共查询到20条相似文献,搜索用时 8 毫秒
1.
Khattar SK Bora RS Priyadarsiny P Gupta D Khanna A Narayanan KL Babu V Chugh A Saini KS 《Biotechnology letters》2006,28(2):121-129
cDNAs encoding for five mAChR subtypes (M1–M5) were cloned under different promoters in various eukaryotic vectors and each
subtype was expressed in different mammalian cell lines. CHO-K1 cell line was the best for generating stable cell lines expressing
muscarinic receptors. Immunofluorescence and flow cytometry revealed that expression of M1–M5 was primarily localized on the
cell membrane. Western blotting and radio-ligand binding studies revealed that expression of each receptor was stable at higher
passages.
These authors contributed equally to this work.
Received 22 September 2005; Revisions requested 5 October 2005; Revisions received 2 November 2005; Accepted 4 November 2005 相似文献
2.
Akeo Shinkai Katsumi Shinoda Katsutoshi Sasaki Yoshikazu Morishita Tatsunari Nishi Yuzuru Matsuda Isami Takahashi Hideharu Anazawa 《Protein expression and purification》1997,10(3):379-385
A human α-1,3-fucosyltransferase (Fuc-TVII) was expressed by recombinant baculovirus-infected insect Sf9 cells as a secretory fusion protein. The fusion protein consisted of the human granulocyte colony-stimulating factor signal peptide followed by an IgG-binding domain of protein A, a Fuc-TVI-derived peptide, and the putative catalytic domain of Fuc-TVII. The signal peptide was correctly cleaved and the recombinant Fuc-TVII was secreted into the culture medium at a concentration of 10 μg/ml. The recombinant Fuc-TVII could be highly purified in a single-step purification procedure, i.e., IgG–Sepharose column chromatography. The enzymatic properties of the Sf9-produced Fuc-TVII were compared with the properties of that expressed by a human B-cell line, Namalwa KJM-1, transfected with an episomal plasmid carrying the fusion Fuc-TVII cDNA. Both recombinant proteins showed α-1,3-fucosyltransferase activity toward a type II oligosaccharide with a terminal α-2,3-linked sialic acid among various acceptors. The apparentKmvalues of Sf9-produced Fuc-TVII for GDP-fucose and its acceptor substrate were slightly lower than those of the Fuc-TVII produced by Namalwa KJM-1 cells. Sf9-produced Fuc-TVII has N-linked carbohydrate chains whose molecular weights are lower than those linked to Namalwa KJM-1-produced Fuc-TVII. This difference in carbohydrate structure hardly affects the thermal stability of Fuc-TVII. The baculovirus expression system is available for high-level expression of stable and enzymatically active secretory Fuc-TVII. 相似文献
3.
《Journal of receptor and signal transduction research》2013,33(1-4):81-90
AbstractReceptor phosphorylation is a key step in the process of rapid desensitization. β-adrenergic receptor kinase (βARK) is a specific receptor kinase that is known to phosphorylate and induce desensitization of several G-coupled receptors only when they are occupied by their agonists. In the present study we have done several modifications to the amino-terminal of βARK1, in order to clarify its functional role. The recombinant mutants were tested for their ability to phosphorylate rhodopsin present in purified bovine ROS membranes which serves as a substrate for βARK1. Their expression levels were detected by Western blot analysis. We found that when the amino-terminal of βARK1 is modified its expression level is very low, hence it is not able to phosphorylate over the basal. These findings suggest that this region is crucial for the normal processing of the protein. 相似文献
4.
Manveen K. Gupta Kewal Asosingh Mark Aronica Suzy Comhair Gaoyuan Cao Serpil Erzurum Reynold A. Panettieri Jr. Sathyamangla V. Naga Prasad 《PloS one》2015,10(5)
β2-adrenergic receptor (β2AR) agonists (β2-agonist) are the most commonly used therapy for acute relief in asthma, but chronic use of these bronchodilators paradoxically exacerbates airway hyper-responsiveness. Activation of βARs by β-agonist leads to desensitization (inactivation) by phosphorylation through G-protein coupled receptor kinases (GRKs) which mediate β-arrestin binding and βAR internalization. Resensitization occurs by dephosphorylation of the endosomal βARs which recycle back to the plasma membrane as agonist-ready receptors. To determine whether the loss in β-agonist response in asthma is due to altered βAR desensitization and/or resensitization, we used primary human airway smooth muscle cells (HASMCs) isolated from the lungs of non-asthmatic and fatal-asthmatic subjects. Asthmatic HASMCs have diminished adenylyl cyclase activity and cAMP response to β-agonist as compared to non-asthmatic HASMCs. Confocal microscopy showed significant accumulation of phosphorylated β2ARs in asthmatic HASMCs. Systematic analysis of desensitization components including GRKs and β-arrestin showed no appreciable differences between asthmatic and non-asthmatic HASMCs. However, asthmatic HASMC showed significant increase in PI3Kγ activity and was associated with reduction in PP2A activity. Since reduction in PP2A activity could alter receptor resensitization, endosomal fractions were isolated to assess the agonist ready β2ARs as a measure of resensitization. Despite significant accumulation of β2ARs in the endosomes of asthmatic HASMCs, endosomal β2ARs cannot robustly activate adenylyl cyclase. Furthermore, endosomes from asthmatic HASMCs are associated with significant increase in PI3Kγ and reduced PP2A activity that inhibits β2AR resensitization. Our study shows that resensitization, a process considered to be a homeostasis maintaining passive process is inhibited in asthmatic HASMCs contributing to β2AR dysfunction which may underlie asthma pathophysiology and loss in asthma control. 相似文献
5.
Transforming growth factor- (TGF-) isoform expression by odontoblasts leads to their sequestration within the dentine matrix, from where they may be released during caries and participate in the reparative processes. Two receptor types for TGF- have been implicated in TGF- induced signalling. The aim of this study was to characterise immunohistochemically the expression of these receptors in sound and carious human teeth to facilitate our understanding of the ability of these cells to respond to TGF- stimulation. Sound and carious human teeth were routinely processed and paraffin sections stained for TGF- receptors I and II, using the StrAviGen immunoperoxidase method. Strong specific staining for both receptor types was observed in the odontoblasts of healthy teeth with the greatest intensity seen with receptor I. Staining of weaker intensity was also observed for both receptors in the underlying cell rich area and pulp core. Similar patterns of staining were observed within carious tissues. We conclude that odontoblasts and other cells of the pulp of mature human molar teeth show the presence of both TGF- receptors I and II in health and disease with odontoblasts showing the strongest expression. Such findings may be important in the response of these cells to tissue injury. 相似文献
6.
Xin Li Mohammed M. Nooh Suleiman W. Bahouth 《The Journal of biological chemistry》2013,288(47):33797-33812
Protein kinase A-anchoring proteins (AKAPs) participate in the formation of macromolecular signaling complexes that include protein kinases, ion channels, effector enzymes, and G-protein-coupled receptors. We examined the role of AKAP79/150 (AKAP5) in trafficking and signaling of the β1-adrenergic receptor (β1-AR). shRNA-mediated down-regulation of AKAP5 in HEK-293 cells inhibited the recycling of the β1-AR. Recycling of the β1-AR in AKAP5 knockdown cells was rescued by shRNA-resistant AKAP5. However, truncated mutants of AKAP5 with deletions in the domains involved in membrane targeting or in binding to calcineurin or PKA failed to restore the recycling of the β1-AR, indicating that full-length AKAP5 was required. Furthermore, recycling of the β1-AR in rat neonatal cardiac myocytes was dependent on targeting the AKAP5-PKA complex to the C-terminal tail of the β1-AR. To analyze the role of AKAP5 more directly, recycling of the β1-AR was determined in ventricular myocytes from AKAP5−/− mice. In AKAP5−/− myocytes, the agonist-internalized β1-AR did not recycle, except when full-length AKAP5 was reintroduced. These data indicate that AKAP5 exerted specific and profound effects on β1-AR recycling in mammalian cells. Biochemical or real time FRET-based imaging of cyclic AMP revealed that deletion of AKAP5 sensitized the cardiac β1-AR signaling pathway to isoproterenol. Moreover, isoproterenol-mediated increase in contraction rate, surface area, or expression of β-myosin heavy chains was significantly greater in AKAP5−/− myocytes than in AKAP5+/+ myocytes. These results indicate a significant role for the AKAP5 scaffold in signaling and trafficking of the β1-AR in cardiac myocytes and mammalian cells. 相似文献
7.
为探讨转化生长因子β1(TGF-β1)在蜕膜基质细胞中发挥免疫调节作用的机制,本研究以人妊娠初期的蜕膜基质细胞为研究对象,经0 ng/ml、1 ng/ml、5 ng/ml和10 ng/ml的TGF-β1处理后,运用RT-PCR方法检测趋化因子mRNA的表达,Western-blot检测趋化因子蛋白质的表达.结果表明:在mRNA水平和蛋白水平,高浓度的TGF-β1能够显著的下调蜕膜基质细胞中趋化因子配体CX3CL1、CXCL12和CXCL16的表达,有意义的上调趋化因子受体CXCR4和CXCR6的表达.研究结果提示,TGF-β1对趋化因子配体/受体有显著的调节作用,并通过趋化因子参与母胎界面的免疫调节. 相似文献
8.
《Cell communication & adhesion》2013,20(5):377-390
The integrin α4β1(VLA4) has been expressed as a soluble, active, heterodimeric immunoglobulin fusion protein. cDNAs encoding the extracellular domains of the human α4 and β1 subunits were fused to the genomic DNA encoding the human γ1 immunoglobulin Fc domain and functional integrin fusion protein was expressed as a secreted, soluble molecule from a range of mammalian cell lines. Specific mutations were introduced into the Fc region of the molecules to promote α4β1 heterodimer formation. The soluble α4β1 Fc fusion protein exhibited divalent cation dependent binding to VCAM-1, which was blocked by the appropriate function blocking antibodies. The apparent Kd for VCAM-1 binding were similar for both the soluble and native forms of α4β1. In addition, the integrin–Fc fusion was shown to stain cells expressing VCAM-1 on their surface by FACs analysis. This approach for expressing soluble α4β1 should be generally applicable to a range of integrins. 相似文献
9.
《Journal of receptor and signal transduction research》2013,33(1):75-85
AbstractThe β2-adrenergic receptor (β2AR) couples to Gs, activating adenylyl cyclase (AC) and increasing cAMP. Such signaling undergoes desensitization with continued agonist exposure. β2AR also couple to Gi after receptor phosphorylation by the cAMP dependent protein kinase A, but the efficiency of such coupling is not known. Given the PKA dependence of β2AR-Gi coupling, we explored whether this may be a mechanism of agonist-promoted desensitization. HEK293 cells were transfected to express β2AR or β2AR and Giα2, and then treated with vehicle or the agonist isoproterenol to evoke agonist-promoted β2AR desensitization. Membrane AC activities showed that Giα2 overexpression decreased basal levels, but the fold-stimulation of the AC over basal by agonist was not altered. However, with treatment of the cells with isoproterenol prior to membrane preparation, a marked decrease in agonist-stimulated AC was observed with the cells overexpressing Giα2. in the absence of such overexpression, β2AR desensitization was 23 ± 7%, while with 5-fold Giα2 overexpression desensitization was 58 ± 5% (p<0.01, n=4). the effect of Gi on desensitization was receptor-specific, in that forskolin responses were not altered by Giα2 overexpression. Thus, acquired β2AR coupling to Gi is an important mechanism of agonist-promoted desensitization, and pathologic conditions that increase Gi levels contribute to β2AR dysfunction. 相似文献
10.
Glucose metabolism is under the cooperative regulation of both insulin receptor (IR) and β2-adrenergic receptor (β2AR), which represent the receptor tyrosine kinases (RTKs) and seven transmembrane receptors (7TMRs), respectively. Studies demonstrating cross-talk between these two receptors and their endogenous coexpression have suggested their possible interactions. To evaluate the effect of IR and prospective heteromerization on β2AR properties, we showed that IR coexpression had no effect on the ligand binding properties of β2AR; however, IR reduced β2AR surface expression and accelerated its internalization. Additionally, both receptors displayed a similar distribution pattern with a high degree of colocalization. To test the possible direct interaction between β2AR and IR, we employed quantitative BRET2 saturation and competition assays. Saturation assay data suggested constitutive β2AR and IR homo- and heteromerization. Calculated acceptor/donor (AD50) values as a measure of the relative affinity for homo- and heteromer formation differed among the heteromers that could not be explained by a simple dimer model. In heterologous competition assays, a transient increase in the BRET2 signal with a subsequent hyperbolical decrease was observed, suggesting higher-order heteromer formation. To complement the BRET2 data, we employed the informational spectrum method (ISM), a virtual spectroscopy method to investigate protein-protein interactions. Computational peptide scanning of β2AR and IR identified intracellular domains encompassing residues at the end of the 7th TM domain and C-terminal tail of β2AR and a cytoplasmic part of the IR β chain as prospective interaction domains. ISM further suggested a high probability of heteromer formation and homodimers as basic units engaged in heteromerization. In summary, our data suggest direct interaction and higher-order β2AR:IR oligomer formation, likely comprising heteromers of homodimers. 相似文献
11.
Anna E. Hakalahti Miia M. Vierimaa Minna K. Lilja Esa-Pekka Kumpula Jussi T. Tuusa Ulla E. Pet?j?-Repo 《The Journal of biological chemistry》2010,285(37):28850-28861
The β1-adrenergic receptor (β1AR) is the predominant βAR in the heart, mediating the catecholamine-stimulated increase in cardiac rate and force of contraction. Regulation of this important G protein-coupled receptor is nevertheless poorly understood. We describe here the biosynthetic profile of the human β1AR and reveal novel features relevant to its regulation using an inducible heterologous expression system in HEK293i cells. Metabolic pulse-chase labeling and cell surface biotinylation assays showed that the synthesized receptors are efficiently and rapidly transported to the cell surface. The N terminus of the mature receptor is extensively modified by sialylated mucin-type O-glycosylation in addition to one N-glycan attached to Asn15. Furthermore, the N terminus was found to be subject to limited proteolysis, resulting in two membrane-bound C-terminal fragments. N-terminal sequencing of the fragments identified two cleavage sites between Arg31 and Leu32 and Pro52 and Leu53, which were confirmed by cleavage site and truncation mutants. Metalloproteinase inhibitors were able to inhibit the cleavage, suggesting that it is mediated by a matrix metalloproteinase or a disintegrin and metalloproteinase (ADAM) family member. Most importantly, the N-terminal cleavage was found to occur not only in vitro but also in vivo. Receptor activation mediated by the βAR agonist isoproterenol enhanced the cleavage in a concentration- and time-dependent manner, and it was also enhanced by direct stimulation of protein kinase C and adenylyl cyclase. Mutation of the Arg31–Leu32 cleavage site stabilized the mature receptor. We hypothesize that the N-terminal cleavage represents a novel regulatory mechanism of cell surface β1ARs. 相似文献
12.
13.
The Nav1.6 voltage-gated sodium channel α subunit isoform is abundantly expressed in the adult rat brain. To assess the functional modulation of Nav1.6 channels by the auxiliary β1 subunit we expressed the rat Nav1.6 sodium channel α subunit by stable transformation in HEK293 cells either alone or in combination with the rat β1 subunit and assessed the properties of the reconstituted channels by recording sodium currents using the whole-cell patch clamp technique. Coexpression with the β1 subunit accelerated the inactivation of sodium currents and shifted the voltage dependence of channel activation and steady-state fast inactivation by approximately 5–7 mV in the direction of depolarization. By contrast the β1 subunit had no effect on the stability of sodium currents following repeated depolarizations at high frequencies. Our results define modulatory effects of the β1 subunit on the properties of rat Nav1.6-mediated sodium currents reconstituted in HEK293 cells that differ from effects measured previously in the Xenopus oocyte expression system. We also identify differences in the kinetic and gating properties of the rat Nav1.6 channel expressed in the absence of the β1 subunit compared to the properties of the orthologous mouse and human channels expressed in this system. 相似文献
14.
15.
A novel β-xylosidase gene of glycosyl hydrolase (GH) family 3, xyl3A, was identified from the thermophilic fungus Humicola insolens Y1, which is an innocuous and non-toxic fungus that produces a wide variety of GHs. The cDNA of xyl3A, 2334 bp in length, encodes a 777-residue polypeptide containing a putative signal peptide of 19 residues. The gene fragment without the signal peptide-coding sequence was cloned and overexpressed in Pichia pastoris GS115 at a high level of 100 mg/L in 1-L Erlenmeyer flasks without fermentation optimization. Recombinant Xyl3A showed both β-xylosidase and α-arabinfuranosidase activities, but had no hydrolysis capacity towards polysaccharides. It was optimally active at pH 6.0 and 60°C with a specific activity of 11.6 U/mg. It exhibited good stability over pH 4.0–9.0 (incubated at 37°C for 1 h) and at temperatures of 60°C and below, retaining over 80% maximum activity. The enzyme had stronger tolerance to xylose than most fungal GH3 β-xylosidases with a high Ki value of 29 mM, which makes Xyl3A more efficient to produce xylose in fermentation process. Sequential combination of Xyl3A following endoxylanase Xyn11A of the same microbial source showed significant synergistic effects on the degradation of various xylans and deconstructed xylo-oligosaccharides to xylose with high efficiency. Moreover, using pNPX as both the donor and acceptor, Xyl3A exhibited a transxylosylation activity to synthesize pNPX2. All these favorable properties suggest that Xyl3A has good potential applications in the bioconversion of hemicelluloses to biofuels. 相似文献
16.
《Journal of receptor and signal transduction research》2013,33(1-4):257-281
AbstractMammalian β-adrenergic receptors are glycoproteins consisting of a single polypeptide chain of Mr ~64,000. Treatment of purified [125I]-labeled hamster lung β-adrenergic receptor with α-mannosi-dase reveals two discrete populations of receptor consistent with previous studies using membrane bound photoaffinity-labeled receptor. Treatment of the [125I]-labeled receptor with endo-glycosidase F results initially in the formation of a Mr ~57,000 peptide which is further converted to Mr ~49,000 suggesting that there are two N-linked carbohydrate chains per receptor polypeptide. Exoglycosidase treatments and lectin chromatography of the [125I]-labeled receptor reveals the presence of two complex type carbohydrate chains (~10% of which are fucosylated) on ~45% of the receptors. The remaining ~55% of the receptors appear to contain a mixture of carbohydrate chains (possibly high mannose, hybrid and complex type chains). Deglycosylation of the receptor by endoglycosidase F does not appear to alter the binding affinity of the receptor for a variety of β-adrenergic agonists and antagonists. Moreover, the ability of control, α-mannosidase sensitive or insensitive (fractionated on immobilized wheat germ agglutinin) and neuraminidase, α-mannosidase or endoglycosidase F treated receptors to interact with the stimulatory guanine nucleo-tide regulatory protein in a reconstituted system were virtually identical. The deglycosylated receptor was also unaltered in its heat lability as well as its susceptibility to a variety of proteases. These findings demonstrate that the carbohydrate portion of the β-receptor does not contribute to determining either its specificity of ligand binding or coupling to the adenylate cyclase system. 相似文献
17.
18.
Dilated cardiomyopathy is a disease of left ventricular dysfunction accompanied by impairment of the β1-adrenergic receptor (β1-AR) signal cascade. The disturbed β1-AR function may be based on an elevated sympathetic tone observed in patients with heart failure. Prolonged adrenergic stimulation may induce metabolic and electrophysiological disturbances in the myocardium, resulting in tachyarrhythmia that leads to the development of heart failure in human and sudden death. Hence, β1-AR is considered as a promising drug target but attempts to develop effective and specific drug against this tempting pharmaceutical target is slowed down due to the lack of 3D structure of Homo sapiens β1-AR (hsβADR1). This study encompasses elucidation of 3D structural and physicochemical properties of hsβADR1 via threading-based homology modeling. Furthermore, the docking performance of several docking programs including Surflex-Dock, FRED, and GOLD were validated by re-docking and cross-docking experiments. GOLD and Surflex-Dock performed best in re-docking and cross docking experiments, respectively. Consequently, Surflex-Dock was used to predict the binding modes of four hsβADR1 agonists. This study provides clear understanding of hsβADR1 structure and its binding mechanism, thus help in providing the remedial solutions of cardiovascular, effective treatment of asthma and other diseases caused by malfunctioning of the target protein. 相似文献
19.
M. De Giorgi I. Pelikant-Malecka A. Sielicka E. M. Slominska R. Giovannoni A. Cinti 《Nucleosides, nucleotides & nucleic acids》2014,33(4-6):313-318
Adenine nucleosides and nucleotides are important signaling molecules involved in control of key mechanisms of xenotransplant rejection. Extracellular pathway that converts ATP and ADP to AMP, and AMP to adenosine mainly mediated by ecto-nucleoside triphosphate diphosphohydrolase 1, (ENTPD1 or CD39) and ecto-5′-nucleotidase (E5NT or CD73) respectively, is considered as important target for xenograft protection. To clarify feasibility of combined expression of human ENTPD1 and E5NT and to study its functional effect we transfected pig endothelial cell line (PIEC) with both genes together. To do this we have produced a dicistronic construct bearing F2A sequence in frame between human E5NT and human ENTPD1 coding sequences. PIEC cells were mock-transfected as transfection control or transfected with plasmids encoding human ENTPD1 or human E5NT. PIEC cells were exposed to 50 μM ATP or 50 μM ADP or 50 μM AMP. Conversion of extracellular substrates into products (ATP/ADP/AMP/adenosine) was measured by HPLC in the media collected at specific time intervals. Following addition of AMP, production of adenosine in the medium of E5NT/ENTPD1- and E5NT- transfected cells increased to 14.2 ± 1.1 and 24.5 ± 3.4 μM respectively while it remained below 1 μM in controls and in ENTPD1-transfected cells. A marked increase of adenosine formation from ADP or ATP was observed only in E5NT/ENTPD1-transfected cells (11.7 ± 0.1 and 5.7 ± 2.2 μM respectively) but not in any other condition studied. This study indicates feasibility and functionality of combined expression of human E5NT and ENTPD1 in pig endothelial cells using F2A sequence bearing construct. 相似文献
20.
《Cell communication & adhesion》2013,20(4):345-357
Previously we reported that over 75% of human non-small cell lung cancers overexpress the βi integrin VLA-2 on their surface and show an increase in the mRNA encoding the α-2 chain of this integrin. These results suggested the possibility that the overproduction and overexpression of one or more of the β1 integrin may be involved in the pathogenesis of human lung tumors by modulating the invasive and/or metastatic potential of the tumor. We report here the generation and characterization of multiple clones of tumor cells derived from the primary culture of cells obtained from biopsy tissue of an aggressive human squamous cell lung tumor. We show that these tumor clones (or clonotypes) exhibit seven different yet stable phenotypes with respect to the expression of five members of the βi integrin family. These results illustrate that a primary human lung tumor consists of multiple subpopulations of cells that while indistinguishable by ultrastructure are heterogeneous with respect to their β1 integrins. The availability of these distinct tumor clonotypes derived from a single tumor biopsy have made it possible to test the assumption that the βi integrins play a role in tumor progression. The feasibility of this approach is demonstrated here by the intravenous inoculation of different human tumor clonotypes into severe combined immunodeficient (scid) mice. Our preliminary results with a pair of tumor clonotypes differing in VLA-1 and VLA-2 expression level reveal that the clonotype with high level of VLA-1 and VLA-2 displays a substantial increase in the experimental engraftment and metastasis of the human tumor cells in scid mice. 相似文献