Tyr-62 of the beta subunit is an important determinant for high affinity agonist binding to the GABA(A) receptor.  相似文献   

11.
Protein-ligand complexes can be separated functionally into two classes. "Specific" binding is characterized, in relative terms, by a high affinity for the ligand and a low binding capacity. "Non-specific" binding is characterized by a low affinity and a very large capacity. The calculation of equilibrium binding constants for any specific protein-ligand interaction requires the exact determination of the unbound ligand concentration and the specifically bound ligand concentration. These determinations usually require corrections for the contribution of non-specific binding. The use of two correction terms, kn and f, is proposed: kn is the product of the affinity constant k times the number of binding sites n of the non-specific components, while f is the fraction of the non-specific binding included in the experimental estimates of bound ligand. Several theoretical solutions using these terms are proposed for the calculation of specific binding constants. The practical choice of the correction factor may be different when the simultaneous measurement of the affinity constant and maximum number of binding sites, or when only the latter, is desired. In the case of complex binding systesm containing more than one specific component, the individual constants can be determined by non-graphical methods, using computer-aided iterative statistical calculations. A complete solution is given for a system containing two specific plus non-specific interactions and actual experiments are reported for steroid hormone-receptro complexes.  相似文献   

12.
The placenta has been shown to contain bFGF, but the presence of specific binding sites for this growth factor in this tissue remained to be established. In order to study the role of bFGF in the placenta growth, we looked for specific binding sites on mouse placental cell membranes at days 12, 14, 16, and 18 of pregnancy. At day 12, Scatchard analyses indicated that two classes of specific interaction sites for bFGF were detected. One class of high affinity binding sites was characterized by an apparent Kd of 10 pM and a binding capacity of 10 fmoles per mg of membrane protein. A second class of low affinity binding sites was detected with an apparent Kd of 60 nM and a binding capacity of 26 pmoles per mg of membrane protein. At days 14, 16 or 18, Scatchard analyses only showed low affinity binding sites with an apparent Kd of 24 nM and a binding capacity of 230 pmoles per mg of membrane protein. The characterization of these binding sites was performed by cross linking experiments that revealed two forms of specific complexes. This result suggested that the high affinity binding sites correspond to putative receptors with relative molecular masses equal to 65,000 and 85,000. The dramatic decrease of the high affinity receptor number after the 12th day of pregnancy, which is synchronous with the 9-fold increase of the low affinity binding site number, suggests that the biological activity of bFGF could be regulated by a balance between both the numbers of high and low affinity binding sites on placenta cell membranes. Thus, as it was shown for other growth factors, bFGF could only be involved at specific pregnancy stages.  相似文献   

13.
H M Wong  M J Sole  J W Wells 《Biochemistry》1986,25(22):6995-7008
N-[3H]Methylscopolamine has been used to characterize muscarinic receptors in crude homogenates prepared from hearts of Syrian golden hamsters. The Hill coefficient is one for specific binding of the radioligand itself and for its inhibition by muscarinic antagonists; markedly lower values are obtained for its inhibition by muscarinic agonists. The binding patterns of agonists have been analyzed in terms of a mixture of sites differing in affinity for the drug and reveal the following. All agonists discern at least two classes of receptor in atrial and ventricular homogenates. The number of classes and the relative size of each differ for different agonists in the same region and for the same agonist in different regions. Atrial and ventricular affinities are in good agreement for some agonists but differ for others. Guanylyl imidodiphosphate (GMP-PNP) is without effect on the specific binding of the radioligand but alters the binding of carbachol via an apparent redistribution of receptors from one class to another; the apparent affinity at either class remains unchanged. Carbachol reveals two classes of sites in ventricular preparations, and the nucleotide mediates an interconversion from higher to lower affinity; three classes are revealed in atrial preparations, and the nucleotide eliminates the sites of highest affinity with a concomitant increase in the number of sites of lowest affinity. Taken together, the data are incompatible with the notion of different, noninterconverting sites; rather, there appear to be several possible states of affinity such that the equilibrium distribution of receptors among the various states is determined by the tissue, by the agonist, and by neurohumoral modulators such as guanylyl nucleotides. The effects of agonists and GMP-PNP cannot be rationalized in terms of a ternary complex model in which the low Hill coefficients arise from a spontaneous equilibrium between receptor (R) and G protein (G) and in which agonists bind preferentially to the RG complex.  相似文献   

14.
H2 histaminic receptors in rat cerebral cortex. 1. Binding of [3H]histamine   总被引:1,自引:0,他引:1  
Saturable binding of [3H]histamine in equilibrium with homogenates of rat cerebral cortex reveals Hill coefficients between 0.4 and 1.0, depending upon the conditions. Data from individual experiments are well described assuming one or two classes of sites. Only the sites of higher affinity (KP1 = 3.9 +/- 0.5 nM) are observed when binding is measured by isotopic dilution at a low concentration of the radioligand (less than 1.5 nM) in the presence of magnesium or by varying the concentration of the radioligand. The sites of lower affinity (KP2 = 221 +/- 26 nM) appear during isotopic dilution at higher concentrations of the radioligand or at lower concentrations either upon the addition of guanylyl imidodiphosphate (GMP-PNP) or upon the removal of magnesium. Estimates of the second- and first-order rate constants for association and dissociation of [3H]histamine agree well with KP1. Apparent capacities corresponding to KP1 and KP2 are of the order of 100 ([R1]t) and 1300 pmol/g of protein ([R2]t), respectively. Simple interconversion cannot account for the changes in binding that occur upon adding GMP-PNP or removing magnesium, since the increase in [R2]t exceeds the decrease in [R1]t. Moreover, the apparent amount of high-affinity complex exhibits a biphasic dependence on the concentration of [3H]histamine; an increase at low concentrations is offset by a decrease that occurs at higher concentrations. The latter appears to be positively cooperative and concomitant with formation of the low-affinity complex. These and other observations indicate that the binding of histamine is inconsistent with models commonly invoked to rationalize the binding of agonists to neurohumoral receptors. GMP-PNP and magnesium reciprocally alter capacity at the sites of higher affinity, however, and the reduction caused by GMP-PNP reflects a substantial increase in the rate constant for dissociation at the sites that appear to be lost. The sites labeled by [3H]histamine thus reveal the properties of neurohumoral receptors linked to a nucleotide-specific G/F protein.  相似文献   

15.
Competition binding studies have been carried out to evaluate the antagonism of TLCK-thrombin (N alpha-tosyl-L-lysine chloromethyl ketone-treated thrombin) and PPACK-thrombin (D-phenylalanyl-L-prolyl-L-arginine chloromethyl ketone-treated thrombin) with alpha-thrombin using computer-assisted analysis of the binding isotherms (LIGAND). alpha-Thrombin bound to high, moderate, and low affinity sites as previously described (Harmon, J. T., and Jamieson, G. A. (1985) Biochemistry 24, 58-64). PPACK-thrombin bound to all three sites accessible to alpha-thrombin (K1, 7 nM; R1, 20 sites/platelet; K2, 3 nM; R2, 1800 sites/platelet; K3, 510 nM; R3, 84,000 sites/platelet) as well as to a separate fourth site (Kx, 0.4 nM; Rx, 20 sites/platelet) for PPACK-thrombin that was not accessible to alpha-thrombin. In contrast, TLCK-thrombin did not bind to the high affinity site for alpha-thrombin but bound to the moderate and low affinity sites for alpha-thrombin with similar affinity (K2, 2 nM; R2, 890 sites/platelet; K3, 900 nM; R3, 100,000 sites/platelet) and to another site (Ky, 0.03 nM; Ry, 10 sites/platelet) which was not accessible to alpha-thrombin. As predicted from these binding studies, TLCK-thrombin did not compete with alpha-thrombin for platelet activation at concentrations as high as 1000 nM (500-fold excess). In contrast a 300-fold excess of PPACK-thrombin (670 nM) totally inhibited platelet activation by 2 nM thrombin. These results demonstrate that the high affinity binding site for thrombin on human platelets is a classical receptor, occupancy of which is necessary for platelet activation by low concentrations of thrombin; that TLCK-thrombin does not occupy this high affinity site and hence cannot inhibit platelet activation by alpha-thrombin; and that PPACK-thrombin does compete with alpha-thrombin at the high affinity site and is an antagonist of alpha-thrombin induced activation.  相似文献   

16.
The relationship between gonadotropin-releasing hormone (GnRH) receptor binding and biological activity in the goldfish pituitary for mammalian and salmon GnRH (sGnRH) analogs with structural modification at the C terminus involving replacement of glycine amide with an alkyl amine and replacement of the Gly6 residue with D amino acids was examined. The GnRH receptor binding data were analyzed with a computerized curve-fitting program (LIGAND) for a single as well as two classes of binding sites; analysis based on one site fit estimated binding affinity and capacity for one class of binding site, and analysis based on two-site fit estimated binding affinity and capacity for two classes of binding sites (high-affinity/low-capacity and low-affinity/high-capacity binding sites). The estimated receptor affinity values were then used to determine the correlation between binding affinity and gonadotropin (GTH)-release potency in vitro. The highest correlation between biological activity and receptor binding affinity was obtained for the high-affinity/low-capacity binding sites and GnRH analogs containing Trp7 and Leu8 residues (i.e., the salmon GnRH structural format) (R = 0.940 +/- 0.150). For the same group of GnRH analogs, there was no significant correlation between the relative GTH-release potency and binding affinity of the low-affinity/high-capacity sites (R = 0.159 +/- 0.434), or that obtained from a one-site fit (R = 0.198 +/- 0.431). Similarly, for mammalian GnRH analogs, significant correlation between binding affinity and biological activity (R = 0.406 +/- 0.049) was only obtained for the high-affinity sites, although the degree of correlation was significantly lower than that obtained for salmon GnRH analogs. The present findings provide strong support for the hypothesis that high-affinity GnRH receptors are involved in the control of GTH release in the goldfish pituitary. In addition, the results demonstrate clearly that the presence of Trp7, Leu8 residues in salmon GnRH molecule, a native peptide in goldfish, is important for recognition of the ligand by the GnRH receptors in the goldfish pituitary, and that structural modifications at positions 6 and 10 in this peptide can increase receptor binding affinity and biological activity at the pituitary level. The most active sGnRH analog identified to date is [D-Arg6, Pro9-NEt]-sGnRH.  相似文献   

17.
18.
It was previously reported that 2',3'-O-(2,4,6-trinitrocyclohexadienylidene) (TNP)-nucleotides bind with high affinity to the sarcoplasmic reticulum Ca-ATPase (Dupont, Y., Chapron, Y., and Pougeois, R. (1982) Biochem. Biophys. Res. Commun. 106, 1272-1279 and Watanabe, T., and Inesi, G. (1982) J. Biol. Chem. 257, 11510-11516). Here we report a study of the Ca-ATPase nucleotide binding sites using TNP-nucleotides. Competition at equilibrium between TNP-nucleotides and ATP was measured in the absence of calcium; it was found that TNP-nucleotides and ATP competitively bind to two classes of sites of equal concentration (3.5 nmol/mg). The ATP dissociation constants for the two classes of sites were found to be sensitive to H+ and Mg2+ concentrations. In the absence of Mg2+ (independently of pH) or at acid pH (independently of Mg2+ concentration), the nucleotide sites behave like one single family of sites of intermediate affinity (Kd = 20 microM). They split into two classes of sites of high (Kd = 2-4 microM) and low (Kd greater than 1 mM) affinity at pH values higher than neutral and in the presence of Mg2+. The calcium-activated ATP hydrolysis is accelerated by TNP-ATP (or TNP-AMP-PNP) binding on the phosphorylated enzyme. It is concluded 1) that the Ca-ATPase enzyme possesses two classes of ATP binding sites, 2) that the affinity of these two sites and the nature of their interaction is modulated by the H+ and Mg2+ concentrations, and 3) that the hydrolytic activity of the high affinity ATP binding site is activated by ATP or TNP-AMP-PNP (or TNP-ATP) binding in a low affinity ATP binding site.  相似文献   

19.
The interaction of GIP with its receptors in the hamster pancreatic insulin-secreting beta cell line, In lll, has been analyzed. 125I-labelled GIP used as tracer showed the same affinity as native GIP for the GIP binding sites. Binding of the tracer was time, temperature and cell concentration dependent. It was saturable, reversible and highly specific. Under equilibrium conditions, i.e. 2 hours at 13 degrees C, 20% and 25% of the tracer and of GIP binding sites were inactivated, respectively. Native GIP inhibited binding of 125I-labelled GIP in a dose-dependent manner, saturation of the GIP binding sites being obtained at 3. 10(-7) M peptide. Two types of GIP binding sites were found by Scatchard analysis, a small population with a high affinity for GIP (KD = 7 nM) and a large population with a low affinity (KD = 800 nM). The biphasic dissociation process confirmed the GIP binding sites heterogeneity. Apart from GIP, no peptide tested influenced the binding of the 125I-labelled GIP. The present data represents the first analysis of functionally relevant GIP binding sites in a insulin-secreting cell.  相似文献   

20.
1. The ATP sites. Homotropic interactions between ATP sites have been studied in a very large range of Na+ and K+ concentrations. The ( Na+, K+)-activated ATPase displays Michaelis-Menten kinetics for ATP under standard concentration conditions of Na+ (100 mM) and K+ (10 mM). The steady-state kinetics behavior changes at very low concentrations of K+ where negative cooperativity is observed. The existence of a high affinity and a low affinity site for ATP was clearly demonstrated from the study of the ATP stimulated hydrolysis of p-nitrophenylphosphate in the presence of Na+ and K+. The ratio of apparent affinities of high and low affinity sites for ATP is 86 at pH 7.5. 2. The Na+ sites. The binding of Na+ to its specific stimulatory sites (internal sites) is characterized by positive cooperativity with a Hill coefficient n(H(Na+))=2.0. Homotropic interactions between Na+ sites are unaffected by variations of the K+ concentration. 3. The K+ sites. (a) Binding of K+ to the (external) stimulatory site of the ATPase has been analyzed by following the (Na+, K+)-ATPase activity as well as the p-nitrophenylphosphatase activity in the presence of Na+ and K+ (with or without ATP). Binding is characterized by a Hill coefficient of 1.0 and a K(0.5(K+))=0.1 to 0.8 mM. The absence of positive or negative cooperativity persists between 5 mM and 100 mM Na+. (b) The analysis of the p-nitrophenylphosphatase or of the 2, 4 dinitrophenylphosphatase activity in the presence of K+ alone indicates the existence of low affinity sites for K+ with positive homotropic interactions. The characteristics of stimulation in that case are, K(0.5)=5 mM, n(H)=1.9. The properties of this family of site(s) are the following: firstly, saturation of the low affinity site(s) by K+ prevents ATP binding to its high affinity internal site. Secondly, saturation of the low affinity sites for K+ prevents binding of Na+ to its internal sites. Thirdly, this family of sites disappears in the presence of ATP, p-nitrophenylphosphate or of both substrates, when Na+ binds to its internal sites. Na+ binding to its specific stimulatory sites provokes the formation of the high affinity type of site for K+. 4. Mg2+ stimulation of the (Na+, K+)-ATPase is characterized by a Hill coefficient n(H(Mg2+))=1.0 and a K(0.5(Mg2+))=1 mM stimulation is essentially a V effect. Heterotropic effects between binding of Mg2+ and substrate to their respective sites are small. Heterotropic interactions between the Ms2+, Na+ and K+ sites are also small. 5. The fluidity of membrane lipids also controls the (Na+, K+)-ATPase activity. Phase transitions or separations in the membrane hardly affect recognition properties of substrates, Na+, K+ and Mg2+ for their respective sites on both sides of the membrane. Only the rate of the catalytic transformation is affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号