首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhou Y  Fang L  Jiang L  Wen P  Cao H  He W  Dai C  Yang J 《PloS one》2012,7(6):e39738
Inflammation is a pathologic feature of hyperuricemia in clinical settings. However, the underlying mechanism remains unknown. Here, infiltration of T cells and macrophages were significantly increased in hyperuricemia mice kidneys. This infiltration of inflammatory cells was accompanied by an up-regulation of TNF-α, MCP-1 and RANTES expression. Further, infiltration was largely located in tubular interstitial spaces, suggesting a role for tubular cells in hyperuricemia-induced inflammation. In cultured tubular epithelial cells (NRK-52E), uric acid, probably transported via urate transporter, induced TNF-α, MCP-1 and RANTES mRNA as well as RANTES protein expression. Culture media of NRK-52E cells incubated with uric acid showed a chemo-attractive ability to recruit macrophage. Moreover uric acid activated NF-κB signaling. The uric acid-induced up-regulation of RANTES was blocked by SN 50, a specific NF-κB inhibitor. Activation of NF-κB signaling was also observed in tubule of hyperuricemia mice. These results suggest that uric acid induces renal inflammation via activation of NF-κB signaling.  相似文献   

2.
Upregulation of muscularis macrophage numbers and activities plays an important role in the intestinal dysmotility associated with intestinal inflammation. The present study aimed to clarify changes in population dynamics of intestinal muscularis macrophages during colonic inflammation and to test possible inhibitory actions of agents targeting monocyte chemoattractant protein-1 (MCP-1) on muscularis macrophage dynamics and motility disorder in the colonic inflammation elicited by 2,4,6-trinitrobenzene sulfonic acid. In the inflamed muscle layer, ED1 antibody-positive monocytes and monocyte-derived macrophages were increased, followed by increasing resident macrophages positively staining for ED2 antibody. Initiation of the ED1-positive macrophage dynamic is associated with MCP-1 mRNA expression. MCP-1 was expressed in both ED1- and ED2-positive macrophages after inflammation. Electromicroscopic analysis revealed that the cell-division phase of muscularis macrophages was seen only in the early stages of inflammation. In addition, ED1 and ED2 double-positive macrophages can be detected during inflammation. Treatment with dominant negative MCP-1 or neutralizing MCP-1 antibodies markedly inhibited numbers of both ED1- and ED2-positive macrophages. Inflammation-mediated dysmotility was partially recovered by treatment with neutralizing MCP-1 antibodies. These results suggest that the inflamed muscle layer is initially infiltrated by monocytes, which then differentiate and develop into muscularis-resident macrophages. These macrophages express MCP-1 for further recruitment of monocytes. MCP-1 may be one potential therapeutic target for inhibiting intestinal motility disorders in gut inflammation.  相似文献   

3.
AimsMonocyte chemotactic protein-1 (MCP-1) plays an important role in recruiting monocytes/macrophages to injured tubulointerstitial tissue. The present study examined whether indoxyl sulfate, a uremic toxin, regulates renal expression of MCP-1.Main methodsThe effect of indoxyl sulfate on the expression of MCP-1 was determined using human proximal tubular cells (HK-2 cells) and following animals: (1) Dahl salt-resistant normotensive rats (DN), (2) Dahl salt-resistant normotensive indoxyl sulfate-administered rats (DN + IS), (3) Dahl salt-sensitive hypertensive rats (DH), and (4) Dahl salt-sensitive hypertensive indoxyl sulfate-administered rats (DH + IS).Key findingsDN + IS, DH, and DH + IS rats showed significantly increased mRNA expression of MCP-1 in the kidneys compared with DN rats. DH + IS rats tended to show increased mRNA expression of MCP-1 in the kidneys compared with DH rats. Immunohistochemistry demonstrated the stimulatory effects of indoxyl sulfate on MCP-1 expression and monocyte/macrophage infiltration in the kidneys. Indoxyl sulfate upregulated mRNA and protein expression of MCP-1 in HK-2 cells. Indoxyl sulfate induced activation of ERK, p38, and JNK as well as of NF-κB and p53 in HK-2 cells. An antioxidant, and inhibitors of NF-κB, p53, ERK pathway (MEK1/2), and JNK suppressed indoxyl sulfate-induced mRNA expression of MCP-1 in HK-2 cells.SignificanceIndoxyl sulfate upregulates renal expression of MCP-1 through production of reactive oxygen species (ROS), and activation of NF-κB, p53, ERK, and JNK in proximal tubular cells. Thus, accumulation of indoxyl sulfate in chronic kidney disease might be involved in the pathogenesis of tubulointerstitial injury through induction of MCP-1 in the kidneys.  相似文献   

4.
Immune cell infiltration plays a key role in acute kidney injury (AKI) to chronic kidney disease (CKD) progression. T lymphocytes, neutrophils, monocytes/macrophages and other immune cells regulate inflammation, tissue remodelling and repair. To determine the kinetics of accumulation of various immune cell populations, we established an animal model combining parabiosis and separation surgery to explore the fate and lifespan of peripheral leucocytes that migrate to the kidney. We found that peripheral T lymphocytes could survive for a long time (more than 14 days), whereas peripheral neutrophils survived for a short time in both healthy and ischaemia-induced damaged kidneys. Nearly half of the peripheral-derived macrophages disappeared after 14 days in normal kidneys, while their existing time in the inflammatory kidneys was prolonged. A fraction of F4/80high macrophages were renewed from the circulating monocyte pool. In addition, we found that after renal ischaemia reperfusion, neutrophils increased significantly in the early phase, and T lymphocytes mainly accumulated in the late stage, whereas macrophages infiltrated throughout AKI-CKD progression and were sustained longer in injured as opposed to normal kidneys. In conclusion, peripheral-derived macrophages, T lymphocytes and neutrophils exhibit different lifespans in the kidney, which may play different roles during AKI-CKD progression.  相似文献   

5.
Apoptotic cell removal (efferocytosis) is an essential process in the regulation of inflammation and tissue repair. We have shown that monocyte chemoattractant protein-1/CC chemokine ligand 2 (MCP-1/CCL2) enhances efferocytosis by alveolar macrophages in murine bacterial pneumonia. However, the mechanism by which MCP-1 exerts this effect remains to be determined. Here we explored that hypothesis that MCP-1 enhances efferocytosis through a Rac1/phosphatidylinositol 3-kinase (PI3-kinase)-dependent mechanism.We assessed phagocytosis of apoptotic cells by MCP-1 treated murine macrophages in vitro and in vivo. Rac activity in macrophages was measured using a Rac pull down assay and an ELISA based assay (GLISA). The downstream Rac1 activation pathway was studied using a specific Rac1 inhibitor and PI3-kinase inhibitor in in vitro assays.MCP-1 enhanced efferocytosis of apoptotic cells by murine alveolar macrophages (AMs), peritoneal macrophages (PMs), the J774 macrophage cell line (J774s) in vitro, and murine AMs in vivo. Rac1 activation was demonstrated in these cell lines. The effect of MCP-1 on efferocytosis was completely negated by the Rac1 inhibitor and PI3-kinase inhibitor.We demonstrated that MCP-1 enhances efferocytosis in a Rac1-PI3 kinase-dependent manner. Therefore, MCP-1-Rac1-PI3K interaction plays a critical role in resolution of acute lung inflammation.  相似文献   

6.
Tubulo-interstitial damage is a common finding in the chronically diseased kidney and is characterized by ongoing inflammation and fibrosis leading to renal dysfunction and end-stage renal disease. Upon kidney injury, endogenous ligands can be released which are recognized by innate immune sensors to alarm innate immune system. A new family of innate sensors is the family of TREM (triggering receptor expressed on myeloid cell). TREM1 is an activating receptor and requires association with transmembrane adapter molecule DAP12 (DNAX-associated protein 12) for cell signaling. TREM1-DAP12 pathway has a cross-talk with intracellular signaling pathways of several Toll-like receptors (TLRs) and is able to amplify TLR signaling and thereby contributes to the magnitude of inflammation. So far, several studies have shown that TLRs play a role in obstructive nephropathy but the contribution of TREM1-DAP12 herein is unknown. Therefore, we studied TREM1 expression in human and murine progressive renal diseases and further investigated the role for TREM1-DAP12 by subjecting wild-type (WT), TREM1/3 double KO and DAP12 KO mice to murine unilateral ureter obstruction (UUO) model. In patients with hydronephrosis, TREM1 positive cells were observed in renal tissue. We showed that in kidneys from WT mice, DAP12 mRNA and TREM1 mRNA and protein levels were elevated upon UUO. Compared to WT mice, DAP12 KO mice displayed less renal MCP-1, KC and TGF-β1 levels and less influx of macrophages during progression of UUO, whereas TREM1/3 double KO mice displayed less renal MCP-1 level. Renal fibrosis was comparable in WT, TREM1/3 double KO and DAP12 KO mice. We conclude that DAP12, partly through TREM1/3, is involved in renal inflammation during progression of UUO.  相似文献   

7.
Monocyte chemotactic protein-1 (MCP-1, CCL2) is an important determinant of macrophage infiltration in tumors, ovarian carcinoma in particular. MCP-1 binds the chemokine receptor CCR2. Recent results indicate that proinflammatory and anti-inflammatory signals regulate chemokine receptor expression in monocytes. The present study was designed to investigate the expression of CCR2 in tumor-associated macrophages (TAM) from ovarian cancer patients. TAM isolated from ascitic or solid ovarian carcinoma displayed defective CCR2 mRNA (Northern blot and PCR) and surface expression and did not migrate in response to MCP-1. The defect was selective for CCR2 in that CCR1 and CCR5 were expressed normally in TAM. CCR2 gene expression and chemotactic response to MCP-1 were decreased to a lesser extent in blood monocytes from cancer patients. CCR2 mRNA levels and the chemotactic response to MCP-1 were drastically reduced in fresh monocytes cultured in the presence of tumor ascites from cancer patients. Ab against TNF-alpha restored the CCR2 mRNA level in monocytes cultured in the presence of ascitic fluid. The finding of defective CCR2 expression in TAM, largely dependent on local TNF production, is consistent with previous in vitro data on down-regulation of chemokine receptors by proinflammatory molecules. Receptor inhibition may serve as a mechanism to arrest and retain recruited macrophages and to prevent chemokine scavenging by mononuclear phagocytes at sites of inflammation and tumor growth. In the presence of advanced tumors or chronic inflammation, systemic down-regulation of receptor expression by proinflammatory molecules leaking in the systemic circulation may account for defective chemotaxis and a defective capacity to mount inflammatory responses associated with advanced neoplasia.  相似文献   

8.
Mammalian tissues contain networks of mononuclear phagocytes (MPh) that sense injury and orchestrate the response to it. In mice, this is affected by distinct populations of dendritic cells (DC), monocytes and macrophages and recent studies suggest the same is true for human skin and intestine but little is known about the kidney. Here we describe the analysis of MPh populations in five human kidneys and show they are highly heterogeneous and contain discrete populations of DC, monocytes and macrophages. These include: plasmacytoid DC (CD303+) and both types of conventional DC—cDC1 (CD141+ cells) and CD2 (CD1c+ cells); classical, non-classical and intermediate monocytes; and macrophages including a novel population of CD141+ macrophages clearly distinguishable from cDC1 cells. The relative size of the MPh populations differed between kidneys: the pDC population was bi-modally distributed being less than 2% of DC in two kidneys without severe injury and over 35% in the remaining three with low grade injury in the absence of morphological evidence of inflammation. There were profound differences in the other MPh populations in kidneys with high and low numbers of pDC. Thus, cDC1 cells were abundant (55 and 52.3%) when pDC were sparse and sparse (12.8–12.5%) when pDC were abundant, whereas the proportions of cDC2 cells and classical monocytes increased slightly in pDC high kidneys. We conclude that MPh are highly heterogeneous in human kidneys and that pDC infiltration indicative of low-grade injury does not occur in isolation but is part of a co-ordinated response affecting all renal DC, monocyte and macrophage populations.  相似文献   

9.
The aim of this study is to investigate renal markers and the biomarker MCP-1 in patients with schistosomiasis mansoni. This is a cross-sectional study with 85 patients aged 5 to 48 years, with a confirmed diagnosis of schistosomiasis mansoni through the Kato-Katz method. The patients were divided in three groups: control (G-I); infected by S. mansoni before treatment (G-II) and infected by S. mansoni after treatment (G-III). Renal function was evaluated by tubular and glomerular biomarkers and through urinary MCP-1. Patients’ mean age was 23.2±13 years. There was no statistically significant difference between the groups regarding tubular and glomerular function evaluated through the traditional biomarkers. MCP-1 was higher in G-II and G-III, when compared to G-I; p=0.009 and p=0.007, respectively. There was no difference when comparing groups G-II and G-III (p=0.892). Although it was not different among the groups, there was a significant correlation between albuminuria and MCP-1. There was a significant increase in urinary MCP-1 levels in patients with schistosomiasis mansoni, which was associated with albuminuria. This protein has a role in the recruitment of monocytes to injury and inflammation sites . The increase of MCP-1 in the urine evidences that there is silent renal inflammation in these patients and the inflammatory status is not interrupted by specific treatment of the offending agent. Our findings suggest that urinary MCP-1 can be a sensitive marker of renal injury in patients with schistosomiasis mansoni.  相似文献   

10.
《Epigenetics》2013,8(1):62-71
Kidney diseases, including chronic kidney disease (CKD) and acute kidney injury (AKI), are associated with inflammation. The mechanism that regulates inflammation in these renal injuries remains unclear. Here, we demonstrated that p300/CBP-associated factor (PCAF), a histone acetyltransferase, was overexpressed in the kidneys of db/db mice and lipopolysaccharide (LPS)-injected mice. Moreover, elevated histone acetylation, such as H3K18ac, and up-regulation of some inflammatory genes, such as ICAM-1, VCAM-1, and MCP-1, were found upon these renal injuries. Furthermore, increased H3K18ac was recruited to the promoters of ICAM-1, VCAM-1, and MCP-1 in the kidneys of LPS-injected mice. In vitro studies demonstrated that PCAF knockdown in human renal proximal tubule epithelial cells (HK-2) led to downregulation of inflammatory molecules, including VCAM-1, ICAM-1, p50 subunit of NF-κB (p50), and MCP-1 mRNA and protein levels, together with significantly decreased H3K18ac level. Consistent with these, overexpression of PCAF enhanced the expression of inflammatory molecules. Furthermore, PCAF deficiency reduced palmitate-induced recruitment of H3K18ac on the promoters of ICAM-1 and MCP-1, as well as inhibited palmitate-induced upregulation of these inflammatory molecules. In summary, the present work demonstrates that PCAF plays an essential role in the regulation of inflammatory molecules through H3K18ac, which provides a potential therapeutic target for inflammation-related renal diseases.  相似文献   

11.
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are both low-molecular-weight lysophospholipid (LPL) ligands which are recognized by the Edg family of G protein-coupled receptors (GPCRs). In endothelial cells, these two ligands activate Edg receptors resulting in cell proliferation and cell migration. Interleukin-8 (IL-8) is a C-X-C chemokine and acts as a chemoattractant of neutrophils, whereas monocyte chemoattractant protein-1 (MCP-1) is a C-C chemokine and functions mainly as a chemoattractant of monocytes/macrophages. Both factors are secreted from endothelial cells and have been implicated in the processes leading to atherosclerosis. We examined the effects of LPLs on the expression of IL-8 and MCP-1, key regulators of leukocyte recruitment in human umbilical cord vein endothelial cells (HUVECs). Work illustrated in this article showed that LPA and S1P enhanced IL-8 and MCP-1 mRNA expressions, and protein secretions in dose- and time-dependent fashions. Maximal mRNA expression appeared at 16 hr post-ligand treatment. Using prior treatments with chemical inhibitors, LPLs enhanced IL-8 and MCP-1 expressions through a Gi-, Rho-, and NFkappaB-dependent mechanism. In a chemotaxis assay system, LPL treatments of endothelial cells enhanced monocyte recruitment through upregulating IL-8 and MCP-1 protein secretions. Pre-incubation with AF12198, an IL-1 receptor antagonist or IL-1 functional blocking antibody both suppressed the enhanced effects elicited by LPLs of IL-8 and MCP-1 mRNA expressions in HUVECs. These results suggest that LPLs released by activated platelets might enhance the IL-8- and MCP-1-dependent chemoattraction of monocytes toward the endothelium through an IL-1-dependent mechanism, which may play an important role in facilitating wound-healing and inflammation processes.  相似文献   

12.
Although necrotic cells are known to induce inflammation in vivo, the underlying mechanism remains largely unexplored. In order to examine the mechanism, we used an inflammation model induced by injection of necrotic leukemic P388 cells into the peritoneal cavity in this study. The injection of necrotic cells induced the infiltration of neutrophils and subsequently that of monocytes/macrophages. In agreement with this, the injection also induced the production of KC and MIP-2, and subsequently that of MCP-1. Although the level of KC was higher than that of MIP-2, both anti-KC Ab and anti-MIP-2 Ab significantly inhibited the infiltration of neutrophils. Antibodies against CXCR2, a sole receptor for KC and MIP-2, almost completely inhibited the infiltration of neutrophils and monocytes/macrophages. Anti-MCP-1 Ab, on the other hand, inhibited the infiltration of monocytes/macrophages but not neutrophils. These results indicate that KC and MIP-2 play important roles in the infiltration of neutrophils into the site of injection of necrotic cells and that neutrophils may regulate monocyte/macrophage infiltration in our model.  相似文献   

13.
BackgroundNephrolithiasis is a common urinary disease with a high recurrence rate of secondary stone formation. Several mechanisms are involved in the onset and recurrence of nephrolithiasis, e.g., oxidative stress, inflammation, apoptosis, and epithelial-mesenchymal transition (EMT). Vitexin, a flavonoid monomer derived from medicinal plants that exert many biological effects including anti-inflammatory and anticancer effects, has not been investigated in nephrolithiasis studies. Moreover, pyroptosis, a form of programmed cell death resulting from inflammasome-associated caspase activation, has not been studied in mice with nephrolithiasis.PurposeWe aimed to investigate the protective effect and underlying mechanisms of vitexin in nephrolithiasis, and the related role of pyroptosis in vivo and in vitro.MethodsMouse models of nephrolithiasis were established via intraperitoneal injection of glyoxylate, and cell models of tubular epithelial cells and macrophages were established using calcium oxalate monohydrate (COM). Crystal deposition and kidney tissue injury were evaluated by hematoxylin and eosin, and von Kossa staining. Renal oxidative stress indexes including malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT), were analyzed. The renal expression of interleukin-1 beta (IL-1β), gasdermin D (GSDMD), osteopontin (OPN), CD44, and monocyte chemotactic protein 1 (MCP-1), and EMT-related proteins in renal tubular epithelial cells was assessed. Cell viability and the apoptosis ratio were evaluated.ResultsIn vivo, vitexin alleviated crystal deposition and kidney tissue injury, and decreased the level of MDA, and increased the levels of SOD, GSH, and CAT. Vitexin also reduced the levels of the pyroptosis-related proteins GSDMD, NLRP3, cleaved caspase-1, and mature IL-1β, which were elevated in mice with nephrolithiasis, and repressed apoptosis and the expression of OPN and CD44. Moreover, vitexin mitigated F4/80-positive macrophage infiltration and MCP-1 expression in the kidneys. Furthermore, an in vitro study showed that vitexin increased the viability of HK-2 cells and THP-1-derived macrophages, which was impaired by treatment with COM crystals, decreased the medium lactate dehydrogenase (LDH) level, and inhibited the expression of pyroptosis-related proteins in HK-2 cells and macrophages. Vitexin repressed EMT of HK-2 cells, with increased expression of pan-cytokeratin (Pan-ck) and decreased expression of Vimentin and alpha-smooth muscle actin (α-SMA), and downregulated the Wnt/β-catenin pathway. Moreover, vitexin suppressed tumor necrosis factor-α (TNF-α) and IL-1β mRNA expression, which was upregulated by COM in macrophages.ConclusionVitexin exerts protective effects against nephrolithiasis by inhibiting pyroptosis activation, apoptosis, EMT, and macrophage infiltration. In addition, GSDMD-related pyroptosis mediates nephrolithiasis.  相似文献   

14.
15.
ABSTRACT

Control of systemic and hepatic inflammation, in particular originating from monocytes/macrophages, is crucial to prevent liver fibrosis and its progression to end-stage cirrhosis. LC3-associated phagocytosis (LAP) is a non-canonical form of autophagy that shifts the monocyte/macrophage phenotype to an anti-inflammatory phenotype. In a recent study, we uncovered LAP as a protective mechanism against inflammation-driven liver fibrosis and systemic inflammation in the context of cirrhosis. We observed that LAP is enhanced in blood and liver monocytes from patients with liver fibrosis or those who progress to cirrhosis. Combining studies in which LAP was pharmacologically or genetically inactivated, we found that LAP limits inflammation in monocytes from cirrhotic patients, and the hepatic inflammatory profile in mice with chronic liver injury, resulting in anti-fibrogenic effects. Mechanistically, LAP-induced anti-inflammatory and antifibrogenic signaling results from enhanced expression of the Fc immunoreceptor FCGR2A/FcγRIIA and activation of an FCGR2A-mediated PTPN6/SHP-1 anti-inflammatory pathway, leading to increased engulfment of IgG into LC3 + phagosomes. In patients with cirrhosis progressing to multi-organ failure (acute-on chronic liver failure), LAP is lost in monocytes, and can be restored by targeting FCGR2A-mediated PTPN6/SHP-1 signaling. These data suggest that sustaining LAP may open novel therapeutic perspectives for patients with end-stage liver disease.  相似文献   

16.
Kidney diseases, including chronic kidney disease (CKD) and acute kidney injury (AKI), are associated with inflammation. The mechanism that regulates inflammation in these renal injuries remains unclear. Here, we demonstrated that p300/CBP-associated factor (PCAF), a histone acetyltransferase, was overexpressed in the kidneys of db/db mice and lipopolysaccharide (LPS)-injected mice. Moreover, elevated histone acetylation, such as H3K18ac, and up-regulation of some inflammatory genes, such as ICAM-1, VCAM-1, and MCP-1, were found upon these renal injuries. Furthermore, increased H3K18ac was recruited to the promoters of ICAM-1, VCAM-1, and MCP-1 in the kidneys of LPS-injected mice. In vitro studies demonstrated that PCAF knockdown in human renal proximal tubule epithelial cells (HK-2) led to downregulation of inflammatory molecules, including VCAM-1, ICAM-1, p50 subunit of NF-κB (p50), and MCP-1 mRNA and protein levels, together with significantly decreased H3K18ac level. Consistent with these, overexpression of PCAF enhanced the expression of inflammatory molecules. Furthermore, PCAF deficiency reduced palmitate-induced recruitment of H3K18ac on the promoters of ICAM-1 and MCP-1, as well as inhibited palmitate-induced upregulation of these inflammatory molecules. In summary, the present work demonstrates that PCAF plays an essential role in the regulation of inflammatory molecules through H3K18ac, which provides a potential therapeutic target for inflammation-related renal diseases.  相似文献   

17.
18.
Renal reactive oxygen species (ROS) and mononuclear leukocyte infiltration are involved in the progressive stage (exacerbation) of IgA nephropathy (IgAN), which is characterized by glomerular proliferation and renal inflammation. The identification of the mechanism responsible for this critical stage of IgAN and the development of a therapeutic strategy remain a challenge. Osthole is a pure compound isolated from Cnidiummonnieri (L.) Cusson seeds, which are used as a traditional Chinese medicine, and is anti-inflammatory, anti-apoptotic, and anti-fibrotic both in vitro and in vivo. Recently, we showed that osthole acts as an anti-inflammatory agent by reducing nuclear factor-kappa B (NF-κB) activation in and ROS release by activated macrophages. In this study, we examined whether osthole could prevent the progression of IgAN using a progressive IgAN (Prg-IgAN) model in mice. Our results showed that osthole administration resulted in prevention of albuminuria, improved renal function, and blocking of renal progressive lesions, including glomerular proliferation, glomerular sclerosis, and periglomerular mononuclear leukocyte infiltration. These findings were associated with (1) reduced renal superoxide anion levels and increased Nrf2 nuclear translocation, (2) inhibited renal activation of NF-κB and the NLRP3 inflammasome, (3) decreased renal MCP-1 expression and mononuclear leukocyte infiltration, (4) inhibited ROS production and NLRP3 inflammasome activation in cultured, activated macrophages, and (5) inhibited ROS production and MCP-1 protein levels in cultured, activated mesangial cells. The results suggest that osthole exerts its reno-protective effects on the progression of IgAN by inhibiting ROS production and activation of NF-κB and the NLRP3 inflammasome in the kidney. Our data also confirm that ROS generation and activation of NF-κB and the NLRP3 inflammasome are crucial mechanistic events involved in the progression of the renal disorder.  相似文献   

19.
ObjectiveWhite adipose tissue (WAT) is now considered a defined tissue capable of interactions with other organ systems. WAT role in elevating the level of systemic chronic inflammation suggests that alterations in this tissue as the result of disease or environmental factors may influence the development and progression of various obesity-related pathologies. This study investigated WAT cell-specific responses to an organometal compound, trimethyltin (TMT), to determine possible contribution to induced inflammation.MethodsHuman primary mature adipocytes and macrophage differentiated THP-1 cells were cultured in TMT presence and relative toxicities and different adipokine levels were determined. The inflammatory response was examined in TMT presence for primary cells from obese ob/ob mice WAT, and after TMT injection in ob/ob mice.ResultsBoth adipocytes and macrophages were resistant to cell death induced by TMT. However, adipocytes cultured in TMT presence showed increased expression of TNFα and IL-6, and modified leptin levels. In macrophage cultures, TMT also increased TNFα and IL-6, while MCP-1 and MIP-1α were decreased. In vivo, a single injection of TMT in ob/ob mice, elevated TNFα, MIP-1α and adiponectin in WAT.ConclusionsElevation of the inflammatory related products can be induced by chemical exposure in adipocytes and macrophages, as well as murine WAT. These data suggest that numerous factors, including a systemic chemical exposure, can induce an inflammatory response from the WAT. Furthermore, when characterizing both chemical-induced toxicity and the progression of the chronic inflammation associated with elevated WAT content, such responses in this target tissue should be taken into consideration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号